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Abstract
This paper addresses the general fully neutrosophic multi-level multiobjective pro-
gramming problems i.e. ML-MOLPPs in which not only coefficients of each objec-
tive at each level but also all coefficients and parameters in the constraints are fully 
neutrosophic numbers in the form of trapezoidal neutrosophic numbers (NNs). From 
the point of view of complexity of the problem, it is proposed to apply ranking func-
tion of NNs to convert problem into equivalent ML-MOLPPs with crisp values of 
neutrosophic coefficients and parameters. Then suitable membership function for 
each objective and decision variable are formulated using lowest and highest value 
of each objective and decision variables of converted ML-MOLPP. Formulation of 
membership functions for decision variables (using corresponding values to maxi-
mum and minimum of objectives) will avoid decision deadlock in hierarchical struc-
ture. Accordingly, simple fuzzy goal programming strategy is applied to build FGP 
solution models. With the help of linear programming techniques on these solution 
models, compromise optimal solution of original fully neutrosophic ML-MOLPP is 
obtained. The proposed approach is a unique and simple method to provide compro-
mise optimal solution to decision makers of general fully neutrosophic ML-MOLPP. 
The proposed approach is illustrated with numerical example to show its uniqueness 
and simplicity as solution technique. A case study is also discussed to demonstrate 
its applicability on real problems.
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1  Introduction

Mathematical programming problems (MPPs) are specific planning problems 
with unique mathematical structured normally having three parts: objective 
function/s, constraints and non-negative restrictions MPPs includes LPPs, NLPPs, 
MOPPs, BLPPs, MLPPs etc. Among them, multi-level programming problems 
play a pivotal role modelling hierarchical decision making problems consisting 
of multiple decision makers in hierarchy like ML-LPP/ ML-NLPP (multi-level 
linear/non linear programming problem as: more than two levels hierarchical pro-
gramming problem with linear objective functions and linear constraints or non-
linear objective function/any non-linear constraint respectively. Further in more 
complex way, ML-MOLPP/ML-MONLPP (multi-level multiobjective linear/non-
linear programming problem): More than two levels hierarchical programming 
problem with multiple linear objective functions and linear constraints or non-
linear multiple objective function/any non-linear constraint respectively. Bi-level 
programming problem (BLPP) is one particular case of MLPP with two level 
hierarchy i.e. First and Second level. The existing literature witnessed that good 
research reviews have been carried out in the area of Taxanomy and classification 
of general MPPs and some important reviews are Lachhwani and Dwivedi [1] and 
Bhati et al. [2].

The research contributions in the domain of MLPPs and BLPPs have been 
applied in many industrial and real world problems arising in the field particu-
larly in the field of design of transport network by (Gzara [3], Fontaine and Min-
ner [4]), planning of product supply chain by (Kis and Kovacs [5], Wang et  al. 
[6]), engineering problems related to facility location and design by (Camacho-
Vallejo et  al. [7]), Kalashnikov et  al. [8]) etc. It is important to mention that 
most of existing academic research on MLPPs and other extension problems are 
focused to deterministic cases and therefore implementation of research sugges-
tions in real problems become mostly infeasible in view of imprecise information 
about problems. Nowadays, in real world complex decision making problems, the 
precision of data is inconsistent and unpredictable in nature. Therefore, use of 
neutrosophic theory in real problems become very imperative for efficient and 
effective use of data. In order to handle vague, imprecise information, fuzzy set 
theory and later improved intuitionistic fuzzy set theory were popularized by 
Zadeh [9] and Atanassove [10] respectively. But again there were drawbacks like 
in fuzzy set theory only considers truthiness function of given information while 
intuitionistic fuzzy set theory considers truthiness and falsity function. However, 
both the approaches were silent on indeterministic feature of information data. 
In view of these shortcomings of two important approaches, Smarandache [11] 
introduced neutrosophy set theory in which indeterministic is a pivotal role along 
with truthiness and falsity function of given data. Neutrosophic set theory cov-
ers all important aspects of decision making (i.e. certain—truthiness, uncertain—
indeterministic and not agree—falsity) process with imprecise information. Basic 
properties of neutrosophic numbers were established by Smarandache [12, 13]. 
Keeping in view of inapplicability of research algorithms and techniques in real 
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world industrial problems arising in the form of multi-level structure with impre-
cise data, it was thought to explore some unique and simple technique for solv-
ing general fully ML-MOLPP with neutrosophic information on coefficients and 
parameters.

An effort has been made to propose solution methodology for solving general 
fully neutrosophic ML-MOLPP with trapezoidal NNs. The present simplified study 
is intended to provide unique method to solve complex fully neutrosophic ML-
MOPPs in which not only coefficients of each objective at each level but also all 
coefficients and parameters in the constraints are fully neutrosophic numbers in 
the form of trapezoidal neutrosophic numbers (NNs). In this study, all three dif-
ferent cases of ML-MOPPs with NNs are proposed as: (i) coefficients of objective 
functions are NNs, (ii) coefficients of constraints and right hand side of constraint 
parameters are NNs, (iii) all coefficients and parameters in objective functions and 
constraints of ML-MOPP are NNs. Then simplified solution methodology is pro-
posed which effectively solve all these cases. As a solution methodology, it is pro-
posed to apply ranking function of NNs to convert problem into equivalent crisp 
ML-MOLPPs models. Then suitable membership function for each objective 
and decision variable are formulated using individual lowest and highest value of 
every objective and decision variables in such a way decision deadlock situations 
can be avoided in hierarchical structure. Accordingly, simple fuzzy goal program-
ming (FGP) strategy is applied to build FGP models. And solving these solution 
models, compromise optimal solution of original fully neutrosophic ML-MOLPP 
is obtained. The content of this manuscript is structured as: in next section, we dis-
cuss on about NNs and their significance with relevant references. In Sect.  3, we 
have brief literature review on mathematical programming problems with the use of 
NNs. Some preliminary information on NNs are explained in Sect. 4. Mathematical 
formulation of ML-MOPPs with NNs along with its different cases are proposed in 
Sect. 5. In next section, a simplified solution methodology for solving full neutro-
sophic ML-MOPPs with NNs (all cases) is proposed with the combination of rank-
ing function method of NNs and basic FGP approach to find solution of the origi-
nal problem. This section is further sub divided into two parts as: (i) formulation 
of equivalent crisp model in which conversion of ML-MOPPs with NNs into ML-
MOPPs with crisp values of NNs is proposed and (ii) solution process and solution 
models are proposed to obtain compromise optimal solution of fully neutrosophic 
ML-MOPP. Flow chart of proposed simplified solution approach is also suggested 
in the same section. In next Sect. 7, two examples are solved numerically to exhibit 
how proposed solution methodology can be applied. In the same section, Compara-
tive study with other different methods to solve different ML-MOPPs (not with fully 
neutrosophic trapezoidal numbers) is also discussed to show uniqueness of proposed 
method in this domain. A real case study is discussed in Sect.  8 to demonstrate 
appropriateness of proposed approach in industrial problem. Concluding remarks 
and future directions are suggested in the last section.
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2 � Background: neutrosophic numbers (NN) and their significance

