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Abstract
This paper considers a single server perishable inventory system in which customers 
arrive in a homogeneous Poisson stream. The system has a production unit which 
produces a single item in an exponentially distributed time interval. At the time of 
arrival, a customer leads to service if the server is available with a positive level of 
inventory. Otherwise, the customer goes to a waiting place(orbit) of infinite capacity 
with pre-determined probability or exits the system with complementary probabil-
ity. Each customer in the orbit tries to access the server in an exponentially distrib-
uted time interval. After every unsuccessful retrial, the customer returns to the orbit 
with a pre-allotted probability or is lost forever with complementary probability. 
An algorithmic solution to the problem is obtained using Matrix Analytic Method. 
The mean number of customer loss before and after entering the system, the rate of 
successful retrials among overall retrials and some other performance measures of 
the system are derived. The impacts of system parameters on different measures are 
numerically studied. A suitable cost function is constructed and the optimum control 
policy is numerically obtained.

Keywords  Matrix analytic method · Perishable inventory · Retrials

Mathematics Subject Classification  60G99 · 60K25 · 90B05

1  Introduction

Most of the existing perishable inventory models in the literature assume that items 
are purchased from an outside source. Due to this, industries/firms would lose their 
business without goods/items on hand. Primarily, a firm should be able to meet the 
demands of customers, by confirming the availability of adequate stock of items, by 
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which the firm can suitably avoid loss/backlogged cases. In this work, we propose 
a production inventory model of deteriorating items. The often quoted review arti-
cles [3, 11, 14] give an extensive summary of the modelling of perishable inventory. 
An inventory system with positive service time and retrial of customers has been 
received a small scale of attention in the literature. In all the stochastic inventory 
models prior to Sigman and Simchi-Levi [17], it is assumed that the service time is 
negligible. This was followed by Berman et al. [2] with an inventory model of deter-
ministic service time. The first published work on retrial inventory is by Artalejo 
et al. [1]. This paper introduces an alternative to classical approaches based either 
on backlogged or on lost sale cases. Authors considered a continuous review (s, S) 
inventory system in which primary customer arrives in stock out period, leaves the 
server and retries after some random time.

Krishnamoorthy and Viswanath [7] studied a production inventory system where 
the demand process is assumed to be Poisson. The duration of each service and 
the time required to produce each item is distributed as exponential random vari-
able. Customers are not allowed to join when the inventory level is zero. Under this 
assumption, an explicit product form solution for the steady state probability vector 
is obtained. Ravichandran [15] investigated a continuous review perishable inven-
tory system of (s, S) type with positive lead time. The demands arrive according to a 
Poisson process. The usable age of items is distributed as Erlangian. Krishnamoor-
thy and Jose [6] compared three production inventory systems with the assumption 
that all the underlying processes are independent exponential distribution. Infinite 
orbit facility is provided for customers who arrive at the stock out period or server 
busy or buffer full. Each customer retries from the orbit according to linear retrial 
policy depending on the number of customers in the orbit. Unsuccessful customers 
may rejoin the orbit or lose forever.

Sivakumar [18] considered a perishable inventory system under continuous 
review (s, Q) policy with a finite number of demands. The lifetime of each item and 
lead time are assumed to be exponential. Also, assume that customers who arrive 
during the stock-out period enter into an orbit and these customers send out sig-
nals to access the server. Reshmi and Jose [16] studied a queueing inventory sys-
tem with perishable items and all underlying processes are assumed as exponential. 
Items in the inventory perish in a linear rate. Periyasamy [13] analysed a continuous 
review perishable inventory system with a single server and zero lead time. If the 
demand occurrs during busy period, it is directed to an obit and may retry from 
there. Also, the server searches for customers with a pre-assigned probability. Some 
important joint probability distributions are obtained in the steady state. Yadavalli 
[20] designed a finite source perishable inventory system with two servers such that 
one server is always available and the other one undergoes interruptions. Primary 
customers are directed to orbit with preassigned probabilities and retry to find a free 
server. Kumar and Elango [8] considered a single server queueing system of perish-
able items with finite waiting space. All the underlying processes are assumed as 
exponential. They modelled the problem as a Markov decision problem by using the 
value iteration algorithm to obtain the minimal average cost of the service. Laxmi 
and Soujanya [9] studied a perishable system in which customers arrive according to 
Markovian arrival process. An orbit of finite size is arranged for retrying customers 
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and the server goes for multiple working vacations during stock outs. Melikov and 
Shahmaliyev [10] developed a model with perishable inventory in which custom-
ers are provided the facility of repeated attempts. During system stock out, primary 
customers either enter the queue or the orbit according to the Bernoulli scheme. 
Recently, Ko [4] proposed a perishable retrial inventory system with (s, S) control 
policy. The lead time is assumed to be more generalized phase-type distribution. 
Krishnamoorthy and Islam [5] introduced perishability in retrial inventory model 
with a production unit. When the inventory level reaches zero, arriving demands 
are sent to the orbit with finite capacity and tries for their luck. Customers, who find 
the orbit full and inventory level zero, lose the system. Demands arriving from the 
orbital customers are exponentially distributed with a linear rate.

