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Abstract
Stochastic or probabilistic programming is a branch of mathematical programming 
that deals with some situations in which an optimal decision is desired under ran-
dom uncertainty of some parameters. In this paper, we consider some chance con-
strained linear programming problems where the right hand side parameters of the 
chance-constraints follow some non-normal continuous distributions such as power 
function distribution, triangular distribution and trapezoidal distribution. To find the 
solution of the stated problems, we first convert the problems in to equivalent deter-
ministic models. Then standard linear programming techniques are used to solve the 
equivalent deterministic models. Some numerical examples are presented to illus-
trate the methodology.

Keywords  Stochastic programming · Chance constrained programming · Power 
function distribution · Triangular distribution · Trapezoidal distribution

1  Introduction

In most of the real-life decision-making problem, decision maker needs to take deci-
sion under some uncertain environment. The uncertainty can be found in parameter 
space as well as in the decision space of a decision making problem. These uncer-
tainties are addressed by using probability distribution or fuzzy value or intervals. 
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Stochastic Programming (SP) is concerned with the decision making problems in 
which some or all parameters are treated as random variables in order to capture the 
uncertainty. SP is used in several real world decision making areas such as energy 
management, financial modeling, supply chain and scheduling, hydro thermal power 
production planning, transportation, agriculture, defence, environmental and pollu-
tion control, production and control management, telecommunications, etc. Several 
models and methodologies have been developed in the field of stochastic program-
ming. In the literature, there exist two very popular approaches to solve SP prob-
lems, namely, 

1.	 Chance constrained programming, and
2.	 Two-stage programming.

Chance constrained programming was developed as a means of describing con-
straints in mathematical programming models in the form of probability levels of 
attainment. The chance constrained programming (CCP) can be used to solve prob-
lems involving chance-constraints, i.e.constraints having violation up to a pre-spec-
ified probability level. The use of chance-constraints was initially introduced by 
Charnes and Cooper [8]. They established three different models for the objective 
functions with random cost coefficients: 

1.	 E-model which maximizes the expected value of the objective function,
2.	 V-model which minimizes the generalized mean square of the objective function, 

and
3.	 P-model which maximizes the probability of the aspiration level of the objective 

function.

In the literature of the stochastic linear programming [13, 16, 17], various models 
have been suggested by several researchers. Bibliographical review is presented 
by Stancu and Wets [31], Infanger [13]. Most of the applications of the stochas-
tic models assume normal distribution for model coefficients. Apart from the nor-
mal distribution, other distributions have been considered for the model coefficients 
also. Goicoechea et al. [12] presented some probabilistic model involving uniform, 
exponential, normal and other random variables. Further, Goicoechea and Duckstein 
[11] presented some deterministic equivalent models for the probabilistic program-
ming with non-normal distributions. Jagannathan [14] has presented a single-objec-
tive probabilistic model by considering the parameters as normal random variables. 
Miller and Wagner [23] presented a method for solving chance constrained pro-
gramming with joint constraints. Biswal et al. [6] presented some probabilistic linear 
programming problems by considering some parameters as exponential random var-
iables. Later, Biswal et al. [7] proposed a solution scheme for solving probabilistic 
constrained programming problems involving log-normal random variables. Sahoo 
and Biswal [28] have also presented some stochastic programming problems with 
cauchy and extreme value distributions. Further, they presented some probabilistic 
linear programming problems by assuming the random parameters as normal and 
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log-normal random variables with joint constraint [27]. Barik et  al. [4] presented 
some stochastic programming problems involving pareto distributions. Agnew et al. 
[1] applied chance constrained programming to Portfolio Selection in a Casualty 
Insurance Firm. Sun et  al. [32] developed an inexact joint-probabilistic chance-
constrained programming method with left-hand-side randomness and applied it to 
solid waste management. Li et al. [20] proposed chance constrained programming 
approach to process optimization under uncertainty. Bilsel and Ravindran [5]devel-
oped a multi-objective stochastic sequential supplier allocation model to help in sup-
plier selection under uncertainty. Yu and Chung [33] proposed a chance constrained 
formulation to tackle the uncertainties of load and wind turbine generator in trans-
mission network expansion planning. Shen and Zhu [30] presented a chance-con-
strained model for uncertain job shop scheduling problem with uncertain processing 
time and cost. Lejeune and Margot [19] proposed a new and systematic reformula-
tion and algorithmic approach to solve a complex class of stochastic programming 
problems involving a joint chance constraint with random technology matrix and 
stochastic quadratic inequalities. Lodi and et al. [21] presented a present a Branch-
and-Cut algorithm for a class of nonlinear chance-constrained mathematical opti-
mization problems with applications to hydro scheduling. Recently, Pradhan and 
Biswal [26] presented a solution procedure based on chance constrained program-
ming technique to solve a multi-choice probabilistic linear programming problem 
where alternative choices of any multi-choice parameter are considered as random 
variables.