Neutrosophic set theory is an extended fuzzy set theory which handles incom-
plete and indeterministic information introduced by Smarandache [11] in 1998 
to avert the shortcomings of fuzzy set theory and intuitionistic fuzzy set theory. 
Neutrosophic numbers (NNs) or neutrosophic set theory are used in decision 
making problems involving incomplete, inconsistent and indeterministic informa-
tion. In general, neutrosophic set theory consists of neutrosophic numbers (NNs), 
neutrosophic set (N-set), neutrosophic probability and statistics, neutrosophic 
logic etc. Generally, neutrosophic sets are described jointly by three unrelated 
membership degrees (T—truthiness, I—indeterminacy and F—falsity), where T, 
I, F ∈ [0, 1] as shown in Fig. 1. Neutrosophic set theory is advantageous in deci-
sion making by considering all three features of data (i) truthiness, (ii) falsity 
and (iii) indeterminacy and enables decision makers (DMs) to increase degree of 
truthiness and decrease falsity and indeterminacy according to methodology. This 
theory is being applied in many application areas to tackle imprecise information. 
The beauty of neutrosophic set is that it can handle both incomplete and inde-
terministic information whereas intuitionistic fuzzy set can only handle incom-
plete information. In other words, neutrosophic set is interpretation of fuzzy set 
and intuitionistic fuzzy set with truthiness, falsity and indeterministic features of 
information. Therefore, Use of neutrosophic set theory and neutrosophic numbers 
(NNs) as coefficients and parameters in formulation of decision making problems 
are very effective in assimilating inaccurate and inconsistent information effi-
ciently. In literature, neutrosophic set structure, N set properties and neutrosophic 
statistics were introduced by Smarandache [12, 13]. Thereafter, Ye [14] first used 
ranking function approach for NNs in solving different type of decision making 
problems. Deli and Şubaş [15, 16] proposed ranking method for NNs and its utili-
zation in solving decision making problems.

1

( ), ( ), ( )N A AT x I x F x~ ~

a”1       a1   a’1      a2 3        a’4    a    a 4     a”4

Fig. 1   Membership functions (combining truthiness, indeterminacy and falsity) of trapezoidal NN
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3 � Literature review

In recent decades, Fuzzy set theory is being widely adopted as a part of math-
ematical programming problem like fuzzy programming problem (FPP) and also 
as tool for solving complex MPPs like use of fuzzy membership function, fuzzy 
if–then rules, fuzzy goal programming, fuzzy intuitionistic set approach etc. The 
first introduction of fuzzy programming theory and the formulation of FLP with 
solution are presented by Tanaka et  al. [17] and Zimmerman [18] respectively. 
Thereafter, many researchers have contributed in solving FPP and other extension 
problems with different approaches. Normally, in solving FPP and intuitionistic 
FPP, first of all these problems are converted into standard programming prob-
lems with the help of properties of fuzzy set theory. For example, Bharati and 
Singh [19] introduced the fully intuitionistic FLP problems using triangular intui-
tionistic fuzzy numbers. Sidhu and Kumar [20] used ranking function for solving 
intuitionistic FLP problems. In this continuation, some important research arti-
cles in the area ML-MOPPs and their different solution methodologies based on 
the use fuzzy set theory, FGP, other extension theories etc. are worth noted here 
as: Liu and Yang [21] developed interactive programming approach for the solu-
tion of ML-MOLPP. Pramanik et al. [22] suggested methodology for multi- level 
multiobjective linear plus fractional programming problem (ML-MOL + FPP) 
using fuzzy goal Programming (FGP) methodology. Baky [23] suggested FGP 
approach for obtaining solution of ML-MOLPP. Thereafter, Lachhwani [24] 
developed simplified FGP approach for ML-MOLPP with modifications in the 
work of Baky [23]. Lachhwani [25] developed modified FGP methodology for 
ML-MOLFP problem. Osman et  al. [26] proposed solution methodology with 
FGP approach.

But again with the drawbacks of fuzzy and fuzzy intuitionistic set, the new era 
of use of neutrosophic set theory begin in recent decades. Use of neutrosophic set 
theory and neutrosophic numbers (NNs) in programming problems is new area 
of research and very limited researchers have contributed in programming prob-
lem domain with NNs. Most of them are: Pramanik et al. [27] suggested solution 
approach for teacher selection problem and formulation of this problem under NN 
environment. Ye [28] suggested solution technique for linear programming prob-
lems (LPPs) under NN environment. Ye et al. [29] also suggested solution tech-
nique for non linear programming problems (NLPP) with NN status. Pramanik 
and Banerjee [30] used goal programming approach to solve MOLP problem with 
NN status. Thereafter, Pramanik and Dey [31] developed solution methodology 
to bi-level programming problems (BLPPs) with NN status. Maiti et al. [32] pro-
posed some goal programming approach for solving ML-MOPPs with NNs. Here, 
it is important to note NNs used in coefficients and parameters are in the the form 
of c + dI, where I represents indeterminacy and c, d are real numbers. Recently, 
Mohamed Abdel-Basset et al. [33] suggested a method to solve linear program-
ming problem with trapezoidal NNs as coefficients and parameters.

The main drawback of the work of Pramanik and Banerjee [30] for solution 
methodology of MOLPP under NN environment, Pramanik and Dey [31] for 
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BLPPs under NN environment, Maiti et al. [32] for ML-MOLPP in NN environ-
ment is considering NN in only linear form c + dI, in which I represents indeter-
minacy and not taking account of the truthiness and falsity features of informa-
tion. However, in imprecise and inconsistent information, truthiness and falsity 
are also decisive parts. This motivates us to propose a unique simplified solution 
approach for general fully neutrosophic ML-MOPPs with trapezoidal NNs with 
all three features truthiness, indeterminacy and falsity of NNs.

In this paper, an effort has been made to present a unique and simple solution 
methodology for general full neutrosophic ML-MOPPs with NNs. The proposed 
solution approach is also novel for fully neutrosophic ML-MOPPs in which trap-
ezoidal NNs are used in either or all parameters and coefficients in the problem.

4 � Preliminary information on NNs

Here, we address some important definitions and properties of neutrosophic num-
bers in context of solving mathematical programming problems as:

Definition 1  (Mohammed et al. [34]) A neutrosophic set N through the set of uni-
verse X is defined as a set in the form N =

{(
x, TN(x), IN(x), FN(x)

)
∶ x ∈ X

}
 , 

where TN(x) ∶ X → [0, 1], IN(x) ∶ X → [0, 1] and FN(x) ∶ X → [0, 1] [0, 1] 
∀x ∈ X represent truth, indeterminancy and falsity membership degree of x to N 
respectively.

Different type of neutrosophic numbers are defined to describe the real world 
problems. The simplest form of NNs is linear form ( N = c + dI ) where I denotes the 
membership function for indeterminacy and c, d are real numbers. This linear form 
has drawback of considering only the indeterminacy feature of given information. 
But trapezoidal NNs consider truthiness and falsity characteristic along with inde-
terminacy. Trapezoidal NNs are defined as follow:

Definition 2  (Mohamed Abdel-Basset et al. [33]) A neutrosophic set in R with the 
following trapezoidal format of truth, indeterminacy and falsity membership func-
tions is defined as trapezoidal neutrosophic number (NN) Ã as:

(1)TN(x) =

⎧⎪⎨⎪⎩

𝛼Ã

�
x−a1

a2−a1

�
(a1 ≤ x ≤ a2)

𝛼Ã (a2 ≤ x ≤ a3)

0 Otherwise

(2)IÃ(x) =

⎧
⎪⎪⎨⎪⎪⎩

(a2−x+𝜃Ã(x−a
�

1
))

(a2−a
�

1
)

(a
�

1
≤ x ≤ a2)

𝜃Ã (a2 ≤ x ≤ a3)
(x−a3+𝜃Ã(a

�

4
−x))

(a
�

4
−a3)

(a3 ≤ x ≤ a
�

4
)

1 Otherwise
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where 𝛼Ã , 𝜃Ã and 𝛽Ã represent the maximum degree of truthiness, minimum degree 
of indeterminacy, minimum degree of falsity, respectively and 𝛼Ã , 𝜃Ã , 𝛽Ã ∈ [0, 1] . 
Also a′′

1
≤ a1 ≤ a

′

1
≤ a2 ≤ a3 ≤ a

′

4
≤ a4 ≤ a

′′

4
 . The membership functions (combin-

ing truthiness, indeterminacy and falsity) of trapezoidal NN are depicted in Fig. 1.
Now, for converting coefficients and parameters in NN environment, we use con-

version formulas to convert NNs into equivalent crisp values. Some ranking func-
tion and its different types are:

Definition 3  (Mohamed Abdel-Basset et al. [33]) A ranking function R ∶ N(R) → R, 
for neutrosophic numbers where N(R) is a set of NNs is a function which convert 
each neutrosophic number into equivalent crisp numbers.

Different types of ranking functions are used in view of complexity of data, 
aspired degree of confirmation (degree of truthiness, indeterminacy and falsity), 
suitability in given data etc. Here we describe ranking function for trapezoidal NNs 
used in ML-MOPPs as: let ã = al, am1 , am2 , au, ; Tã, Iã, Fã) be a trapezoidal neu-
trosophic number, where al, am1 , am2 , au , are lower bound value, first median value, 
second median value and upper bound value for trapezoidal NN respectively. Also 
Tã, Iã, Fã are the truth, indeterminacy and falsity membership degree of trapezoidal 
NN. If any expression of NN is for maximization purpose, then

Similarly, if any expression of NN is for minimization purpose, then

where term (Tã − Iã − Fã) is also known as confirmation degree. According to the 
type of ML-MOPP with NNs, suitable ranking function is applied to convert each 
trapezoidal NN into equivalent crisp values.

5 � Formulation of ML‑MOLPPs with NNs

Now, we discuss the mathematical formulation of ML-MOPPs with NNs in which 
either or all coefficients and parameters of the problem are NNs. Before this formu-
lation, let us consider general maximization ML-MOPPs mathematically described 
as:

(3)FÃ(x) =

⎧
⎪⎪⎨⎪⎪⎩

(a2−x+𝛽Ã(x−a
��

1
))

(a2−a
��

1
)

(a
��

1
≤ x ≤ a2)

𝛽Ã (a2 ≤ x ≤ a3)
(x−a3+𝛽Ã(a

��

4
−x))

(a
��

4
−a3)

(a3 ≤ x ≤ a
��

4
)

1 Otherwise

(4)R(ã) =

(
al + au + 2(am1 + am2)

2

)
+ (Tã − Iã − Fã)

(5)R(ã) =

(
al + au − 3(am1 + am2)

2

)
+ (Tã − Iã − Fã)



1199

1 3

OPSEARCH (2021) 58:1192–1216	

where Ztr(X) = Ctr1 X1 + Ctr2 X2 +…+ CtrT XT ∀t = 1, 2,… , T r = 1, 2,… ,m is 
the i-th objective function at i-th level decision maker (DM).

x1 =
{
x1
1
, x2

1
,… , x

N1

1

}�

 decision variables for the first level decision maker (DM).

xT =

{
x1
T
, x2

T
,… , x

NT

T

}�

 decision variables for the t-level decision maker (DM).
Where ′ denotes transposition, Alt l = 1, 2,… , n, t = 1, 2,… , T  are m row vec-

tors, each of dimension (1 × Nj) . Alt xt, t = 1, 2,… , T  is a column vector of dimen-
sion (n × 1).C111,C211,… ,CT11 , all are row vectors of dimension of (1 × N1) , 
x = x1 ∪ x2 ∪… . ∪ xT and N = N1 + N2 +…+ NT . Here one set of decision vari-
ables are located at each level like xt, t = 1, 2,… , T  is t th level DM with Nt num-
ber of decision variables. Similarly, minimization type ML-MOLP problem can be 
depicted with minimization of objective functions. Now fully neutrosophic ML-
MOPPs with NNs are defined in following different types of problem as:

First type: In this type of ML-MOPPs in which each coefficient of each objec-
tive function variables at each level are represented by trapezoidal NNs and all other 
parameters/coefficient have their usual crisp values. Mathematically this type of 
problem is defined by problem (1) except part (i) of (1) which is to be replaced with 

where C̃trT represent trapezoidal neutrosophic number and ‘~’ denotes values in NN 
environment. Remaining part of the problem remains unchanged.

Second type: In this type of ML-MOPPs, coefficients and parameters (right hand 
side) of constraints are trapezoidal NNs and all other parameters/coefficient are hav-
ing their usual crisp values. Mathematically, this type of ML-MOLFP problem is 
presented by problem (1) with set of constraints (part (ii) of problem (1) is replaced 
with set of constraints:

where Ãl1, Ãl2,… , ÃlT, ∀l = 1, 2,… , p and b̃i,∀i = 1, 2,… ,m are trapezoidal NNs. 
Remaining parts of the problem remain unchanged.

Third type: This type of ML-MOPPs is general fully neutrosophic ML-
MOLPP in which all coefficients and parameters of the problem are represented by 

(6)

Max
x1

�
Z11, Z12,… , Z1m

�

Max
x2

�
Z21, Z22,… , Z2m

�

.

.

Max
xT

�
ZT1, ZT2,… , ZTm

�

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

(i)

Subject to, Al1 x1 + Al2 x2 +…+ AlT xT (≤,=,≥) bi ∀l = 1, 2,… , p (ii)

and x1, x2, … , xT ≥ 0 (iii)

.

.

(7)Z
tr
(X) ≈ C̃

tr1X1 + C̃
tr2 X2 +…+ C̃

trT
X
T

∀t = 1, 2,… , T r = 1, 2,… ,m

(8)Ãl1 X1 + Ãl2 X2 +…+ ÃlT XT (≤,=,≥) b̃i ∀l = 1, 2,… , p
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trapezoidal NNs and variables are considered as usual real variables. Mathemati-
cally, the problem can be stated as:

where Z̃tr(x) ≈ C̃tr1x1 + C̃tr2x2 +…+ C̃trTxT ∀t = 1, 2,… ,T r = 1, 2,… ,m.
x1 =

{
x1
1
, x2

1
,… , x

N1

1

}�

 decision variables of the first level DM.

xT =

{
x1
T
, x2

T
,… , x

NT

T

}�

 decision variables for the t-level DM.
Where Ãlt l = 1, 2,… , n, t = 1, 2,… , T  are m row vectors, each of dimen-

sion (1 × Nj) . Ãltxt, t = 1, 2,… , T  is a column vector of dimension (n × 1) 
under NN environment.C̃111, C̃211,… , C̃T11 , are row vectors of (1 × N1) dimen-
sion and C̃11T , C̃12T ,… , C̃1mT , are row vectors of dimension of (1 × NT ) . Here 
x = x1 ∪ x2 ∪… . ∪ xT and N = N1 + N2 +…+ NT . Also ‘~’ denotes values of coef-
ficients and parameters in NN environment.

6 � Simplified methodology for fully neutrosophic ML‑MOLFPP 
with NNs

In this section, a new simplified solution methodology is suggested for general fully 
neutrosophic ML-MOLPP in following two sub sections in steps as:

A.	 Crisp equivalent model
	   Step 1. First of all, we use ranking function method to convert trapezoidal 

NNs into equivalent crisp values. But here it is to be noted that in maximization 
ML-MOPPs decision maker normally try to maximize the truth degree, mini-
mize indeterminacy and falsity degree. Then, in this way membership degree of 
truthiness (T) = 1, degree of indeterminacy (I) = 0 and degree of falsity (F) = 0. 
So, confirmation degree = 1 + 0 + 0 = 1.

	   Further, first and second median values can be considered same in trapezoidal 
neutrosophic number in view of similarity of membership functions as depicted 
in Fig. 1. Therefore, each trapezoidal NN can be written in following form 
(Mohamed Abdel-Basset et al. [33]):

(9)

Max
x1

{
Z̃11, Z̃12,… , Z̃1m

}

Max
x2

{
Z̃21, Z̃22,… , Z̃2m

}

.

.

Max
xT

{
Z̃T1, Z̃T2,… , Z̃Tm

}

Subject to, Ãl1x1 + Ãl2x2 +…+ ÃlTxT (≤,=,≥) b̃i ∀l = 1, 2,… , p

and x1, x2, … , xT ≥ 0

.

.
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	   With unit confirmation degree. Where al, au, am1 , am2 represents the lower 
bound value, upper bound value, first median value and second median value of 
trapezoidal NN respectively. The similar notation has been suggested by Ganesan 
and Veeramani [35] and Ebrahimnejad and Tavana [36]. Using this format with 
ranking function [given in Eqs. (4) and (5)], the trapezoidal NNs (10) can be 
simplified as:

	   Now, using ranking functions (11) and (12), ML-MOPPs with NNs are con-
verted into another equivalent ML-MOPPs with crisp values of NN. This conver-
sion of ML-MOLPPs with NNs into equivalent ML-MOPPs with crisp values 
(for all three types of problem) can be described as:

	   First type: In this type of ML-MOPPs (7) with NNs, neutrosophic coefficients 
of objective functions are converted into crisp values with the use of ranking 
functions [(11) and (12)], objective functions are replaced with equivalent crisp 
value of objectives as:

where R(C̃trT ) =

[
(cu

trT
+cl

trT
)+4𝛼ctrT

2

]
+ 1 (for maximization problem) or 

R(C̃trT ) =

[
(cu

trT
+cl

trT
)−6𝛼crtT

2

]
+ 1 (for minimization problem) and remaining part of 

the problem remain unchanged.
	   Second type: In this type of ML-MOPPs (8), neutrosophic coefficients and 

right-hand side parameters of constraints are converted into crisp values with 
ranking function variables [(11) and (12)]. Accordingly, set of constraints with 
parameters are replaced with the set of constraints with the equivalent crisp values 
as:

where R(ÃtrT ) =

[
(au

trT
+al

trT
)+4𝛼atrT

2

]
+ 1 and  R(b̃i) =

[
(bu

i
+bl

i
)+4𝛼bi

2

]
+ 1 (for maximi-

zation problem) R(ÃtrT ) =

[
(au

trT
+al

trT
)−6𝛼atrT

2

]
+ 1 and R(b̃i) =

[
(bu

i
+bl

i
)−6𝛼bi

2

]
+ 1 

(for minimization problem) ∀t = 1, 2,… , T; r = 1, 2,… ,m and remaining part 
of the problem remain unchanged.

	   Third Type: For this type of ML-MOPP (9), each coefficient and each param-
eter of the problem are converted into their equivalent crisp values with the used 
of corresponding ranking functions [(11) and (12)] and converted equivalent 
ML-MOPP with crisp values can be represented mathematically as:

(10)(ã = al, au, am1 , am2) = (al, au, 𝛼, 𝛼)

(11)For maximization of NN, R(ã) =

(
al + au + 4𝛼)

2

)
+ 1

(12)Similarly, for minimization of NN, R(ã) =

(
al + au − 6𝛼)

2

)
+ 1

(13)Z̃
tr
≈[R(C̃

tr1)]x1+[R(C̃tr2)]x2+…+[R(C̃
trT
)]x

T
∀ t = 1, 2,… , T; r = 1, 2,… ,m

(14)[R(Ãl1)]x1 + [R(Ãl2)]x2 +…+ [R(ÃlT)]xT (≤,=,≥)[R( b̃i)]∀l = 1, 2,… , p, ∀i = 1, 2,… ,m
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where Z̃tr ≈ [R(C̃tr1)]x1 + [R(C̃tr2)]x2 +…+ [R(C̃trT )]xT 
R(ÃtrT ) =

[
(au

trT
+al

trT
)+4𝛼atrT

2

]
+ 1 , R(C̃trT ) =

[
(cu

trT
+cl

trT
)+4𝛼ctrT

2

]
+ 1 and 

R(b̃i) =
[
(bu

i
+bl

i
)+4𝛼bi

2

]
+ 1 ∀t = 1, 2,… , T; r = 1, 2,… ,m.

	   Similarly, for minimization ML-MOLP problem, accordingly we use the fol-
lowing ranking functions for these coefficients and parameters as:

	   R(ÃtrT ) =

[
(au

trT
+al

trT
)−6𝛼atrT

2

]
+ 1 , R(C̃trT ) =

[
(cu

trT
+cl

trT
)−6𝛼ctrT

2

]
+ 1

and remaining symbols and notations have same meanings.
B.	 Solution process and models
	   In this sub section, we consider the third type (general full neutrosophic) of 

ML-MOLPP [problem (15)] in NN environment for solution process as:
	   Step 3. Using equivalent crisp ML-MOLPP model obtained in sub section A, 

we calculate Z̃tr (highest or best value or maximum) and Z̃tr (lowest or worst value 
or minimum) of each objective functions with corresponding variables without 

(15)

Max
x1

{
Z̃11, Z̃12,… , Z̃1m

}

Max
x2

{
Z̃21, Z̃22,… , Z̃2m

}

Max
xT

{
Z̃T1, Z̃T2,… , Z̃Tm

}

Subject to, [R(Ãl1)]x1 + [R(Ãl2)]x2 +…

+ [R(ÃlT)]xT (≤,=,≥)[R( b̃i)]∀l = 1, 2,… , p, ∀i = 1, 2,… ,m

and x1, x2, … , xT ≥ 0

(16)and R(b̃i) =

[
(bu

i
+ bl

i
) − 6𝛼bi

2

]
+ 1 ∀t = 1, 2,… , T; r = 1, 2,… ,m

Table 1   Membership functions for objectives and decision variables

For maximization objective functions For minimization objective function

Membership function for objectives

𝜇
Z
t
(Z̃

tr
(X))=̃

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if Z̃
tr
(X)≥̃Z̃

tr

Z̃
tr
(X)−Z̃

tr

Z̃
tr
−Z̃

tr

if Z̃
tr
≤ Z̃

tr
(X) ≤ Z̃

tr

0 if Z̃
tr
(X) ≤ Z̃

tr

 (17) 𝜇
Z
t
(Z̃

tr
(X))=̃

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if Z̃
tr
(X)≥̃Z̃

tr

Z̃
tr
−Z̃

tr
(X)