This paper assumes a continuous review perishable inventory system with a pro-
duction unit and retrial facility. In detail, the model provides a retrial facility so that 
customer loss during stock out can be greatly reduced. In the real world, most of the 
inventoried items have a random lifetime. So, we assume that items have an expo-
nential lifetime with a linear rate. If the system has its own production unit then the 
firm can be smoothly run without shortages.

The remaining portion of the paper is organized as follows: in Sect. 2, mathemati-
cal modelling of the system is provided. Sections 3 and 4 discuss the computation of 
the stationary distribution and some important performance measures respectively. 
Section 5 deals with the numerical experiment of the effect of parameters on dif-
ferent measures. In Sect. 6, a suitable cost function is defined and the optimal (s, S) 
pair is obtained. Finally concluding remarks are included in Sect. 7.

2 � Modelling and assumptions

Consider an (s, S) production inventory system with perishable items. The lifetime 
of an item in the inventory is exponentially distributed with parameter j� , when 
there are j items in the inventory. Customers arrive at a single server counter accord-
ing to a Poisson process of rate � and they demand a single item. If the server is 
idle at an arrival epoch then that customer is taken for service immediately. Ser-
vice time duration follows a negative exponential distribution with parameter � . 
When on-hand inventory level drops to s, the production is switched to ON mode 
and it continues until the inventory level reaches S. The production process follows 
an exponential distribution with parameter � and it adds one unit to the inventory 
at a time. Any arriving customer, when the inventory level zero or server busy, is 
offered the choice of either to join a waiting space of infinite capacity called orbit 
with probability � or to exit the system with probability 1 − � . All customers who 
enter the orbit, independently generate requests for service at exponentially distrib-
uted time intervals with mean 1

�
 . The retrial customers who find the inventory level 

out of stock or server busy, return to the orbit with probability � and exit the system 
with probability 1 − �.

Let N(t) and I(t) denote the number of customers in the orbit at time t and the 
inventory level at time t respectively. Further, let
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Now, � = {(N(t),C(t),K(t), I(t))|t ≥ 0} constitutes a continuous time Markov chain 
with state space l(0) ∪ l(1) , where

In the sequel, � denotes a column vector of 1′ s of appropriate order and � denotes a 
zero matrix of appropriate order. The generator matrix of the process is

where each element in Q has size (4S − 2s − 1) × (4S − 2s − 1).

Transitions of A0

•	 (i, 0, 1, 0)
��

���������→ (i + 1, 0, 1, 0);i ≥ 0

•	 (i, 1, 0, j)
��

���������→ (i + 1, 1, 0, j);i ≥ 0, s + 1 ≤ j ≤ S

•	 (i, 1, 1, j)
��

���������→ (i + 1, 1, 1, j);i ≥ 0, 1 ≤ j ≤ S − 1

Transitions of A2i

•	 (i, 0, 0, j)
i�
�������→ (i − 1, 1, 0, j);s + 1 ≤ j ≤ S

•	 (i, 0, 1, 0)
i�(1−�)
�������������������������→ (i − 1, 0, 1, 0)