In the literature of stochastic programming, there is no article on the chance con-
strained programming problem where some parameters follow power function dis-
tribution or triangular distribution or trapezoidal distribution. So, in this paper, we 
proposed a solution procedure of some chance constrained programming problems 
where the right hand side parameters follow either power function distribution or 
triangular distribution or trapezoidal distribution.

2 � Stochastic programming problem

Stochastic linear programming is an extension of linear programming problem 
where some parameters are random variables. Mathematically, a stochastic linear 
programming problem can be stated as:

subject to

(1)min ∶ Z =

n∑
j=1

cjxj

(2)
n∑
j=1

aijxj ≥ bi, i = 1, 2, ..., s
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where � = (x1, x2, ..., xn) is the decision vector, aij (i = 1, 2, ...,m; j = 1, 2, ..., n) , are 
the constraint coefficients, cj (j = 1, 2, ..., n) are the coefficients associated with the 
objective function. Only the right hand side parameters bi (i = 1, 2, ...,m) are consid-
ered as random variables which follow different distributions with finite mean and 
variance. Since, bi are random in nature, we are not able to apply any standard linear 
programming solution methodology to find the solution of the problem. To over-
come this difficulty, first we establish the deterministic model of the problem and 
then apply the standard methodologies to solve the deterministic model.

2.1 � Chance constrained programming problem

Chance Constrained Programming (CCP) and Two-Stage Programming (TSP) are 
two popular approaches used to establish the deterministic form of a stochastic pro-
gramming problem. In this paper, we discussed about the hance constrained pro-
gramming technique only. Using chance constraints for the constraints with random 
variables, the stochastic programming problem (1)–(4) can be stated as:

subject to

where Pr means probability, �i is the given probability of the extents to which the 
i-th constraint violations are admitted. The inequalities given by (6) and (78) are 
called chance constraints. Here, aij (i = 1, 2, ...,m; j = 1, 2, ..., n) and cj (j = 1, 2, ..., n) 
are deterministic constants, and only the right hand side parameters bi (i = 1, 2, ...,m) 
are considered as random variables following either power function distribution or 
triangular distribution or trapezoidal distribution with finite parameters. Generally 

(3)
n∑
j=1

aijxj ≤ bi, i = s + 1, s + 2, ...,m

(4)xj ≥ 0, j = 1, 2, ....n

(5)min ∶ Z =

n∑
j=1

cjxj

(6)Pr

(
n∑
j=1

aijxj ≥ bi

)
≥ (1 − �i), i = 1, 2, ..., s

(7)Pr

(
n∑
j=1

aijxj ≤ bi

)
≥ (1 − �i), i = s + 1, s + 2, ...,m

(8)0 < 𝛾i < 1, i = 1, 2...,m

(9)xj ≥ 0, j = 1, 2..., n
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in a stochastic transportation problem/ transhipment problem, the coefficients aij are 
constants (±1) . These two-types of problems are also treated as special type of LPP. 
However, in the present model aij (i = 1, 2, ...,m; j = 1, 2, ..., n) are treated as non-
negative constants i.e., aij ≥ 0 (i = 1, 2, ...,m; j = 1, 2, ..., n) . If some of aij are nega-
tive, the linear constraints may not fulfil the requirements. This assumption has been 
made in all the three cases of the CCP model.

2.1.1 � Case I: When bi follows power function distribution

Power function distribution [2] is a popularly used random variable to estimate the 
reliability and hazard rates of a electrical component [22]. Let us consider that, 
bi (i = 1, 2, ...m) in the model (5)–(9) are independent random variables which fol-
lows power function distribution with positive scale parameter �i and positive shape 
parameter �i . The probability density function (pdf) of the i-th random variable 
bi (i = 1, 2, ...,m) is given by:

For �i = 1 , the distribution function of bi is illustrated by the Fig. 1. The mean and 
variance of bi (i = 1, 2, ...,m) are given by:

(10)f (bi) =

⎧
⎪⎨⎪⎩

𝛽ib
𝛽i−1

i

𝛼
𝛽i
i

, if 0 < bi < 𝛼i, 𝛽i > 0

0, otherwise

Fig. 1   Power function distribution with �
i
= 1, �

i
= 0.5, �

i
= 3
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respectively.
To establish the equivalent deterministic form of the model (5)–(9), we establish the 

deterministic form of the chance-constraints. From the chance-constraint (6) we have

Integrating above, we obtain,

Therefore, the equivalent deterministic form of the chance-constraints (6) is given 
by (13). Similarly, the deterministic form of the chance-constraints (7) is formulated 
as:

Hence, the equivalent deterministic form of the model (5)–(9) is given by:

subject to

(11)E(bi) =
�i�i

1 + �i
, i = 1, 2, ..,m

(12)Var(bi) =
�2

i
�i

(2 + �i)(1 + �i)
2
, i = 1, 2, ...,m,

Pr

�
n�
j=1

aijxj ≥ bi

�
≥ (1 − �i)

⇒ Pr

�
bi ≤

n�
j=1

aijxj

�
≥ (1 − �i)

⇒ �
∑n

j=1
aijxj

0

f (bi)dbi ≥ (1 − �i)

(13)
n∑
j=1

aijxj ≥ �i(1 − �i)
1

�i , i = 1, 2, ..., s

(14)
n∑
j=1

aijxj ≤ �i�

1

�i

i
, i = s + 1, s + 2, ...,m

(15)min ∶ Z =

n∑
j=1

cjxj

(16)
n∑
j=1

aijxj ≥ �i(1 − �i)
1

�i , i = 1, 2, ..., s

(17)
n∑
j=1

aijxj ≤ �i�

1

�i

i
, i = s + 1, s + 2, ...,m
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The above model is a linear programming model, using any linear programming 
technique or LP solver we can solve the problem to obtain the optimal solution.

2.1.2 � Case II: When bi follows triangular distribution

In some real-life situations, we can often estimate the maximum and the mini-
mum values, and the most likely outcome of an event. In these cases, we can rep-
resent the corresponding random variable as triangular random variable [3, 15].
The triangular distribution is popular for using in modeling estimation of some 
uncertain quantity in business risk models, oil and gas exploration, business deci-
sion making based on simulation of the outcome. The advantages of using tri-
angular distribution over Beta distribution have been discussed by [18]. Let us 
assume that, in the model (5)–(9), bi (i = 1, 2, ...m) are independent random vari-
ables which follow triangular distributions with parameters ti1 (minimum value), 
ti2 (most likely outcome) and ti3 (maximum value). The notation of triangular dis-
tribution is given by bi = (ti1, ti2, ti3) . Then the pdf of the random variable bi is 
given by:

The graphical representation of the random variable bi (with ti1 ≥ 0 ) is given by the 
Fig. 2. To establish the deterministic form of the chance constraints, we consider the 
Eq. (6). Then,

(18)0 < 𝛾i < 1, i = 1, 2...,m

(19)xj ≥ 0, j = 1, 2..., n

(20)f (bi) =

{ 2(bi−ti1)

(ti3−ti1)(ti2−ti1)
, if ti1 < bi < ti2

2(ti3−bi)

(ti3−ti1)(ti3−ti2)
, if ti2 ≤ bi < ti3

ti1 ti2 ti3 bi

f(bi)

Fig. 2   Triangular distribution
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Integrating above, we obtain,

Similarly, the equivalent deterministic form of the chance-constraint (78) is given 
by:

In chance-constraint programming, we take the least probability value of the con-
straint in the range [0.9,  1], usually. In that case, �i ∈ [0, 0.1] . In this situation, 
�i ≤ Pr(bi ≤ ti2) ≤ 1 − �i , hence 

1.	 Pr(
∑n

j=1
aijxj ≥ bi) ