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Abstract
This article presents a single-vendor and a single-buyer joint economic lot size 
(JELS) production-distribution inventory model with the prime aim on; the effect 
of the investment on ordering cost reduction, back order price discount and reduc-
tion on lead time. The produced items are delivered to the buyer by adopting a geo-
metric shipment policy. Two continuous review models are developed by assuming 
that the lead time demand follows a normal distribution and distribution-free. Two 
types of investments are incorporated to reduce the ordering cost. They are (i) loga-
rithmic investment function and (ii) power investment function. The minimax dis-
tribution free approach is adopted in the distribution-free model to find the optimal 
values of the decision variables by minimizing the expected annual total cost of the 
system. Numerical examples are given to validate the proposed models. Sensitivity 
analysis is also performed to analyze the behavior of the key parameters on lot size, 
ordering cost, backorder price discount, the number of shipments from the vendor to 
the buyer in one production run and the expected annual total cost of the proposed 
models.
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1 Introduction

Success in the competitive business environment and optimization of performance 
anticipate an integrated policy as a new paradigm to be adopted by business organi-
zations. Integrated policy is nothing but, the cost function consisting of both buyer 
total cost and vendor total cost. In today’s challenging environment, integration 
among the members in a supply chain is the key mantra for its success for all the 
entities in supply chain as it offers improved customer satisfaction and loyalty. It was 
observed by Lin [29] that the integrated inventory management system is a common 
practice in the global markets and the vendor and the buyer benefits economically. 
Several supply chain researchers captivated the integrated policy to study the effect 
of integration between a vendor and a buyer as it helps to shorten lead time and 
reduce the cost of inventory [9]. It also helps to identify problem areas; take deci-
sive action and further reduce the cost to improve the final price; enables the system 
to meet unexpected disruptions. Many researchers analyzed the potential benefits 
of ordering time/cost reduction to inventory systems. Porteus [37] investigated the 
impact of capital investment in reducing ordering cost in the classical EOQ model. 
Business organizations have recognized the significance of prompt delivery of goods 
to customers as an instrument to grab the customers; a competitive weapon and as 
means of differentiating themselves in the market. Hoque [25] had revealed that lead 
time is approximately normally distributed around its mean value. But in reality, it 
is not always feasible to get enough data to estimate the probability density func-
tion of the lead time demand. So researchers have worked on developing integrated 
models in which the lead time demand is distribution-free. Giri and Sharma [12] had 
worked on JELS model with unequal geometric shipment policy for imperfect items 
as a geometric shipment policy might reduce the total cost of the integrated system. 
From the literature review, it is found that very few JELS models dealing with geo-
metric shipment policy analyze the impact of distributions of lead time demand on 
the expected total cost of the integrated system. To the best of author’s knowledge, 
no integrated model dealing with geometric shipment policy have incorporated the 
effects of investment on ordering cost reduction and lead time. As reduction in lead 
time plays a vital role to improve customer loyalty by improving the on-time deliv-
ery of the products, the present study develops an integrated model by adopting a 
geometric shipment policy. It is assumed that an extra investment is made to reduce 
the ordering cost and lead time effectively. Two different types of investment func-
tions are taken in to consideration in two different models. Firstly, we assume that 
the lead time demand follow a normal distribution. This assumption was relaxed and 
optimal policies are determined using minimax distribution-free approach. For the 
above said two cases, we incorporated two types of investment functions to reduce 
the ordering cost. In the distribution-free approach the first and second moments of 
the probability distribution of lead time demand are known and finite. Shortages are 
allowed and are partially backordered. The contribution of this article is to minimize 
the expected annual total cost of the integrated system by optimizing the number of 
shipments, first shipment quantity, ordering cost of the buyer, safety factor and the 
backorder price discount offered by the vendor to the buyer.
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2  Literature review

Goyal [17] is among the pioneers who carried out works on integrated inventory 
model. Goyal’s model [17] was modified by Banerjee [2] in which a joint economic 
lot size model was considered by adopting a lot-for-lot policy. Goyal [18] presented 
a generalized model in which the lot-for-lot policy is relaxed and insisted that ven-
dor’s economic production quantity must be an integral multiple of buyer’s order 
quantity. Lu [31] gave an optimal solution to the single-vendor single-buyer prob-
lem under the assumption that the items are supplied in integral number of equal 
shipments. But, Goyal [19] showed that a different shipment policy consisting of 
successive shipments increasing by a factor equal to the production rate divided by 
the demand rate gave a better solution. Hill [21] has discussed a generalized ship-
ment policy in a single-vendor single-buyer production-inventory model. Hill [22] 
suggested a more general batching and shipping policy in which the successive 
shipment size of the first m shipments increase by a fixed factor and the remain-
ing shipments are of equal size. Integrated production inventory model with unequal 
shipment size was developed by Giri and Sharma [11]. Later, several researchers 
[20, 24, 42, 44, 45] have developed integrated production-distribution inventory 
models by extending the idea of Goyal [18] and incorporating various realistic 
assumptions. It is often assumed by researchers that the demand is deterministic and 
shortages are not allowed. But it is not always suitable in a realistic environment. To 
fit in a more practical situation, Ben-Daya and Hariga [4] developed an integrated 
model by allowing shortages and considering stochastic demand. As globalization 
and technological advancement always creates anxiety in the trading system, lead 
time and ordering cost reduction are two key criteria that are to be focused the suc-
cess of any business and have attracted considerable research attention. In a real-life 
situation, lead time cannot be treated as a constant it has to be treated as a variable. 
At this backdrop, much effort is being taken by enterprises to reduce lead time and 
earn customer satisfaction. Lead time reduction helps to reduce safety stock, loss 
due to out-of-stock and increase the competitive advantage of business. It is also 
clear that reduction in lead time could be achieved only by extra investments [39]. 
Lead time is controllable and has drawn the attention of many researchers to work 
on integrated models with investment on lead time reduction.

Hsu and Lee [26] revealed that lead time could be reduced by investing an addi-
tional amount on high-tech equipment, information technology, order expedite and 
logistics. The first attempt to formulate a probabilistic inventory model with lead 
time as decision variable was made by Liao and Shyu [32]. By treating the lead 
time as a decision variable, Pan and Yang [39] generalized Goyal’s model [18] and 
found that the joint total expected cost and lead time are less compared to that of 
Goyal’s model [18]. Later, Ouyang et al. [34] extended the model of Pan and Yang 
[39] by considering the lead time demand as stochastic. Researchers [13, 14, 23, 35] 
had worked on lead time reduction by formulating integrated production-inventory 
models in a single-vendor single-buyer supply chain environment. Glock [15, 16] 
has given a comprehensive review on JELS models. Sajadieh et al. [43] focused on 
stochastic lead time between the vendor and buyer.
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In modern production management, ordering cost reduction is another criterion 
which should be focused for the success of any venture and have attracted much 
research attention. Efficient worker training, procedural changes, and hi-fi equip-
ment acquisition enables ordering cost reduction. Porteus [37] first introduced 
and developed an EOQ model including the investment on set-up cost reduction. 
The influence of ordering cost reduction on modified continuous review inventory 
systems involving variable lead time and partial backorders was investigated by 
Ouyang et al. [33]. Later, Woo et al. [46] developed an integrated inventory model 
for a single vendor and multiple buyers with ordering cost/setup cost reduction. 
Zhang [47] extended Woo et al.’s [46] model by relaxing the assumption that the 
cycle times for all buyers and the vendor are the same. Later, some researchers 
[1, 6, 7, 27] addressed setup cost/ordering cost reduction inventory models under 
various assumptions. An integrated vendor-buyer inventory policy for a continu-
ous review model with a random number of defective items and screening process 
gradually at a fixed screening rate in buyer’s arriving order lot was developed by 
[30].

In the current market scenario, the customer’s demands and preferences are 
changing very fast. So, customer satisfaction is paramount for an organization. 
Due to fluctuations in demand, it is not always possible to satisfy the demand 
of the customers completely. Some customers wait and backorder their demand, 
while, others may move to other vendor or to other brands of the same product. 
So, to motivate the customers to accept backorders, a buyer could offer a price 
discount on a stock-out item which leads to high customer loyalty. In order to 
reduce the cost of lost-sales and the holding cost which in turn minimizes the 
total inventory cost, it is highly imperative to control the backorder price dis-
count. Researchers [5, 29, 36, 38, 40, 41] have focused on price discount offer 
by the buyer to the customers in order to increase the backorders. Certain organ-
izations such as Procter and Gamble, Southwest Airlines, Nike, Disney, Nord-
strom, Wal-Mart, McDonald’s, Marriot Hotels, and several Japanese and Euro-
pean companies are focused and work effectively towards the changing customer 
needs. They observed that the price discount offer increased the number of back-
orders [28]. They had also revealed that increase in the price discount increases 
the backorder ratio. So the discussion on the decision-making problem to find 
the optimal backorder ratio which minimizes the relevant inventory total cost is 
worth mentioning. A comparison of the present model with related existing mod-
els is given in Table 1.

The rest of the paper is organized as follows. Notations and assumptions needed 
for developing the models are presented in the next section. An integrated inventory 
model is developed in Sect. 4. The optimal solution procedure is presented in Sect. 5 
by incorporating the two types of investment functions in the integrated inventory 
model. Further, models are extended in two ways: (i) lead time demand follows a 
normal distribution (ii) lead time demand is distribution free and by including the 
two types of investment functions in each model. An efficient algorithm is proposed 
to find the optimal solution. Numerical results are provided in Sect. 6. Sensitivity 
analysis with respect to various system parameters is carried out in Sect.  7. The 
paper is concluded with some remarks and future research directions in Sect. 8.
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3  Notation and assumptions

To develop the proposed model, we adopt the following notations and assumptions.

3.1  Notation

D  Buyer’s expected demand rate in units per unit of time
P  Vendor’s production rate in units per unit of time, P > D

A0  Buyer’s original ordering cost per order (before an investment is made)
Av  Vendor’s setup cost per setup
hb  Buyer’s holding cost per unit
hv  Vendor’s holding cost per unit
qi  Size of the ith shipment
Q  Vendor’s production batch size
�  Geometric growth factor
Tr  Transportation cost per shipment
s  Safety stock of the buyer
X  The lead time demand in units per unit of time, a random variable
fx(x)  The probability density function (p.d.f) of X with finite mean DL and stand-

ard deviation �
√
L , where � denotes the standard deviation of the demand in 

units per unit of time
E(⋅)  Mathematical expectation
x+  Maximum value of x and 0, i.e., x+ = max{x, 0}

�  Fraction of the shortage backordered at the buyer’s end, 0 ≤ 𝛽 < 1

�0  Upper bound of the backorder ratio, 0 ≤ 𝛽0 < 1

�0  Marginal profit (i.e., cost of lost demand) per unit
r  Reorder point of the buyer

Decision variables

n  Number of shipments
Ab  Buyer’s ordering cost per order
q1  Size of the first shipment from the vendor to the buyer
L  Length of lead time for the buyer
�x  Price discount offered on backorder by the vendor per unit, 0 ≤ �x ≤ �0
k  The safety factor.

3.2  Assumptions

1. A single vendor provides a single product to a single buyer. The buyer orders a 
lot size of Q units and the vendor produces them with a finite production rate 
P (P > D) in units per unit time in one setup. Produced items are supplied to the 
buyer in n unequal sized shipments.
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2. Shortages are allowed at the buyer’s point and they are partially backordered.
3. The buyer adopts a continuous review inventory policy and places the order 

whenever the inventory level reaches the reorder level r.
4. The reorder point r = the expected demand during lead time (DL) + safety stock 

(s), and s = k × (standard deviation of lead time demand), i.e. r = DL + k�
√
L   

[3].
5. The lead time L consists of m mutually independent components. The ith com-

ponent has a normal duration bi , minimum duration ai , and crashing cost per unit 
time ci such that c1 < c2 < ⋯ < cm. The components of lead time are crashed 
one at a time starting from the first component because it has the minimum unit 
crashing cost, and then the second component, and so on (see Ouyang et al. [35]).

6. Let L0 =
∑m

i=1
bi , and Li be the length of lead time with components 

1, 2,… , i crashed to their minimum duration, then Li can be expressed as 
Li = L0 −

∑i

j=1
(bj − aj), i = 1, 2,… ,m; and the lead time crashing cost per cycle 

R(L) is given by R(L) = ci(Li−1 − L) +
∑i−1

j=1
cj (bj − aj), L ∈ [Li, Li−1] (see Ouyang 

et al. [35]).
7. If a shortened lead time is requested then the extra costs incurred by the vendor 

will be fully transferred to the buyer. Therefore, lead time crashing cost is the 
buyer’s cost component.

8. The transportation cost per unit from the vendor to the buyer is constant and 
independent of the ordering quantity.

4  Model development

The joint economic lot size model is framed as follows and the diagrammatic repre-
sentation can be seen in Figs. 1, 2 and 3. The vendor produces Q units at one set-up 
with a finite production rate P ( P > D ). As per the policy adopted by Darwish [8], 
items are delivered to the buyer in n unequal-sized shipments and the size of the ith 

q1

Stock

T ime

r
s

βE(x − r)+

(1 − β)E(x− r)+

q1λ

q1λ
2

q1λ
n−1

L L

q1
D

q1λ
D

q1λ
n−1

D

Fig. 1  Inventory pattern of the buyer
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shipment within a batch is qi = �qi−1 = �i−1q1 , i = 2, 3,… , n and q1 is the lot size of 
the first shipment. Thus the size of the production lot is

q1

Stock

T ime
q1/P q1λ/D q1λ

2/D

q1λ
n−1

Q/D

Q/P

Fig. 2  Inventory pattern of the vendor

Stock

T ime
q1

q1λ

q1λ
2

q1λ
n−2

q1/D q1λ/D q1λ
n−2/D

q1λ
n−1

Q

Fig. 3  Inventory pattern of the system
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and cycle length of the inventory is T =
Q

D
=

q1(�
n−1)

D(�−1)
.