•	 (i, 0, 1, j)
i�
�������→ (i − 1, 1, 1, j);1 ≤ j ≤ S − 1

•	 (i, 1, 0, j)
i�(1−�)
�������������������������→ (i − 1, 1, 0, j);s + 1 ≤ j ≤ S

•	 (i, 1, 1, j)
i�(1−�)
�������������������������→ (i − 1, 1, 1, j);1 ≤ j ≤ S − 1

Transitions of A1i

•	 (i, 0, 0, j)
�

�����→ (i, 1, 0, j);s + 1 ≤ j ≤ S

•	 (i, 0, 1, j)
�

�����→ (i, 1, 1, j);1 ≤ j ≤ S − 1

•	 (i, 1, 0, j)
�

������→ (i, 0, 1, j − 1);j = s + 1

•	 (i, 1, 0, j)
�

������→ (i, 0, 0, j − 1);s + 2 ≤ j ≤ S

•	 (i, 1, 1, j)
�

������→ (i, 0, 1, j − 1);1 ≤ j ≤ S − 1

•	 (i, 0, 1, j)
�

������→ (i, 0, 1, j + 1);0 ≤ j ≤ S − 1

•	 (i, 0, 1, j)
�

������→ (i, 0, 0, j + 1);j = S − 1

•	 (i, 1, 1, j)
�

������→ (i, 1, 1, j + 1);1 ≤ j ≤ S − 2

•	 (i, 0, 0, j)
j�
���������→ (i, 0, 0, j − 1);s + 2 ≤ j ≤ S

C(t) ∶

{
0, if the server idle at time t

1, if the server busy at time t

K(t) ∶

{
0, if the production is OFF at time t

1, if the production is ON at time t

l(0) = {(i, k, 0, j)|i ≥ 0;k = 0, 1;s + 1 ≤ j ≤ S} and

l(1) = {(i, k, 1, j)|i ≥ 0;k = 0, 1;k ≤ j ≤ S − 1}

Q =

⎡
⎢⎢⎢⎢⎣

A10 A0

A21 A11 A0

A22 A12 A0

A23 A13 A0

⋱ ⋱ ⋱

⎤
⎥⎥⎥⎥⎦
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•	 (i, 0, 0, j)
(s+1)�
�����������������������→ (i, 0, 1, j − 1);j = s + 1

•	 (i, 0, 1, j)
j�
���������→ (i, 0, 1, j − 1);1 ≤ j ≤ S − 1

•	 (i, 1, 0, j)
(s+1)�
�����������������������→ (i, 1, 1, j − 1);j = s + 1

•	 (i, 0, 1, j)
j�
���������→ (i, 1, 0, j − 1);s + 2 ≤ j ≤ S

•	 (i, 1, 1, j)
j�
���������→ (i, 1, 1, j − 1);2 ≤ j ≤ S − 1

•	 diagonal elements of A1i are the negative of the sum of other elements in the cor-
responding row of Q.

3 � Steady state distribution

The system under consideration is stable, one can verify it by Tweedie [19]. Since � 
is a level dependent quasi-birth–death process, to calculate the steady state probabil-
ity vector, Neuts–Rao [12] truncation method is used. The steady state probability 
vector � = (x0, x1, x2,…) of Q, where

satisfies the relation

where the matrix R is the unique non-negative solution of the matrix quadratic 
equation

with A1 = A1N ,A2 = A2N and R = limn→∞ Rn , where {Rn} is defined such that 
Rn+1 = −A0A

−1
1

− RnA2A
−1
1
;n ≥ 0 and R0 = � . The components x0, x1,… , xN−1 

corresponding to boundary portion of Q are obtained using Gauss–Siedel method. 
Finally, the vector is normalized by dividing 

∑∞

i=0
xi�.

4 � Performance measures

1.	 Average inventory level in the system, 

2.	 Mean number of customers in the orbit, 

xi = (�
i,0,0,s+1

,�
i,0,0,s+2

… ,�
i,0,0,S

,�
i,0,1,0

,�
i,0,1,1

,… ,�
i,0,1,S−1

,

�
i,1,0,s+1

,�
i,1,0,s+2

,… ,�
i,1,0,S

,�
i,1,1,1

,�
i,1,1,2

,… ,�
i,1,1,S−1

)(i ≥ 0)

x
N+k−1

= x
N−1

Rk, k ≥ 1

R2A2 + RA1 + A0 = �

Einv =

∞∑
i=0

1∑
k=0

S∑
j=s+1

j�i,k,0,j +

∞∑
i=0

1∑
k=0

S−1∑
j=1

j�i,k,1,j
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3.	 Average rate at which production is switched ON, 

4.	 Average perishable rate, 

5.	 Mean number of departures after service completion, 

6.	 Mean number of customers lost before entering the orbit, 

7.	 Mean number of customers lost due to retrials, 

8.	 Overall rate of retrials, 

9.	 Successful rate of retrials, 

Eorbit =

(
∞∑
i=1

ixi

)
�

EON = �

∞∑
i=0

�i,1,0,s+1 + (s + 1)�

(
∞∑
i=0

�i,0,0,s+1 +

∞∑
i=0

�i,1,0,s+1

)

Ep = �

(
∞∑
i=0

1∑
k=0

S∑
j=s+1

j�i,k,0,j +

∞∑
i=0

1∑
k=0

S−1∑
j=1

j�i,k,1,j

)

Eds = �

∞∑
i=0

(
S∑

j=s+1

�i,1,0,j +

S−1∑
j=1

�i,1,1,j

)

Ela = �(1 − �)

∞∑
i=0

(
�i,0,1,0 +

S∑
j=s+1

�i,1,0,j +

S−1∑
j=1

�i,1,1,j

)

Elr = �(1 − �)

∞∑
i=1

i

(
�i,0,1,0 +

S∑
j=s+1

�i,1,0,j +

S−1∑
j=1

�i,1,1,j

)

�∗
1
= �

(
∞∑
i=1

ixi

)
�

�∗
2
= �

∞∑
i=0

i

(
S∑

j=s+1

�i,0,0,j +

S−1∑
j=1

�i,0,1,j

)
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5 � Numerical experiments

In this section, we provide results of numerical illustration that has been carried 
out for studying the effects of variation of different parameters on various per-
formance measures. Numerical experiments are conducted by considering some 
artificial data. Assume that the production switch on level, s = 7 and the maxi-
mum permissible inventory level, S = 20 . To study the variation of each parame-
ter on system performances, we consider the following cases 5.1 to 5.7 with table 
representations.

5.1 � Effect of the arrival rate �

As the arrival rate � increases, the number of customers in the orbit Eorbit also 
increases which in turn leads to the lost of arriving customers as well as retry-
ing customers. The increase in Eorbit results in the increase of Eds, �

∗
1
 and �∗

2
 (see 

Table  1). The decrease in the expected inventory level can be seen due to a 
decrease in expected production switching rate.

Table 1   Effect of arrival rate � on various performance measures

� = 3;� = 0.3;� = 3;� = 1.5;� = 0.7;� = 0.6

� Einv Eorbit EON Ep Eds Ela Elr �∗
1

�∗
2

2.0 5.2852 0.7461 10.227e−05 1.5856 1.4205 0.2999 0.2796 1.1191 0.4202
2.1 5.1481 0.8183 8.7394e−05 1.5444 1.4626 0.3256 0.3118 1.2274 0.4480
2.2 5.0187 0.8931 7.5099e−05 1.5056 1.5024 0.3519 0.3457 1.3397 0.4753
2.3 4.8966 0.9704 6.4897e−05 1.4690 1.5400 0.3787 0.3814 1.4556 0.5022
2.4 4.7816 1.0501 5.6401e−05 1.4345 1.5754 0.4059 0.4187 1.5751 0.5285
2.5 4.6732 1.1320 4.9298e−05 1.4020 1.6089 0.4336 0.4575 1.6980 0.5543
2.6 4.5712 1.2160 4.3336e−05 1.3714 1.6405 0.4617 0.4978 1.8240 0.5794

Table 2   Effect of service rate � on various performance measures

� = 2;� = 0.3;� = 3;� = 1.5;� = 0.7;� = 0.6

� Einv Eorbit EON Ep Eds Ela Elr �∗
1

�∗
2

3.0 5.2852 0.7461 10.227e−05 1.5856 1.4205 0.2999 0.2796 1.1191 0.4202
3.1 5.2334 0.7274 9.7257e−05 1.5700 1.4362 0.2946 0.2692 1.0911 0.4181
3.2 5.1844 0.7097 9.2773e−05 1.5553 1.4511 0.2894 0.2595 1.0646 0.4158
3.3 5.1381 0.6930 8.8745e−05 1.5414 1.4651 0.2845 0.2505 1.0395 0.4133
3.4 5.0942 0.6771 8.5114e−05 1.5283 1.4784 0.2797 0.2419 1.0156 0.4108
3.5 5.0526 0.6619 8.1831e−05 1.5158 1.4909 0.2752 0.2339 0.9929 0.4082
3.6 5.0131 0.6476 7.8853e−05 1.5039 1.5029 0.2708 0.2264 0.9714 0.4055
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5.2 � Effect of the service rate �

Intuitively, as the service rate increases lead to a greater number of service com-
pletion. Therefore, Eds also increases and the number of customers in the orbit 
Eorbit decreases. The overall and successful rate of retrials decreases because 
Eorbit is decreasing. Expected inventory level Einv get decreased when more and 
more customers get served, leading to a decrease in Ep . So the production pro-
cess need not have to switch ON frequently. The number of unsatisfied custom-
ers decrease, that is Ela and Elr in Table 2 support the intuition.

5.3 � Effect of the perishable rate !

When decay rate increases, obviously Ep increases, which leads to decrease in expected 
inventory level Einv as well as in expected departure from service Eds . The production 
switch on rate is decreasing but it is very negligible. As Einv decreases, more customers 
joins the orbit ie Eorbit increases. When Eorbit increases, we expect increase in measures 
like Ela,Elr, �

∗
1
 and �∗

2
 . Table 3 supports these intuitions.

Table 3   Effect of perishable rate � on various performance measures

� = 2;� = 3;� = 3;� = 1.5;� = 0.7;� = 0.6

� Einv Eorbit EON Ep Eds Ela Elr �∗
1

�∗
2

0.1 11.427 0.7121 29674e−06 1.1427 1.4492 0.2903 0.2604 1.0681 0.4171
0.2 7.6916 0.7219 2362e−06 1.5383 1.4410 0.2931 0.2659 1.0828 0.4180
0.3 5.2852 0.7461 102.27e−06 1.5856 1.4205 0.2999 0.2796 1.1191 0.4202
0.4 4.0548 0.7769 5.8595e−06 1.6219 1.3945 0.3085 0.2970 1.1653 0.4229
0.5 3.3252 0.8093 0.4758e−06 1.6626 1.3671 0.3176 0.3153 1.2140 0.4256
0.6 2.8426 0.8417 0.0052e−06 1.7056 1.3401 0.3264 0.3338 1.2618 0.4281
0.7 2.4994 0.8716 0.0008e−06 1.7496 1.3143 0.3348 0.3509 1.3075 0.4302

Table 4   Effect of replenishment rate � on various performance measures

� = 2;� = 3;� = 0.3;� = 1.5;� = 0.7;� = 0.6

� Einv Eorbit EON Ep Eds Ela Elr �∗
1

�∗
2

2.6 4.0925 0.7878 1.1145e−05 1.2278 1.3851 0.3112 0.3038 1.1817 0.4222
2.7 4.3822 0.7746 2.0411e−05 1.3147 1.3963 0.3076 0.2961 1.1619 0.4218
2.8 4.6781 0.7634 3.6082e−05 1.4034 1.4058 0.3046 0.2896 1.1451 0.4212
2.9 4.9794 0.7540 6.1702e−05 1.4938 1.4138 0.3021 0.2841 1.1310 0.4207
3.0 5.2852 0.7461 10.227e−05 1.5856 1.4205 0.2999 0.2796 1.1191 0.4202
3.1 5.5947 0.7395 16.458e−05 1.6784 1.4261 0.2981 0.2758 1.1092 0.4198
3.2 5.9071 0.7341 25.758e−05 1.7721 1.4307 0.2966 0.2727 1.1011 0.4193
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5.4 � Effect of the replenishment rate ˇ

As the replenishment rate � increases, the expected inventory Einv increases and hence 
the expected perishable rate Ep increases. The production switch on rate also increases 
with increase in � . When the inventory available to customers increases the service 
completion becomes faster, so Eds . Accordingly, expected number of customers in 
the orbit Eorbit decreases, due to this, the measures Ela,Elr, �

∗
1
 and �∗

2
 decreases (see 

Table 4).

5.5 � Effect of the retrial rate �

As retrial rate � increases, one would expect decrease in expected number of cus-
tomers in the orbit Eorbit . Which is the reason for decrease in Eds, �

∗
1
 and �∗

2
 . As the 

production switch on rate increases, expected inventory level Einv and Ep increases. 
When � increases, the number of service completion increases, that is Eds . The 
decrease in Ela is very negligible because Einv is increasing. From Table  5, as � 
increases most of the retrying customers fail to access a free server so Elr increases.

Table 5   Effect of retrial rate � on various performance measures

� = 2;� = 3;� = 0.3;� = 3;� = 0.7;� = 0.3

� Einv Eorbit EON Ep Eds Ela Elr �∗
1

�∗
2

1.1 5.4232 0.7434 1.1576e−04 1.6270 1.3781 0.2894 0.3325 0.81775 0.3427
1.2 5.4325 0.6814 1.1712e−04 1.6298 1.3752 0.2887 0.3360 0.81773 0.3377
1.3 5.4416 0.6290 1.1842e−04 1.6325 1.3725 0.2881 0.3394 0.81770 0.3328
1.4 5.4503 0.5841 1.1969e−04 1.6351 1.3698 0.2875 0.3427 0.81768 0.3281
1.5 5.4588 0.5451 1.2091e−04 1.6376 1.3672 0.2869 0.3459 0.81765 0.3235
1.6 5.4671 0.5110 1.2210e−04 1.6401 1.3647 0.2863 0.3490 0.81763 0.3191
1.7 5.4751 0.4809 1.2325e−04 1.6425 1.3623 0.2858 0.3520 0.81760 0.3148

Table 6   Effect of probability � on various performance measures

� = 2;� = 3;� = 0.3;� = 3;� = 1.5;� = 0.6

� Einv Eorbit EON Ep Eds Ela Elr �∗
1

�∗
2

0.1 5.9509 0.0840 1.9354e−05 1.7853 1.2167 0.7552 0.0281 0.1261 0.0558
0.2 5.8444 0.1748 1.7529e−05 1.7533 1.2492 0.6912 0.0596 0.2622 0.1132
0.3 5.7358 0.2727 1.5829e−05 1.7207 1.2824 0.6228 0.0948 0.4091 0.1721
0.4 5.6252 0.3784 1.4252e−05 1.6876 1.3163 0.5497 0.1341 0.5675 0.2324
0.5 5.5131 0.4922 1.2794e−05 1.6539 1.3506 0.4717 0.1777 0.7382 0.2939
0.6 5.3996 0.6146 1.1454e−05 1.6199 1.3854 0.3885 0.2261 0.9219 0.3566
0.7 5.2852 0.7461 1.0227e−05 1.5856 1.4205 0.2999 0.2796 1.1191 0.4202
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5.6 � Effect of the probability 


When the probability � increases, unsatisfied customers move to orbit, hence 
Eorbit increases. This in turns leads to the reduced loss of customers upon arrival, 
Ela decreases. As Eorbit increases retrials become unsuccessful that force to 
increase in Elr . As Eorbit increases, we expect increase in Eds, �

∗
1
 and �∗

2
 . Table 6 

supports these intuitions. As expected production switch on rate decreases, 
inventory level also decreases which leading to a decrease in Ep.

5.7 � Effect of the probability ı

As � increases, the unsuccessful retrying customers return to the orbit faster, so Eorbit 
increases. This leads to the decrease in expected loss of retrying customers. Since 
the number of orbiting customers increases it makes the server busy so the expected 
loss upon arrival Ela increases. The increase in Eorbit leads to increase in Eds, �

∗
1
 and 

�∗
2
 . From Table 7, the production switch on rate increases with increase in � which 

results the increase in Einv.

6 � Cost analysis

The objective is to obtain an adaptive (s, S) policy subject to some cost criteria. 
Since the objective cost function is not known explicitly, we define it as a combina-
tion of relevant system characteristics. One can determine the optimum values of (i) 
s, the point at which ‘switch ON’ the production unit and (ii) S, the amount of inven-
tory to be stored by minimizing the total cost. For this, the long-run cost function for 
this model is defined as

where k1 = production switch on cost per unit per unit time; k2 =  inventory hold-
ing cost per unit per unit time; k3 = customer holding cost per unit per unit time; 

CF = k1 ∗ EON + k2Einv + k3Eorbit + k4(Ela + Elr) + k5Eds + k6Ep,

Table 7   Effect of probability � on various performance measures

� = 2;� = 3;� = 0.3;� = 3;� = 1.5;� = 0.7

� Einv Eorbit EON Ep Eds Ela Elr �∗
1

�∗
2

0.1 5.5341 0.4654 13.003e−05 1.6602 1.3442 0.2814 0.3745 0.6981 0.2820
0.2 5.4992 0.5019 12.572e−05 1.6498 1.3548 0.2839 0.3612 0.7528 0.3012
0.3 5.4588 0.5451 12.091e−05 1.6376 1.3672 0.2869 0.3459 0.8177 0.3235
0.4 5.4114 0.5975 11.550e−05 1.6234 1.3818 0.2904 0.3278 0.8962 0.3498
0.5 5.3547 0.6625 10.935e−05 1.6064 1.3992 0.2947 0.3062 0.9937 0.3813
0.6 5.2852 0.7461 10.227e−05 1.5856 1.4205 0.2999 0.2796 1.1191 0.4202
0.7 5.1969 0.8591 9.3969e−05 1.5591 1.4477 0.3067 0.2456 1.2887 0.4699
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k4 = cost of customer loss per unit per unit time; k5 = cost due to service per unit per 
unit time; k6 = cost of decay per unit per unit time.

6.1 � Optimal (s, S) pair

This section explores the behaviour of the cost function by vary-
ing s and S, fixing other parameters fixed. Assume the parameter values as 
� = 2;� = 3;� = 0.3;� = 3;� = 1.5;� = 0.7;� = 0.6 and the different cost assumed 
are k1 = 110.5;k2 = 2.5;k3 = 20;k4 = 2, k5 = 1;k6 = 1.3 . Using the above defined 
cost function, the total cost is tabulated for some set of (s, S) pair. From Table 8, the 
optimal (s, S) pair is (4, 18) and the corresponding optimal cost is 323.46.

7 � Concluding remarks

In this paper, we studied a perishable inventory system with an infinite orbit for 
accommodating retrial customers. Exponential distribution is considered for inter-
arrival time as well as the service time. The production process added single item 
exponentially to the inventory and is governed by an (s, S) policy. The customer 
would be allowed to join the orbit if the inventory level zero or server busy. Matrix 
Geometric Method is used to find the stationary probability vector, which make it 
easier to obtain some key performance measures. A suitable cost function is con-
structed and the optimal (s, S) pair is obtained. The results are numerically illus-
trated to show the effect of change of values of parameters. Furthermore, extended 
works of this model can be done by considering, a finite buffer or varying produc-
tion rate, vacation to the server, etc.

Table 8   Effect of s and S on 
total cost

Bold value indicate the minimal cost for the optimal (s, S) pair

S∖s 1 2 3 4 5 6 7

14 332.67 331.05 329.13 327.67 330.24 333.08 335.87
15 331.34 330.36 328.25 326.85 329.50 332.09 334.46
16 330.26 329.54 327.69 325.12 328.37 331.50 332.85
17 329.37 328.46 326.91 324.35 327.37 330.46 331.13
18 328.75 327.15 325.77 323.46 326.92 329.68 330.31
19 330.02 328.93 327.11 325.01 327.90 330.76 332.22
20 331.81 330.39 328.52 326.95 328.85 331.83 333.90
21 332.98 331.27 329.28 328.25 329.98 333.03 335.38
22 333.78 332.49 331.00 330.40 331.25 334.91 337.04
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