Z̃
tr
−Z̃

tr

if Z̃
tr
≤ Z̃

tr
(X) ≤ Z̃

tr

1 if Z̃
tr
(X) ≤ Z̃

tr

 
(17A)

Membership function for decision variables

�
x
t
(x

t
) =

⎧
⎪⎪⎨⎪⎪⎩

1 for x
t
≥ x

t

x
t
−x

t

x
t
−x

t

for x
t
≤ x

t
≤ x

t

0 for x
t
≤ x

t

 (18) �
x
t
(x

t
) =

⎧
⎪⎪⎨⎪⎪⎩

0 for x
t
≥ x

t

x
t
−x

t

x
t
−x

t

for x
t
≤ x

t
≤ x

t

1 for x
t
≤ x

t

 (18A)
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considering the hierarchical structure of the problem. Then suitable membership 
function for each objective and decision variables up to (T-1) level (from 1st level 
to T-1th level i.e. from first level to second last level) are formulated as suggested 
by Lachhwani [24] for the general third type of ML-MOPP with NNs as in 
Table 1.

	   Where xt and xt are the corresponding decision variables at each level which 
yield the maximum and minimum values of the objective functions ((Z̃t(x) and 
Z̃t(x) ∀t = 1, 2,… , T − 1) at each level respectively as:

	   It is worth noting that to tackle hierarchical characteristics of MLPPs, member-
ship functions for decision variables are considered only up to (T-1) levels.

	   Step 4. Now, we formulate the solution models of equivalent crisp model of 
maximization problem (6) with the help of modified FGP approach by Lachhwani 
[25] in the format as:

	   Model I min 𝜆 =
T∑
t=1

m∑
r=1

ẇtrd
Z−
tr

+
T−1∑
t=1

d−
t

where Z̃tr = Maximum
{
Z̃tr ≈ [R(C̃tr1)]x1 + [R(C̃tr2)]x2 +…+ [R(C̃trT )]xT ∀t = 1, 2,… , T; r = 1, 2,… ,m

} and 
Z̃tr = Minimum

{
Z̃tr ≈ [R(C̃tr1)]x1 + [R(C̃tr2)]x2 +…+ [R(C̃trT )]xT ∀t = 1, 2,… , T; r = 1, 2,… ,m

} 
subject to satisfying set of the constraints.

	   Also � represents the fuzzy achievement function with the weights 
ẇtr > 0, (∀t = 1,… , T;r = 1,… ,m) showing the corresponding comparable 

(19)Z̃t=̃Max
xt∈X

{
Z̃tr(xt), ∀r = 1, 2,… ,m

}

(20)Z̃t=̃Min
xt∈X

{
Z̃tr(xt), ∀r = 1, 2,… ,m

}

Subject to, −Z̃tr + Z̃tr + dZ−
tr
(Z̃tr − Z̃tr) ≥ 0 ∀t = 1, 2,… , T;r = 1, 2,… ,m

−xt + xt + d−
t
(xt − xt) ≥ � ∀t up to (T − 1)

Subject to, [R(Ãl1)]x1 + [R(Ãl2)]x2 +…

+ [R(ÃlT)]xT (≤,=,≥)[R( b̃i)]∀l = 1, 2,… , p, ∀i = 1, 2,… ,m

and x1, x2, … , xT ≥ 0

R(ÃtrT ) =

[
(au

trT
+ al

trT
) + 4𝛼atrT

2

]
+ 1, R(C̃trT ) =

[
(cu

trT
+ cl

trT
) + 4𝛼ctrT

2

]
+ 1

and R(b̃i) =

[
(bu

i
+ bl

i
) + 4𝛼bi

2

]
+ 1 ∀t = 1, 2,… , T; r = 1, 2,… ,m
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significance of the aspired values of fuzzy goals. If we consider unit weights for 
aspired value of each objective function, then another solution model can be given 
as:

	   Model II min � =
T∑
t=1

m∑
r=1

dZ−
tr

+
T−1∑
t=1

d−
t

	   And remaining notations have same meanings. Similarly, for minimization ML-
MOLP problem, solution models can be formulated using membership functions 
for objectives and decision variables (as given in (17A) and (18A)) and ranking 
function [given in Eq. (12)] in the format as:

	   Model III min 𝜆 =
T∑
t=1

m∑
r=1

ẇtrd
Z−
tr

+
T−1∑
t=1

d−
t

where Z̃tr = Maximum
{
Z̃tr ≈ [R(C̃tr1)]x1 + [R(C̃tr2)]x2 +…+ [R(C̃trT )]xT ∀t = 1, 2,… , T; r = 1, 2,… ,m

} 
and Z̃tr = Minimum

{
Z̃tr ≈ [R(C̃tr1)]x1 + [R(C̃tr2)]x2 +…+ [R(C̃trT )]xT ∀t = 1, 2,… , T; r = 1, 2,… ,m

} 
subject to satisfying set of the constraints.

	   R(ÃtrT ) =

[
(au

trT
+al

trT
)−6𝛼atrT

2

]
+ 1 , R(C̃trT ) =

[
(cu

trT
+cl

trT
)−6𝛼ctrT

2

]
+ 1  a n d 

R(b̃i) =
[
(bu

i
+bl

i
)−6𝛼bi

2

]
+ 1 ∀t = 1, 2,… , T; r = 1, 2,… ,m

	   Model IV min � =
T∑
t=1

m∑
r=1

dZ−
tr

+
T−1∑
t=1

d−
t

Subject to, −Z̃tr + Z̃tr + dZ−
tr
(Z̃tr − Z̃tr) ≥ 0 ∀t = 1, 2,… , T;r = 1, 2,… ,m

−xt + xt + d−
t
(xt − xt) ≥ � ∀t up to (T − 1)

Subject to, [R(Ãl1)]x1 + [R(Ãl2)]x2 +…

+ [R(ÃlT)]xT (≤,=,≥)[R( b̃i)] ∀l = 1, 2,… , p, ∀i = 1, 2,… ,m

and x1 ≥ 0, x2 ≥ 0, … , xT ≥ 0.

Subject to, Z̃tr − Z̃tr + dZ−
tr
(Z̃tr − Z̃tr) ≥ 0 ∀t = 1, 2,… , T;r = 1, 2,… ,m

xt − xt + d−
t
(xt − xt) ≥ � ∀t up to (T − 1)

Subject to, [R(Ãl1)]x1 + [R(Ãl2)]x2 +…

+ [R(ÃlT)]xT (≤,=,≥)[R( b̃i)]∀l = 1, 2,… , p, ∀i = 1, 2,… ,m

and x1 ≥ 0, x2 ≥ 0, … , xT ≥ 0.

Subject to, Z̃tr − Z̃tr + dZ−
tr
(Z̃tr − Z̃tr) ≥ 0 ∀t = 1, 2,… , T;r = 1, 2,… ,m

xt − xt + d−
t
(xt − xt) ≥ � ∀t up to (T − 1)
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	   And remaining notations have same meanings.
	   Step 5. Using linear programming solution techniques, we obtain the com-

promise optimal solution of fully neutrosophic ML-MOPPs with NNs. The flow 
chart of proposed methodology is given in Fig. 2.

7 � Numerical illustrations

Now, this section of the article addresses illustration of following two numerical exam-
ples (maximization and minimization problem) of general fully neutrosophic ML-
MOLPP (third type) to demonstrate the applicability of proposed solution technique. 
This illustration is also acceptable for first and second type ML-MOLPP under NN 
environment as first and second type cases are shortened cases of third type problem.

Numerical Example 1
Let us consider maximization type full neutrosophic three level multiobjective pro-

gramming problem (third type) with trapezoidal NNs given as:

Subject to, [R(Ãl1)]x1 + [R(Ãl2)]x2

+…+ [R(ÃlT)]xT (≤,=,≥)[R( b̃i)]∀l = 1, 2,… , p, ∀i = 1, 2,… ,m

and x1 ≥ 0, x2 ≥ 0, … , xT ≥ 0.

Max
x1

{
Z̃11, Z̃12

}
(First level)

Fig. 2   Flow chart of proposed 
technique

ML-MOPP with NNs  

START 

Convert neutrosophic problem into equivalent ML-MOPP 

with crisp values of NNs using ranking function 

Calculate maximum and minimum values of objectives and 

corresponding decision variables 

Construct membership function for each objective at each 

level  and decision variables up to (T-1) level 

Formulate solution Model  

Solve solution model to obtain compromise optimal solution 

of original ML-MOPP with NNs. 
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where Z̃11 = (3, 5, 1, 1)x1 + (4, 6, 1, 1)x2 + (6, 8, 2, 2)x3

Step 1. Using ranking function R(ã) =
(

al+au+4(𝛼)

2

)
+ 1 for maximization prob-

lem, then NNs are converted into equivalent crisp values and given ML-MOPPs 
with NNs is converted into equivalent ML-MOPPs with crisp values as:

Max
x2

{
Z̃21, Z̃22

}
(second level)

Max
x2

{
Z̃31, Z̃32

}
(third level)

Subject to, (4, 10, 2, 2)x1 + (6, 10, 2, 2)x2 + (6, 8, 2, 2)x3 ≤ (475, 505, 6, 6)

(6, 8, 3, 3)x1 + (6, 10, 2, 2)x3 ≤ (460, 480, 8, 8)

(4, 6, 3, 3)x1 + (10, 10, 2, 2)x2 ≤ (465, 495, 5, 5)

And x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Z̃12 = (13, 15, 2, 2)x1 + (12, 14, 3, 3)x2 + (12, 14, 1, 1)x3

Z̃21 = (6, 8, 2, 2)x1 + (4, 6, 1, 1)x2 + (3, 5, 1, 1)x3

Z̃22 = (16, 18, 2, 2)x1 + (14, 16, 1, 1)x2 + (13, 15, 2, 2)x3

Z̃31 = (16, 18, 2, 2)x1 + (6, 8, 1, 1)x2 + (7, 9, 1, 1)x3

Z̃32 = (4, 8, 1, 1)x1 + (3, 7, 1, 1)x2 + (4, 6, 1, 1)x3

Max
x1

{
7x1 + 8x2 + 12x3, 19x1 + 20x2 + 16x3

}
(First level)

Max
x2

{
12x1 + 8x2 + 7x3, 22x1 + 18x2 + 19x3

}
(second level)

Max
x2

{
22x1 + 10x2 + 11x3, 9x1 + 8x2 + 8x3

}
(third level)

Subject to, 12x1 + 13x2 + 12x3 ≤ 503

14x1 + 13x3 ≤ 487



1207

1 3

OPSEARCH (2021) 58:1192–1216	

Table 2   Z̃
tr

 and Z̃
tr

 values with respective points

Objective Maximum value at point Minimum value at point

Z̃11
482.4379 at (0, 4.1124, 37.4615) 0 at (0, 0, 0, 0)

Z̃12
786.4339 at (32.8596, 6.4456, 2.0742) 0 at (0, 0, 0, 0)

Z̃21
460.4004 at (32.8596, 6.4456, 2.0742) 0 at (0, 0, 0, 0)

Z̃22
878.3442 at (32.8596, 6.4456, 2.0742) 0 at (0, 0, 0, 0)

Z̃31
814.3333 at (34.7857, 4.9047, 0) 0 at (0, 0, 0, 0)

Z̃32
363.8958 at (32.8596, 6.4456, 2.0742) 0 at (0, 0, 0, 0)

Table 3   Membership functions of objectives and variables (for numerical example 1)

Objec-
tive

Membership function for objective Membership function for decision vari-
able

Z̃11

𝜇
Z1
(Z̃11(X))=̃

⎧
⎪⎪⎨⎪⎪⎩

1 if Z̃11(X)≥̃482.4379

Z̃11(X)−0

482.4379−0
if 0 ≤ Z̃

tr
(X) ≤ 482.4379

0 if Z̃
tr
(X) ≤ 0

�
x1
(x1) =

⎧⎪⎪⎨⎪⎪⎩

1 for x1 ≥ 32.8596

x1−0

32.8596−0
for 0 ≤ x1 ≤ 32.8596

0 for x1 ≤ 0

Z̃12

𝜇
Z1
(Z̃12(X))=̃

⎧
⎪⎪⎨⎪⎪⎩

1 if Z̃12(X)≥̃786.4339

Z̃12(X)−0

786.4339−0
if 0 ≤ Z̃12(X) ≤ 786.4339

0 if Z̃12(X) ≤ 0

Z̃21

𝜇
Z2(Z̃21(X))=̃

⎧⎪⎪⎨⎪⎪⎩

1 if Z̃21(X)≥̃460.4004

Z̃21(X)−0

460.4004−0
if 0 ≤ Z̃21(X) ≤ 460.4004

0 if Z̃21(X) ≤ 0

�
x2
(x2) =

⎧⎪⎪⎨⎪⎪⎩

1 for x2 ≥ 6.4456

x2−0

6.4456−0
for 0 ≤ x2 ≤ 6.4456

0 for x2 ≤ 0

Z̃22

𝜇
Z2
(Z̃22(X))=̃

⎧⎪⎪⎨⎪⎪⎩

1 if Z̃22(X)≥̃878.3442

Z̃22(X)−0

878.3442−0
if 0 ≤ Z̃22(X) ≤ 878.3442

0 if Z̃22(X) ≤ 0

Z̃31

𝜇
Z3
(Z̃31(X))=̃

⎧⎪⎪⎨⎪⎪⎩

1 if Z̃31(X)≥̃814.3333

Z̃31(X)−0

814.3333−0
if 0 ≤ Z̃31(X) ≤ 814.3333

0 if Z̃31(X) ≤ 0

Z̃32

𝜇
Z3
(Z̃32(X))=̃

⎧⎪⎪⎨⎪⎪⎩

1 if Z̃32(X)≥̃363.8958

Z̃32(X)−0

363.8958−0
if 0 ≤ Z̃32(X) ≤ 363.8958

0 if Z̃32(X) ≤ 0
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Step 2. Calculating Z̃tr  (maximum) and Z̃tr  (minimum) values of individual 
objective functions without considering the hierarchical structure with corre-
sponding values of decision variables. These values presented in tabular form 
(Table 2) as:

Step 3. Construction of membership functions for each objective and decision 
variables (up to two levels only) using maximum and minimum values of these 
parameters is described in Table 3 as:

Step 4. Using simplified methodology by Lachhwani [24], we formulate the 
proposed solution model A (considering equal importance to each objective at 
each level as given in proposed solution model II for maximization problem) for 
given problem as:

Model A min � =
3∑
t=1

2∑
r=1

dZ−
tr

+
2∑
t=1

d−
t

12x1 + 15x2 ≤ 491

And x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

subject to, −482.4379 + 7x1 + 8x2 + 12x3 + dZ−
11
(482.4379) ≥ 0

−786.4339 + 19x1 + 20x2 + 16x3 + dZ−
12
(786.4339) ≥ 0

−460.4004 + 12x1 + 8x2 + 7x3 + dZ−
21
(460.4004) ≥ 0

−878.3442 + 22x1 + 18x2 + 19x3 + dZ−
22
(878.3442) ≥ 0

−814.3333 + 22x1 + 10x2 + 11x3 + dZ−
31
(814.3333) ≥ 0

−363.8958 + 9x1 + 8x2 + 8x3 + dZ−
32
(363.8958) ≥ 0

−32.8596 + x1 + d−
1
(32.8596) ≥ 0

−6.4456 + x2 + d−
2
(6.4456) ≥ 0

12x1 + 13x2 + 12x3 ≤ 503

14x1 + 13x3 ≤ 487

12x1 + 15x2 ≤ 491

And x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
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Step 5. Using linear programming technique (Simplex method) on solution model 
A, the compromise optimal solution of original ML-MOPP with NNs is obtained as: 
x1 = 32.8596, x2 = 6.4456, x3 = 2.0742 with Z11 = 306.4737,Z12 = 786.4339,

Z21 = 460.4004, Z22 = 878.3442, Z31 = 810.1848,Z32 = 363.8958.
Numerical Example 2
Now, let us consider another numerical example of minimization type full neutro-

sophic three level multiobjective programming problem (third type) with trapezoidal 
NNs given as:

where Z̃11 = (16, 18, 2, 2)x1 + (2, 8, 1, 1)x2 + (8, 10, 2, 2)x3

Step 1. Using ranking function R(ã) =
(

al+au−6(𝛼)

2

)
+ 1 for minimization prob-

lem, then coefficients and parameters in NNs format are converted into equivalent 
crisp values. Therefore, converted equivalent ML-MOPPs with crisp values can be 
written as:

Min
x1

{
Z̃11, Z̃12

}
(First level)

Min
x2

{
Z̃21, Z̃22, Z̃23

}
(second level)

Min
x3

{
Z̃31, Z̃32

}
(third level)

Subject to, (3, 5, 1, 1)x1 + (5, 7, 1, 1)x2 + (6, 8, 2, 2)x3 ≤ (480, 520, 10, 10)

(6, 8, 1, 1)x1 + (5, 7, 1, 1)x2 + (6, 8, 2, 2)x3 ≥ (420, 460, 10, 10)

(4, 6, 1, 1)x1 + (10, 10, 2, 2)x2 ≥ (465, 495, 5, 5)

And x1, x2, x3 ≥ 0

Z̃12 = (13, 15, 2, 2)x1 + (12, 14, 3, 3)x2 + (15, 17, 2, 2)x3

Z̃21 = (10, 12, 2, 2)x1 + (12, 14, 2, 2)x2 + (6, 8, 1, 1)x3

Z̃22 = (6, 8, 1, 1)x1 + (8, 10, 2, 2)x2 + (10, 12, 2, 2)x3

Z̃23 = (16, 18, 2, 2)x1 + (14, 16, 1, 1)x2 + (13, 15, 2, 2)x3

Z̃31 = (16, 18, 2, 2)x1 + (6, 8, 1, 1)x2 + (7, 9, 1, 1)x3

Z̃32 = (4, 8, 1, 1)x1 + (4, 6, 1, 1)x2 + (4, 6, 1, 1)x3
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With following steps 2 and 3 of methodology, the membership functions for each 
objective and decision variables of these parameters are described in Table 4 as:

Now with the similar arguments, the solution model B (considering equal 
importance to each objective at each level as given in proposed solution model IV 
for minimization problem) can be given as:

Model B min � = dZ−
11

+ dZ−
12

+ dZ−
21

+ dZ−
22

+ dZ−
23

+ dZ−
31

+ dZ−
32

+ d−
1

Min
x1

{
12x1 + 3x2 + 4x3, 9x1 + 5x2 + 11x3

}
(First level)

Min
x2

{
6x1 + 8x2 + 5x3, 5x1 + 4x2 + 6x3, 12x1 + 13x2 + 9x3

}
(second level)

Min
x2

{
12x1 + 5x2 + 6x3, 4x1 + 3x2 + 3x3

}
(third level)

Subject to, 2x1 + 4x2 + 2x3 ≤ 471

5x1 + 4x2 + 2x3 ≥ 411

3x1 + 5x3 ≤ 466

And x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Subject to, 541.25 − 12x1 − 3x2 − 4x3 + dZ−
11
(1423.447) ≥ 0

1167.053 − 9x1 − 5x2 − 11x3 + dZ−
12
(769.6842) ≥ 0

643.3158 − 6x1 − 8x2 − 5x3 + dZ−
21
(769.6842) ≥ 0

641.9474 − 5x1 − 4x2 − 6x3 + dZ−
22
(771.0526) ≥ 0

1228.8950 − 12x1 − 13x2 − 9x3 + dZ−
23
(1597.105) ≥ 0

839.95 − 12x1 − 5x2 − 6x3 + dZ−
31
(1986.05) ≥ 0

409.6316 − 4x1 − 3x2 − 3x3 + dZ−
32
(532.3684) ≥ 0

−x1 + d−
1
(235.5) ≥ 0

2x1 + 4x2 + 2x3 ≤ 471
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In last step, we obtain the compromise optimal solution of ML-MOPP with 
NNs using linear programming technique (simplex method) on solution model 
B of this problem as: x1 = 28.2424, x2 = 67.4469, x3 = 0 with Z11 = 541.25,

Z12 = 591.4167,Z21 = 709.0303, Z22 = 411.00, Z23 = 1215.720,Z31 = 676.1439,

Z32 = 315.3106.
ML-MOLPPs with neutrosophic environment is latest area of research. Recently, 

Maiti et  al. [32] suggested ML-MOLPP with parameters as NNs in the form of 
c + dI, where I as indeterminacy and c, d are considered as real numbers. If we assess 
the work of Maiti et al. [32], it can be observed that Maiti et al. [32] considered NNs 
in the c + dI form in which only indeterminacy part of NNs is considered and side-
stepped the truthiness and falsity characteristics of information. For programming 
problems, truthiness and falsity features are also decisive. In our proposed meth-
odology, coefficients and parameters are represented in trapezoidal NNs in which 
all three parts truthiness, falsity and indeterminacy of information are used. In this 
way, the proposed methodology is useful in solving general full neutrosophic ML-
MOLPP. Again, there exists no other solution approach or methodology in the litera-
ture for solving fully neutrosophic ML-MOLPP with trapezoidal NNs and therefore 
comparison of our proposed methodology with other method on same problem does 
not arise. This proves the novelty and uniqueness of proposed methodology in solv-
ing fully neutrosophic ML-MOLPP with trapezoidal NNs.

8 � Case study

In this section, a real problem of production planning of electronics digital gadgets 
manufacturing company is employed to exhibit the formulation of real problem in ML-
MOLPP under NN environment and applicability of proposed methodology for real 
problems. Let this company and its sub production units produce five kinds of elec-
tronic items namely mobile phones, laptops, android TVs, digital tabs and related sup-
plementary accessories for consumers. These all three companies (main company and 
two sub units) wish to maximize their own all profit objectives (more than one conflict-
ing objective at each company) through production of electronics goods. The electronic 
gadgets company (Company 1—Level 1) play role of leader company on production 
of main two products namely mobile phones and laptops and thereafter the sub units 
(Company 2 and 3—Level 2 and 3) determine their strategies as followers on produc-
tion of other three products android TVs, digital tabs and accessories. The reasons in 
deciding different levels in this case are: normally mobile phones and laptops (objec-
tive functions considered at 1st level) have larger market share in terms of consum-
ers and android TVs, digitals tabs, accessories are considered as only sub sets of this 

5x1 + 4x2 + 2x3 ≥ 411

3x1 + 5x3 ≤ 466

And x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
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market share. Therefore, in view of maximization of each objective function, First level 
decision making problem is decided to maximize objective functions for profits from 
mobile phones and laptops, then second level and third levels decision problems are 
considered to maximize objective functions for profits from android TVs, digital tabs 
and profits from accessories respectively within the feasible region of constraints. This 
is in agreement that first level decision maker (FLDM) (decision makers for mobile 
phones and laptops) sets his decision and then ask each lower level decision makers 
(second levels for android TVs, digital tabs and third level for accessories) for their 
optimal solution within the feasible region. Lower level’s decisions are then submitted 
and modified by main company (1st level). This process continue until a satisfactory 
solution is reached. The decision of Leader Company is affected by the reactions of the 
follower companies. Let us assume that the variables involved are raw materials (x1), 
labour cost (x2) and marketing cost (x3) in which x1 is the most influential decision vari-
able for first level DMs while x2, x3 are decision variables for the second and third level 
DMs respectively. Then such problem can be formulated as multi-level multiobjective 
linear programming problem as:

Subject to the set of constraints and non-negative restrictions. Taking into account 
the neutrosophic environments, variables such as basic electronic materials, labour 
cost, and packaging cost involved in the production of electronic gadgets are impre-
cise and fluctuating. Accordingly, parameters and coefficients of these variables also 
become imprecise and indeterministic. Therefore, we apply the concept of neutro-
sophic numbers to describe these parameters and coefficients in objective functions 
and constraints in the problem. Further, at first level, decision makers (DMs) wish to 
maximize profits simultaneously from two product supplies for mobile phones and 
laptops while at the second and third level DMs, their target objectives are android 
TVs, digital tabs and accessories respectively.

Let z11=̃c̃111x1 + c̃112x2 + c̃113x3 represents profit per unit as first level first objec-
tive (profit from Mobile phones) where c̃111, c̃112, c̃113 are neutrosophic numbers 
with values as: c̃111 = (8, 6, 2, 2), c̃112 = (10, 6, 2, 2), c̃113 = (4, 6, 1, 1).

Similarly other objective functions are 
z12 =̃ c̃121x1 + c̃122x2 + c̃123x3 = (10, 6, 2, 2)x1 + (10, 6, 2, 2)x2 + (3, 5, 1, 1)x3

Maximize
x1→Raw Material

{
z11 = Pr ofit from Mobile Phones, z12 = Pr ofit from Laptops

}

Maximize
x2→Labour Cost

{
z21 = Pr ofit from Android TVs, z22 = Pr ofit from Digital Tabs

}

Maximize
x3→Marketing cos t

{
z31 = Pr ofit from Accessories

}
(A)

z21 =̃ c̃211x1 + c̃212x2 + c̃213x3 = (4, 6, 1, 1)x1 + (3, 5, 1, 1)x2 + (4, 6, 2, 2)x3

z22 =̃ c̃221x1 + c̃222x2 + c̃223x3 = (3, 5, 1, 1)x1 + (3, 5, 1, 1)x2 + (5, 7, 2, 2)x3
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Subject to the set of conditions

Programming problem (A) together with neutrosophic values of coefficients and 
parameters (B) formulates full neutrosophic ML-MOLPP with trapezoidal NNs. 
Using the proposed methodology, solution model (model I or II) can be formulated 
and accordingly compromise optimal solution of this real problem (using solution 
model I considering each objective with equal weight) obtained is as: x1 = 32.8996,

x2 = 6.4136,x3 = 2.0312 with Z11 = 453.0778,Z12 = 483.9462,Z21 = 287.0599, 
Z22 = 256.1915,Z31 = 287.3800.

9 � Concluding remarks and research directions

This article presents a unique and simple solution methodology for solving fully 
neutrosophic ML-MOLPP with trapezoidal NNs. In this methodology, it is proposed 
to apply ranking function of NNs to convert problem into equivalent ML-MOLPPs 
with equivalent crisp values of neutrosophic coefficients and parameters. Then indi-
vidual best and worst values of objectives and decision variables are evaluated using 
equivalent converted ML-MOLPP and fuzzy membership functions for each objec-
tive and also for decision variables are constructed to avoid decision deadlock situa-
tion in hierarchical structure. Accordingly, FGP solution models are formulated and 
solving these models, compromise optimal solution of original fully neutrosophic 
ML-MOLPP is obtained. The proposed methodology is novel and unique for solv-
ing general fully neutrosophic ML-MOLPP due to non-existent of any other method 
in literature for solving such ML-MOLPP with trapezoidal NNs. The proposed 
approach can be applied to solve real world problems arising in industries and busi-
ness organizations with imprecise and inconsistent information formulated in the 
form of ML-MOLPP. A real problem case has been discussed to show applicability 
of proposed approach.

For future research, one possible direction may be application of proposed 
approach in more complex real decision making problems such as multi-level logis-
tic planning problem under neutrosophic environment. Furthermore, another pos-
sible direction may be extension to fully neutrosophic multi-level multiobjective non 
linear programming problem (ML-MONLPP) involving all coefficient and param-
eters in the form of trapezoidal NNs.

z31 =̃ c̃311x1 + c̃312x2 + c̃313x3 = (4, 6, 1, 1)x1 + (4, 6, 1, 1)x2 + (3, 5, 1, 1)x3

(4, 10, 2, 2)x1 + (6, 10, 2, 2)x2 + (6, 8, 2, 2)x3 ≤ (475, 505, 6, 6)

(6, 8, 3, 3)x1 + (6, 10, 2, 2)x3 ≤ (460, 480, 8, 8)

(4, 6, 3, 3)x1 + (10, 10, 2, 2)x2 ≤ (465, 495, 5, 5)

And x1 ≥ 0, x2 ≥ 0, x3 ≥ 0. (B)
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