4.1  Buyer’s perspective

It is assumed that as soon as the buyer’s inventory reaches the re-order level r, an 
order of size qi is placed to the vendor at the ith shipment. The vendor delivers these 
items after a constant lead-time L in n unequal-sized shipments. By assumption, 
since the safety factor k is related to the re-order point, k is considered a decision 
variable instead of r. The buyer receives a batch of qi units in each shipment which 
could be utilized during the time period qi∕D . So, the average inventory of the buyer 
during the time period qi∕D is qi∕2 which gives the time-weighted inventory during 
a complete production cycle as

Hence the average inventory of the buyer is q
2
1
(�2n−1)

2D(�2−1)
∕
q1(�

n−1)

D(�−1)
=

q1(�
n+1)

2(�+1)
 . For each 

shipment the buyer incurs an ordering cost Ab and so the buyer’s ordering cost per 
cycle is nAb . In reality, owing to certain unpredictable situations, higher demand 
may cause a stock out situation for the buyer before the shipment arrives. Thus at the 
end of each cycle the expected shortage demand is given by E(X − r)+ . Hence the 
expected number of back orders per cycle is �E(X − r)+ where � =

�0�x

�0
 (as in Lin 

[29]) and 0 ≤ 𝛽0 < 1 , 0 ≤ �x ≤ �0 . So, �x is treated as a variable. The expected 
shortage cost per unit time is

The expected net inventory level just before an order arrives is 
r − DL + (1 − �)E(X − r)+ and hence the buyer’s expected holding cost per unit 
time is

In order to reduce the ordering cost from the original level A0 to the target level Ab , a 
one-time capital cost investment I(Ab) which is a function of the ordering cost is 
inevitable. Thus, the annual cost of such an investment is �I(Ab) , where � is the 
annual fractional cost of capital investment (e.g.,interest rate). In a competitive busi-
ness environment lead time reduction is indispensable as it accelerates sales. So the 
lead time crashing cost per unit time is nR(L)∕T =

nD(�−1)R(L)

q1(�
n−1)

 , where R(L) is the lead 
time crashing cost for one cycle. Based on the above facts, buyer’s expected annual 

(1)Q =

n∑
i=1

qi =
q1(�

n − 1)

(� − 1)

(2)
n∑
i=1

q2
i

2D
=

q2
1
(�2n − 1)

2D(�2 − 1)

(3)nD

Q

[
�x� + �0(1 − �)

]
E(X − r)+ =

nD(� − 1)

q1(�
n − 1)

[�0�2
x

�0
+ �0 − �0�x

]
E(X − r)+

(4)hb

[q1(�n + 1)

2(� + 1)
+ r − DL + (1 − �)E(X − r)+

]
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total cost per unit time is the sum of the investment opportunity cost, ordering cost, 
holding cost, transportation cost, stock-out cost and the lead time crashing cost and 
is given by

subject to 0 < Ab ≤ A0 , and 0 ≤ �x ≤ �0 and where G(𝜋x) = 𝜋0 − 𝛽0𝜋x +
𝛽0𝜋

2
x

𝜋0
> 0 as 

𝜋0

𝜋x
> 𝛽0(1 −

𝜋x

𝜋0
) > 0.

4.2  Vendor’s perspective

As soon as the vendor receives an order for Q units, he produces them at a rate 
P > D and supplies them in n unequal-sized shipments. When the produc-
tion process is about to start, the vendor’s inventory level is zero and there are 
Dq1∕P units in the buyer’s inventory which is enough to satisfy the demand 
until the first shipment arrives. The vendor’s inventory level increases at a rate 
of P − D units and the total inventory level reaches the maximum height of 
Dq1∕P + (P − D)q1(�

n − 1)∕(P(� − 1)) . Therefore average total inventory in the 
system is Dq1∕P + (P − D)(�n − 1)∕(2P(� − 1)).

Hence vendor’s average inventory = total system inventory - buyer’s average 
inventory.

Therefore, the vendor’s expected holding cost per unit time is 
hv

[
Dq1

P
+

(P−D)q1(�
n−1)

2P(�−1)
−

q1(�
n+1)

2(�+1)

]
 . On the other hand, the vendor incurs Av per set-up 

and as the production quantity for the vendor in a lot is Q units, the expected set-up 
cost per unit time is AvD∕Q . Vendor’s expected annual total cost per unit time is the 
sum of the set-up cost and the holding cost and is given by

4.3  Integrated approach

The objective of this section is to determine the optimal values of the decision vari-
ables by minimizing the expected annual total cost per unit time of the integrated sys-
tem which is the sum of the vendor’s expected annual total cost per unit time and the 

(5)

EATCb(n, q1, k,Ab,�x, L) = �I(Ab)

+
[
Ab + G(�x)E(X − r)+ + Tr + R(L)

]
nD(� − 1)

q1(�
n − 1)

+ hb

[q1(�n + 1)

2(� + 1)
+ r − DL +

(
1 −

�0�x

�0

)
E(X − r)+

]

(6)i.e. vendor’s average inventory =
Dq1

P
+

(P − D)q1(�
n − 1)

2P(� − 1)
−

q1(�
n + 1)

2(� + 1)

(7)

EATCv(n, q1) = Av

D(� − 1)

q1(�
n − 1)

+ hv

[Dq1
P

+
(P − D)q1(�

n − 1)

2P(� − 1)
−

q1(�
n + 1)

2(� + 1)

]
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buyer’s expected annual total cost per unit time. Consequently the expected annual total 
cost per unit time of the integrated system is

subject to 0 < Ab ≤ A0 , and 0 ≤ �x ≤ �0.
Special cases: (i) When � = 1 (equal-sized shipments), few terms of the total cost 

function becomes indeterminate. So, applying L’Hospital’s rule we get,

That is,

which is similar to the expected annual total cost per unit time of the integrated sys-
tem of in Lin’s model [29] when Tr = 0.

(ii) When � =
P

D
 (Goyal policy), the expected annual total cost per unit time of the 

integrated system becomes

(8)

EATCI(n, q1, k,Ab,�x, L) = �I(Ab) +
[(

Ab +
Av

n

)
+ G(�x)E(X − r)+ + Tr

+ R(L)
]
nD(� − 1)

q1(�
n − 1)

+ hb

[q1(�n + 1)

2(� + 1)
+ r − DL +

(
1 −

�0�x

�0

)
E(X − r)+

]

+ hv

[Dq1
P

+
(P − D)q1(�

n − 1)

2P(� − 1)
−

q1(�
n + 1)

2(� + 1)

]

EATCI(n, q1, k,Ab,�x, L) = �I(Ab)

+
[(

Ab +
Av

n

)
+ G(�x)E(X − r)+ + Tr + R(L)

]
D

q1

+ hb

[q1
2

+ r − DL +
(
1 −

�0�x

�0

)
E(X − r)+

]
+ hvq1

[
D

P
+

(P − D)n

2P
−

1

2

]

EATCI(n, q1, k,Ab,�x, L) = �I(Ab) +
[(

Ab +
Av

n

)

+ G(�x)E(X − r)+ + Tr + R(L)
]
D

q1

+ hb

[q1
2

+ r − DL +
(
1 −

�0�x

�0

)
E(X − r)+

]
+

hvq1

2

[
D

P
(2 − n) + (n − 1)

]

EATCI(n, q1, k,Ab,�x, L)

= �I(Ab) +
[(

Ab +
Av

n

)
+ G(�x)E(X − r)+ + Tr + R(L)

]
n(P − D)

q1

((
P

D

)n

− 1
)

+ hb

[
q1

2

((
P

D

)n

+ 1
)

((
P

D

)
+ 1

) + r − DL +
(
1 −

�0�x

�0

)
E(X − r)+

]

+ hv

[
Dq1

P
+

q1

2

(P − D)

P

((
P

D

)n

− 1

(
P

D

)
− 1

)
−

q1

((
P

D

)n

+ 1
)

(
2
(

P

D

)
+ 1

)
]
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5  Optimal solution procedure

5.1  Investment in ordering cost reduction

In this section we study the effects of investment on ordering cost reduction by con-
sidering two different types capital cost investment functions. Here logarithmic and 
power functional forms which are convex and strictly decreasing functions as dis-
cussed by Porteus [37] are utilized.

Case(i) Logarithmic investment cost functional form
The capital investment I(Ab) to reduce the ordering cost is considered as a loga-

rithmic function of the ordering cost. That is,

where � is the percentage decrease in ordering cost Ab relative to per dollar increase 
in investment I(Ab) . Using Eq. (9) in (8) we get the expected annual total cost per 
unit time as

subject to 0 < Ab ≤ A0 , and 0 ≤ �x ≤ �0 and where the superscript L in EATCI 
denotes the logarithmic investment function case.

Case(ii) Power investment cost functional form
The capital investment I(Ab) to reduce the ordering cost is considered as a power 

function of the ordering cost. That is,

where � and � are constants.
Using Eq. (11) in (8) we get the expected annual total cost per unit time as

(9)I(Ab) =
1

𝛿
ln
(A0

Ab

)
for 0 < Ab ≤ A0

(10)

EATCIL(n, q1, k,Ab,�x, L) = �
1

�
ln
(A0

Ab

)
+
[(

Ab +
Av

n

)
+ G(�x)E(X − r)+

+ Tr + R(L)
]
nD(� − 1)

q1(�
n − 1)

+ hb

[q1(�n + 1)

2(� + 1)
+ r − DL

+
(
1 −

�0�x

�0

)
E(X − r)+

]

+ hv

[Dq1
P

+
(P − D)q1(�

n − 1)

2P(� − 1)
−

q1(�
n + 1)

2(� + 1)

]

(11)I(Ab) = 𝛼A−𝜔
b

− 𝛼A−𝜔
0

for 0 < Ab ≤ A0
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subject to 0 < Ab ≤ A0 , and 0 ≤ �x ≤ �0 and where the superscript P in EATCI 
denotes the power investment function case.

5.2  Lead time demand follows a normal distribution

As considered by Lin [29], let the lead time demand X follow a normal distribution 
with pdf fx(x) , finite mean DL and standard deviation �

√
L so that r = DL + k�

√
L , 

E(X − r)+ = ∫ ∞

r
(x − r)fx(x)dx = �

√
L�(k) , where 𝜓(k) ≡ 𝜑(k) − k[1 − Φ(k)] > 0 , 

�(k) and Φ(k) represent the standard normal probability density function (pdf) and 
cumulative distribution function respectively. Then the expected annual total cost 
per unit time given by Eqs. (10) and (12) can be rewritten as follows.

subject to 0 < Ab ≤ A0 , and 0 ≤ �x ≤ �0.

subject to 0 < Ab ≤ A0 , and 0 ≤ �x ≤ �0 . Here the subscript N in EATCIL and 
EATCIP denotes the normal distribution case.

In both the logarithmic and power investment function cases, the optimal values of 
the decision variables are determined by minimizing the expected annual total cost per 

(12)

EATCIP(n, q1, k,Ab,�x, L) = �(�A−�
b

− �A−�
0

)

+
[(

Ab +
Av

n

)
+ G(�x)E(X − r)+

+ Tr + R(L)
]
nD(� − 1)

q1(�
n − 1)

+ hb

[q1(�n + 1)

2(� + 1)
+ r − DL

+
(
1 −

�0�x

�0

)
E(X − r)+

]

+ hv

[Dq1
P

+
(P − D)q1(�

n − 1)

2P(� − 1)
−

q1(�
n + 1)

2(� + 1)

]

(13)

EATCIL
N
(n, q1, k,Ab,�x, L) = �

1

�
ln
�A0

Ab

�
+
��

Ab +
Av

n

�
+ G(�x)�

√
L�(k)

+ Tr + R(L)
�
nD(� − 1)

q1(�
n − 1)

+ hb

�q1(�n + 1)

2(� + 1)
+ k�

√
L +

�
1 −

�0�x

�0

�
�
√
L�(k)

�

+ hv

�Dq1
P

+
(P − D)q1(�

n − 1)

2P(� − 1)
−

q1(�
n + 1)

2(� + 1)

�

(14)

EATCIP
N
(n, q1, k,Ab,�x, L) = �(�A−�

b
− �A−�

0
)

+
��

Ab +
Av

n

�
+ G(�x)�

√
L�(k)

+ Tr + R(L)
�
nD(� − 1)

q1(�
n − 1)

+ hb

�q1(�n + 1)

2(� + 1)
+ k�

√
L +

�
1 −

�0�x

�0

�
�
√
L�(k)

�

+ hv

�Dq1
P

+
(P − D)q1(�

n − 1)

2P(� − 1)
−

q1(�
n + 1)

2(� + 1)

�
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unit time given by Eqs. (13) and (14). Now let us consider the logarithmic investment 
function case and an analogous procedure can be applied to the other case.

It is observed that the expected annual total cost per unit time is convex with respect 
to each of the variable except L keeping other variables fixed (see Observation 1 in 
Appendix 1). Next, for a fixed n and L ∈ [Li, Li−1] , the values of of the decision vari-
ables q1 , k, Ab , �x are obtained by equating the corresponding first order derivatives of 
EATCIL

N
(n, q1, k,Ab,�x, L) to zero. That is by setting Eqs. (32), (34) (36), and (38) to 

zero, the values of the decision variables q1 , �x , Ab and Φ(k) are as follows:

The value of k can be obtained from Eq. (18). As in the logarithmic invest-
ment cost functional case, it can be verified that for a fixed n, q1, k,Ab,�x , 
EATCIP

N
(n, q1, k,Ab,�x, L) is concave in L ∈ [Li, Li−1] . It can also be verified that 

EATCIP
N
(n, q1, k,Ab,�x, L) is convex with respect to each of the decision variable for 

a given set of the remaining variables. Therefore for a fixed n and L ∈ [Li, Li−1] , the 
values of decision variables which minimizes the cost function is obtained by setting 
the respective first order partial derivatives of EATCIP

N
(n, q1, k,Ab,�x, L) to zero. The 

closed form solutions of q1,�x,Φ(k) are similar to those obtained in the logarithmic 
investment cost functional case. In addition, buyer’s ordering cost is given as

We can establish the following algorithm to find the optimal values of the decision 
variables.

5.3  Algorithm

Step 1  Set n = 1.
Step 2  For every Li , i = 1, 2,… ,m perform steps (2.1)–(2.4). 

(15)q1 =

���Ab +
Av

n

�
+ G(�x)�

√
L�(k) + Tr + R(L)

�
nD(�−1)

�n−1

(hb − hv)
(�n+1)

2(�+1)
+ hv

�
D

P
+

P−D

P

(�n−1)

2(�−1)

�
� 1

2

(16)�x =
hbq1(�

n − 1)

2nD(� − 1)
+

�0

2

(17)Ab =
�q1(�

n − 1)

n�D(� − 1)

(18)Φ(k) =
nD(� − 1)G(�x) − hbq1(�

n − 1)
�0�x

�0

nD(� − 1)G(�x) − hbq1(�
n − 1)

(
�0�x

�0
− 1

)

(19)Ab =
[���q1(�n − 1)

nD(� − 1)

] 1

�+1
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 Step 2.1        Start with A(1)

bi
= A0 , k

(1)

i
= 0 , �(1)

ix
= �0.

Step 2.2  Substitute A(1)

bi
 , k(1)

i
 , �(1)

ix
 in Eq. 15 and evaluate q(1)

i1
.

Step 2.3  Utilizing q(1)
i1

 find the values of �(2)

ix
 and A(2)

bi
 from Eqs. (16) and 

(17) respectively.
Step 2.4  Now find the value of k(2)

i
 from Eq. (18) by using q(2)

i1
 and �(2)

ix
.

Step 2.5  Repeat steps (2.1)–(2.4) until no change occur in the values of 
qi1 , ki , Aib and �ix . Denote the solutions by (q̄i1, �̄�ix, Āib, k̄i).

Step 3  Compare �̄�ix and Āib with �0 and A0 respectively. 

 Step 3.1       If �̄�ix < 𝜋0 and Āib < A0 , then the solution found in Step 2 is 
optimal for the given Li . We denote the optimal solution by 
(q̂i1, �̂�ix, Âib, k̂i) . i.e., (q̂i1, �̂�ix, Âib, k̂i) = (q̄i1, �̄�ix, Āib, k̄i) . Go to 
step 4.

Step 3.2                   If �̄�ix ≥ 𝜋0 and Āib < A0 , then for this Li , letting �̂�ix = 𝜋0 , 
repeat step 2 to determine the new set (q̄i1, Āib, k̄i) and 
denote the optimal solutions by (q̂i1, �̂�ix, Âib, k̂i) . i.e., 
(q̂i1, �̂�ix, Âib, k̂i) = (q̄i1,𝜋0, Āib, k̄i) . Go to step 4.

Step 3.3                   If �̄�ix < 𝜋0 and Āib ≥ A0 , then for this Li , letting Âib = A0 , 
repeat step 2 to determine the new set (q̄i1, �̄�ib, k̄i) and 
denote the optimal solutions by (q̂i1, �̂�ix, Âib, k̂i) . i.e., 
(q̂i1, �̂�ix, Âib, k̂i) = (q̄i1, �̄�ix,Ab0, k̄i) . Go to step 4.

Step 3.4                   If �̄�ix ≥ 𝜋0 and Āib ≥ A0 , then for this Li , letting �̂�ix = 𝜋0 
and Âib = A0 repeat step 2 to determine the new set q̄i1 
and denote the optimal solutions by (q̂i1, �̂�ix, Âib, k̂i) . i.e., 
(q̂i1, �̂�ix, Âib, k̂i) = (q̄i1,𝜋0,Ab0, k̄i) . Go to step 4.

Step 4  By using Eq. (13) find the corresponding expected total integrated cost 
EATCIL

N
(q̂i1, �̂�ix, Âib, k̂i, Li, n) for i = 1, 2,… ,m.

Step 5  Find min
i=1,2,…,m

EATCIL
N
(q̂i1, �̂�ix, Âib, k̂i, Li, n) and denote it by 

EATCIL
N
(q̂1(n), �̂�x(n), Âb(n), k̂(n), L(n), n) = min

i=1,2,…,m
EATCIL

N
(q̂i1  , 

�̂�ix, Âib, k̂i, Li, n) and (q̂1(n), �̂�x(n), Âb(n), k̂(n), L(n)) are the optimal solutions for 
given n.

Step 6  Replace n by n + 1 and repeat steps 2–5 to get EATCIL
N
(q̂1(n), �̂�x(n), Âb(n), k̂(n) , 

L(n), n).
Step 7  If EATCIL

N
(q̂1(n), �̂�x(n), Âb(n), k̂(n), L(n), n) ≤ EATCIL

N
(q̂1(n−1), �̂�x(n−1), Âb(n−1) , 

k̂(n−1), L(n−1), n − 1) then go to step 6 otherwise go to step 8.
Step 8  Set (q̂1, �̂�x, Âb, k̂, L̂, n̂) = (q̂1(n−1), �̂�x(n−1), Âb(n−1), k̂(n−1), L(n−1), n − 1) , and 

EATCIL
N
(q̂1, �̂�x, Âb, k̂, L̂, n̂) is the minimum expected total integrated cost 

and (q̂1, �̂�x, Âb, k̂, L̂, n̂) is the set of optimal solutions.
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5.4  Lead time demand is distribution free

In order to accommodate a more practical situation and as it is not always viable to get 
adequate distributional information regarding lead time, no assumption is made regard-
ing the distribution function of the lead time demand X. Let the cumulative distribution 
function (C.D.F.) of X belong to the class F  of c.d.f.s with finite mean DL and standard 
deviation �

√
L . As the probability distribution of X is unknown, the minimax distribu-

tion-free approach [34] is adopted here to find the optimal values of the decision vari-
ables. For each (n, q1, k,Ab,�x, L) , the minimax distribution-free approach helps to find 
the most unfavorable c.d.f. Φ in F  and then the expected annual total cost function is 
minimized. Thus the problem is formulated as follows:

where

To facilitate further exploration we use the the following proposition asserted by 
Gallego and Moon [10].

Proposition 1 For any Φ ∈ F ,

Moreover the upper bound of the above equation is tight.

Using Proposition 1 and r = DL + k�
√
L in Eqs. (10) and (12), problem (20) can be 

formulated as follows:

 subject to 0 < Ab ≤ A0 , and 0 ≤ �x ≤ �0 and where K = (
√
1 + k2 − k)∕2 . and

(20)min
n,q1,k,Ab,�x,L

max
Φ∈F

EATCI

(21)

EATCI(n, q1, k,Ab,�x, L) = �I(Ab) +
[(

Ab +
Av

n

)
+ G(�x)E(X − r)+ + Tr

+ R(L)
]
nD(� − 1)

q1(�
n − 1)

+ hb

[q1(�n + 1)

2(� + 1)
+ r − DL +

(
1 −

�0�x

�0

)
E(X − r)+

]

+ hv

[Dq1
P

+
(P − D)q1(�

n − 1)

2P(� − 1)
−

q1(�
n + 1)

2(� + 1)

]

(22)E(X − r)+ ≤
1

2

�√
�2L + (r − DL)2 − (r − DL)

�

(23)

minEATCIL
F
(n, q1, k,Ab,�x, L) = �

1

�
ln
�A0

Ab

�

+
��

Ab +
Av

n

�
+ G(�x)�

√
LK + Tr + R(L)

�
nD(� − 1)

q1(�
n − 1)

+ hb

�q1(�n + 1)

2(� + 1)
+ k�

√
L +

�
1 −

�0�x

�0

�
�
√
LK

�

+ hv

�Dq1
P

+
(P − D)q1(�

n − 1)

2P(� − 1)
−

q1(�
n + 1)

2(� + 1)

�
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 subject to 0 < Ab ≤ A0 , and 0 ≤ �x ≤ �0 . Here the subscript F in EATCIL and 
EATCIP denotes the distribution free case.

It is observed that the expected annual total cost per unit time is convex with 
respect to each of the variable except L keeping other variables fixed (see Appen-
dix 1). Next, for a fixed n and L ∈ [Li, Li−1] , the values of of the decision variables 
q1 , k, Ab , �x are obtained by equating the corresponding first order derivatives of 
EATCIL

F
(n, q1, k,Ab,�x, L) to zero. That is by setting Eqs. (42), (44), (46) and (48), to 

zero, the values of of the decision variables q1 , k, Ab , �x are as follows:

where

As in the logarithmic investment cost functional case, it can be verified that for a 
fixed n, q1, k,Ab,�x , EATCILF(n, q1, k,Ab,�x, L) is concave in L ∈ [Li, Li−1] . It can 
also be verified that EATCIL

F
(n, q1, k,Ab,�x, L) is convex with respect to each of 

the decision variable given a set of the remaining variables. Therefore for a fixed 
n and L ∈ [Li, Li−1] , the values of decision variables which minimize the cost 
function are obtained by setting the respective first order partial derivatives of 
EATCIL

F
(n, q1, k,Ab,�x, L) to zero. The closed form solutions of q1,�x, k are similar 

(24)

minEATCIP
F
(n, q1, k,Ab,�x, L) = �(�A−�

b
− �A−�

0
)

+
��

Ab +
Av

n

�
+ G(�x)�

√
LK + Tr + R(L)

�
nD(� − 1)

q1(�
n − 1)

+ hb

�q1(�n + 1)

2(� + 1)
+ k�

√
L +

�
1 −

�0�x

�0

�
�
√
LK

�

+ hv

�Dq1
P

+
(P − D)q1(�

n − 1)

2P(� − 1)
−

q1(�
n + 1)

2(� + 1)

�

(25)q1 =

��Ab +
Av

n

�
+ G(�x)�

√
LK + Tr + R(L)

�
nD(�−1)

(�n−1)

(hb − hv)
(�n+1)

2(�+1)
+ hv

�
D

P
+

P−D

2P

(�n−1)

(�−1)

�
� 1

2

(26)�x =
hbq1(�

n − 1)

2nD(� − 1)
+

�0

2

(27)Ab =
�q1(�

n − 1)

n�D(� − 1)

(28)k =
c√

1 − c2

c = 1 −
2hb(�

n − 1)q1

nD(� − 1)G(�x) + hb(�
n − 1)q1(1 −

�0�x

�0
)
.
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to those obtained in the logarithmic investment cost functional case. In addition, 
buyer’s ordering cost is given as

To find the optimal values of the decision variables we can utilize an algorithm sim-
ilar to that of the logarithmic investment cost functional case.

6  Numerical results

     In this section, to illustrate the above solution procedure we consider the adaptive 
parameters similar to that proposed by Lin [29]. The optimal values of the decision 
variables are obtained by using the solution procedure and the MATLAB software. 
D = 200 units/year, P = 1000 units/year, A0 = $200/order, Av = $1500/setup, Tr
=$30 /shipment, hb = $25/unit, hv = $20/unit, � = 1.5, � = 0.1, � = 7 units per week, 
where 1 year = 52 weeks, the lead time has three components with data shown in 
Table 2 and the summarized information of the lead time components is given in 
Table 3.

Example 6.1 Assume that the lead time demand follows a normal distribution.

Case 1 : Logarithmic investment cost functional form
Letting � = 0.03 and A0 = $200/order and applying the algorithm yields the result 

as in Table 4. To analyze the effects of ordering cost reduction and backorder price 
discount, optimal results of the no-investment and no-price discount policy are pro-
vided in the same table. From Table 4, it is clear that when no attempt is made to 
reduce the ordering cost and if price discount is not allowed then the expected total 
annual cost is $4825 when L = 3 weeks and the ordered units could be supplied 
in two shipments with an initial lot size of 81 units. But, if an additional cost of 
I(Ab) = $183 is spent then the expected total annual cost is reduced to $4331 when 
L = 4 weeks and the ordering cost reduces to Âb = $0.83 . This reveals that the sys-
tem could earn an additional savings of $494 which is cost saving of 10.24%.

Case 2 : Power investment cost functional form
Let � = 2000 and � = 0.01 . The optimal results are provided in Table 5. To ana-

lyze the effects of ordering cost reduction and backorder price discount, optimal 
results of the no-investment and no-price discount policy are provided in the same 
table. From the table it is clear that if an additional cost of I(Ab) = $117 is spent then 
the expected total annual cost is minimum when L = 4 weeks and the ordering cost 
reduces to Âb = $0.50 . It is clear that the system could earn an additional savings of 
$501 which is cost saving of 10.38% . Comparing Tables 4 and 5 it is observed that 
the optimal values of the first shipment size, backorder price discount, number of 

(29)Ab =
[���q1(�n − 1)

nD(� − 1)

] 1

�+1
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unequal sized shipments and the lead time are almost the same but the expected total 
annual cost is less in this case when compared to the logarithmic investment cost 
functional form. This is due to the power investment cost functional form adopted 
for the capital investment. It reveals that the integrated system could be benefited by 
more cost savings if power investment cost function is followed.

Example 6.2 Assume that the lead time demand is distribution free.

Case 1 : Logarithmic investment cost functional form
Let � = 0.03 and A0 = $200/order. Consider the same data as in Example 6.1 and 

the assumptions proposed in Example 6.1, except that the probability distribution of 
the lead time demand is known. Suppose that the capital investment I(Ab) for reduc-
ing the ordering cost is in the form of a logarithmic function. Letting � = 0.03 and 
A0 = $200/order and by applying a computational algorithm similar to the normal 
distribution case, the optimal solutions obtained are presented in Table 6. To analyze 
the effects of ordering cost reduction and backorder price discount, optimal results 
of the no-investment and no-price discount policy are provided in the same table. 
From the table it is clear that if an additional cost of I(Ab) = $159 is spent then 
the expected total annual cost is minimum when L = 3 weeks and the ordering cost 
reduces to Âb = $1.67 . It is clear that the system could earn additional savings of 
$383 which is cost saving of 7.26%.

Case 2 : Power investment cost functional form
Optimal results obtained are tabulated in Table 7. From the table it is clear that 

if an additional cost of I(Ab) = $103 is spent then the expected total annual cost is 
minimum when L = 2 weeks and the ordering cost reduces to Âb = $1.002 . It is 
clear that the system could earn an additional savings of $390 which is cost saving 
of 7.39% . Comparing Tables 6 and 7 it is observed that the optimal values of the first 
shipment size, backorder price discount, number of unequal sized shipments and the 
lead time are almost the same but the expected total annual cost is slightly less in 
this case when compared to the logarithmic investment cost functional form. This is 
due to the power investment cost functional form adopted for the capital investment. 
Also the integrated system could be benefited by more cost savings if power invest-
ment cost function is followed.

Graphical representations of the optimal solutions for the above examples are 
given in Fig. 4. It is observed that when the distribution of the lead time demand is 
unknown then the expected total cost is minimum when L = 3 weeks.
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7  Sensitivity analysis

In order to take decisions in an effective manner it is necessary to study the effect 
of changes in the values of the key parameters on the optimal solution. Sensitivity 
analysis is performed by changing one parameter at a time and keeping the other 
parameters of Examples 6.1 and  6.2 unaltered. Results are given in Tables 8 and 
9 and the graphical interpretations are shown in Fig. 5. Following inferences and 
managerial implications are observed. 

(1) Consider the case when the lead time demand follows a normal distribution. As 
the value of � increases, the number of shipments and the first shipment size 

Fig. 4  Expected total cost vs. number of shipments
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decrease by a similar pattern for both the type of investment functions. Lead time 
remains unaltered.

(2) Backorder price discount is slightly sensitive to the increase in the value of � and 
is similar for both the type of investment functions.

Fig. 5  Impact of the parameters on the expected total cost

Table 1  Summary of a few related literature

References Lead time demand Investment Unequal ship-
ment policy

Price discount

[1] Normal ✓

[4] Normal
[6] Normal ✓

[12] ✓

[14] Normal
[21] Constant ✓

[23] Distribution free
[24] Normal ✓

[26] Distribution free
[29] Normal ✓ ✓

[34] Normal ✓

[35] Normal ✓

[36] Normal ✓

[38] Normal ✓

[39] Normal
[40] Normal ✓

Present paper Normal and distribution free ✓ ✓ ✓
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Table 2  Lead time components with data

Lead time component Normal duration Minimum duration Unit crashing cost
i bi (days) ai (days) ci ($/days)

1 20 6 0.4
2 20 6 1.2
3 16 9 5.0

Table 3  Summarized lead time 
data

Lead time (weeks) R(L)

8 0
6 5.6
4 22.4
3 57.4

Table 4  Optimal solution for normal distribution case (logarithmic investment)

The bold values are optimal solutions

n L Logarithmic investment No investment and 
no price discount i.e. 
�x = �0,Ab = A0

q1 �x Ab k I(Ab) EATCIL
N

q1 k EATCIP
N

1 8 153 84.55 2.54 1.18 145 5059 162 1.16 5310
6 152 84.51 2.53 1.18 146 4957 161 1.17 5201
4 152 84.49 2.53 1.18 146 4849 161 1.17 5093
3 153 84.54 2.54 1.18 145 4815 162 1.17 5057

2 8 72 80.59 1.49 1.45 163 4654 80 1.42 5065
6 71 80.57 1.48 1.45 163 4542 79 1.42 4953
4 71 80.58 1.48 1.45 163 4430 80 1.42 4840
3 72 80.65 1.50 1.45 163 4413 81 1.41 4825

3 8 40 78.99 1.06 1.61 175 4565 47 1.56 5133
6 40 78.98 1.06 1.61 175 4448 47 1.57 5066
4 40 78.98 1.06 1.61 174 4337 47 1.57 4893
3 41 79.09 1.09 1.60 173 4347 48 1.56 4896

4 8 24 78.09 0.82 1.73 183 4545 30 1.66 5270
6 24 78.09 0.82 1.73 183 4426 30 1.67 5137
4 25 78.13 0.83 1.72 183 4331 30 1.66 5038
3 25 78.23 0.86 1.71 182 4364 30 1.65 5056

5 8 15 77.53 0.67 1.82 190 4558 19 1.73 5437
6 15 77.53 0.67 1.82 190 4439 19 1.74 5301
4 16 77.57 0.68 1.81 189 4351 19 1.73 5207
3 16 77.68 0.71 1.79 188 4417 20 1.72 5239
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Table 5  Optimal solution for normal distribution case (power investment)

The bold values are optimal solutions

n L Power investment No investment and 
no price discount i.e. 
�x = �0,Ab = A0

q1 �x Ab k I(Ab) EATCIL
N

q1 k EATCIP
N

1 8 153 84.57 1.52 1.17 95 5060 162 1.16 5310
6 152 84.51 1.51 1.18 95 4951 161 1.17 5201
4 152 84.48 1.51 1.18 95 4843 161 1.17 5093
3 153 84.53 1.51 1.18 95 4809 162 1.17 5057

2 8 72 80.59 0.89 1.45 105 4647 80 1.42 5065
6 71 80.57 0.89 1.45 105 4535 79 1.42 4953
4 71 80.58 0.89 1.45 105 4423 80 1.42 4840
3 73 80.67 0.90 1.44 105 4414 81 1.41 4825

3 8 40 78.99 0.64 1.61 112 4559 47 1.56 5133
6 40 78.96 0.63 1.62 112 4429 47 1.57 5066
4 40 78.98 0.64 1.61 112 4330 47 1.57 4893
3 41 79.09 0.65 1.60 112 4341 48 1.56 4896

4 8 24 78.09 0.49 1.73 117 4537 30 1.66 5270
6 24 78.09 0.49 1.73 117 4418 30 1.67 5137
4 25 78.13 0.50 1.72 117 4324 30 1.66 5038
3 25 78.23 0.52 1.71 112 4356 30 1.65 5056

5 8 15 77.53 0.40 1.82 121 4549 19 1.73 5437
6 15 77.53 0.40 1.82 121 4431 19 1.74 5301
4 16 77.57 0.41 1.81 121 4345 19 1.73 5207
3 16 77.68 0.71 1.79 188 4417 20 1.72 5239

Table 6  Optimal solution for distribution free case (logarithmic investment)

The bold values are optimal solutions

n L Logarithmic investment No investment and no price 
discount i.e. �x = �0

q1 �x Ab k I(Ab) EATCIL
N

q1 k EATCIP
N

1 8 169 85.59 2.82 1.09 142 5554 179 1.08 5791
6 166 85.40 2.77 1.10 143 5389 176 1.09 5627
4 163 85.21 2.72 1.11 143 5204 172 1.10 5443
3 163 85.16 2.71 1.12 143 5124 172 1.11 5361

2 8 84 81.59 1.75 1.48 158 5417 92 1.44 5795
6 82 81.43 1.71 1.50 159 5209 90 1.46 5592
4 80 81.28 1.67 1.52 159 4980 88 1.48 5366
3 80 81.26 1.67 1.52 159 4893 87 1.48 5276

3 8 50 79.90 1.30 1.76 168 5549 56 1.69 6051
6 40 79.77 1.27 1.79 169 5310 54 1.71 5819
4 40 79.64 1.23 1.82 169 5050 53 1.74 5563
3 41 79.64 1.23 1.82 169 4961 53 1.74 5473
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Table 7  Optimal solution for distribution free case (power investment)

The bold values are optimal solutions

n L Power investment No investment and no price 
discount i.e. �x = �0

q1 �x Ab k I(Ab) EATCIL
N

q1 k EATCIP
N

1 8 169 85.58 1.68 1.09 93 5548 179 1.08 5791
6 166 85.40 1.65 1.10 93 5383 176 1.09 5627
4 163 85.21 1.62 1.11 94 5198 172 1.10 5443
3 163 85.16 1.61 1.12 94 5118 172 1.11 5361

2 8 84 81.59 1.05 1.48 102 5410 92 1.44 5795
6 82 81.43 1.02 1.50 103 5203 90 1.46 5592
4 80 81.28 1.05 1.52 103 4973 88 1.48 5366
3 80 81.26 1.02 1.52 103 4886 87 1.48 5276

3 8 50 79.90 0.78 1.76 108 5542 56 1.69 6051
6 48 79.77 0.76 1.79 109 5303 54 1.71 5819
4 47 79.64 0.74 1.82 109 5042 53 1.74 5563
3 47 79.64 0.74 1.82 109 4954 53 1.74 5473

Table 8  Impact of the parameter � on the optimal policy

Case � n L q1 �x Ab k I(Ab) EATCI

Normal distribution with logarithmic investment 1.5 4 4 25 78.13 0.83 1.72 183 4331
2.5 3 4 20 79.02 1.07 1.61 174 4307
3.5 3 4 11 79.01 1.06 1.61 174 4322
4.5 3 4 8 78.99 1.06 1.61 174 4341
5 2 3 30 80.72 1.52 1.6 163 4348

Normal distribution with power investment 1.5 4 4 40 78.13 0.64 1.61 112 4324
2.5 3 4 20 79.02 0.64 1.61 112 4301
3.5 3 4 11 79.01 0.64 1.61 112 4314
4.5 3 4 8 78.99 0.64 1.69 112 4333
5 2 3 31 80.77 0.92 1.44 105 4327

Distribution free with logarithmic investment 1.5 2 3 80 81.26 1.67 1.52 159 4893
2.5 2 3 58 81.35 1.69 1.51 159 4837
3.5 2 3 45 81.38 1.70 1.51 159 4817
4.5 2 3 37 81.40 1.70 1.50 159 4808
5 2 3 34 81.4 1.7 1.5 159 4806

Distribution free with power investment 1.5 2 3 80 81.26 1.00 1.52 103 4886
2.5 2 3 58 81.35 1.01 1.51 103 4830
3.5 2 3 45 81.38 1.02 1.51 103 4810
4.5 2 3 37 81.39 1.02 1.51 103 4801
5 2 3 34 81.34 1.01 1.33 103 4700
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(3) Increase in the value of � increases the ordering cost in the case of logarithmic 
investment function whereas it remain stable in the power investment function 
case and the cost is comparatively less than that of the previous case. Thus it 
implies that it is better to adopt a power investment cost function for reducing 
the ordering cost.

(4) Consider the case when the lead time demand is distribution free. As the value 
of � increases, the number of shipments and the lead time remains the same for 
both the type of investment functions. But the first shipment size decrease by a 
similar pattern for both the type of investment functions.

(5) From Table 8, it is clear that the first shipment size and backorder price discount 
are slightly more in the distribution free case which results in the increase in the 
expected annual total cost of the integrated system.

(6) Table 9 reveals that if the value of upper bound of the backorder ratio �0 
increases, the expected annual total cost of the integrated system decreases in 
all the four cases. This results in an increase in the cost saving.

8  Conclusion

In this paper, two level production distribution inventory system consisting of a 
single-vendor and a single-buyer is developed. Two continuous review models are 
presented by assuming that the lead time demand follows a normal distribution in 
the first model and is distribution free in the second model. The main contribution of 
this study is that the joint total expected cost for the vendor-buyer integrated system 
is analyzed by adopting two different types of convex and decreasing investment 

Table 9  Impact of the parameter �0 on the optimal policy

Case �0 n L q1 �x Ab k I(Ab) EATCI

Normal distribution with logarithmic investment 0.2 4 4 25 78.13 0.83 1.72 183 4331
0.4 4 4 25 78.12 0.83 1.70 183 4315
0.6 4 4 25 78.12 0.83 1.67 183 4308
0.8 4 4 25 78.13 0.83 1.64 183 4299

Normal distribution with power investment 0.2 4 4 25 78.13 0.50 1.72 117 4324
0.4 4 4 25 78.12 0.50 1.70 117 4307
0.6 4 4 25 78.12 0.50 1.67 117 4300
0.8 4 4 25 78.12 0.50 1.64 117 4291

Distribution free with logarithmic investment 0.2 2 3 80 81.26 1.67 1.52 159 4893
0.4 2 3 80 81.25 1.66 1.47 160 4861
0.6 2 3 80 81.23 1.66 1.41 160 4827
0.8 2 3 80 81.21 1.65 1.35 160 4793

Distribution free with power investment 0.2 2 3 80 81.26 1.02 1.52 103 4886
0.4 2 3 80 81.25 1.00 1.47 103 4854
0.6 2 3 80 81.23 0.99 1.41 103 4820
0.8 2 3 80 81.21 0.99 1.35 103 4786
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functions to reduce the ordering cost when the items are delivered in unequal sized 
shipments. An algorithm is proposed for finding the optimal solutions. Numerical 
results reveal that the system could obtain a significant amount of savings when 
the lead time demand follows a normal distribution and the ordering cost could be 
reduced if power investment cost function is adopted. The impact of the parame-
ters on the optimal solution are also analyzed for decision making references. This 
model can be extended by incorporating generalized investment functions to reduce 
the ordering cost and the lead time. This model could also be extended to analyze 
the effect of treating the geometric growth factor as a decision variable on the cost 
function.

Appendix 1

Similar to the results proved in Lin [30] the convexity of the cost function is 
discussed.

Observation 1 EATCIL
N
(n, q1, k,Ab,�x, L) is concave in L ∈ [Li, Li−1] for a fixed 

n, q1, k,Ab,�x.

Thus for a fixed (n, q1, k,Ab,�x) , EATCIL
N
(n, q1, k,Ab,�x, L) is concave in 

L ∈ [Li, Li−1] . Hence the minimum value of EATCIL
N
(n, q1, k,Ab,�x, L) exists at the 

end points of the interval [Li, Li−1].

Observation 2 EATCIL
N
(n, q1, k,Ab,�x, L) is convex in n for a fixed k, q1, L,Ab,�x.
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where Y =
�
Ab +

Av

n

�
+ G(�x)�

√
L�(k) + R(L) + Tr

Observation 3 EATCIL
N
(n, q1, k,Ab,�x, L) is convex in q1 for a fixed n, k, L,Ab,�x.

Observation 4 EATCIL
N
(n, q1, k,Ab,�x, L) is convex in k for a fixed n, q1, L,Ab,�x.

Observation 5 EATCIL
N
(n, q1, k,Ab,�x, L) is convex in �x for a fixed n, q1, L,Ab, k.

Observation 6 EATCIL
N
(n, q1, k,�x,�x, L) is convex in Ab for a fixed n, q1, L,�x, k.
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Observation 7 EATCIL
F
(n, q1, k,Ab,�x, L) is concave in L ∈ [Li, Li−1] for a fixed 

n, q1, k,Ab,�x.

Thus for a fixed (n, q1, k,Ab,�x) , EATCIL
F
(n, q1, k,Ab,�x, L) is concave in 

L ∈ [Li, Li−1] . Hence the minimum value of EATCIL
N
(n, q1, k,Ab,�x, L) exists at the 

end points of the interval [Li, Li−1].

Observation 8 EATCIL
F
(n, q1, k,Ab,�x, L) is convex in n for a fixed k, q1, L,Ab,�x,.
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Observation 9 EATCIL
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(n, q1, k,Ab,�x, L) is convex in q1 for a fixed n, k,L,Ab,�x,.
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Observation 10 EATCIL
F
(n, q1, k,Ab,�x, L) is convex in k for a fixed n, q1, L,Ab,�x.

Observation 11 EATCIL
F
(n, q1, k,Ab,�x, L) is convex in �x for a fixed n, q1, L,Ab, k.

Observation 12 EATCIL
F
(n, q1, k,�x,�x, L) is convex in Ab for a fixed n, q1, L,�x, k.

Appendix 2

As the total cost function of the integrated system is highly non-linear, the con-
vexity of the function for a given L is checked in the distribution free case when 
logarithmic investment function is adopted. For this case, the Hessian matrix H is 
given below. The leading principal minors H55,H44,H33,H22,H11 are positive and 
thus the hessian matrix is positive definite. Thus the solution obtained is globally 
optimum.
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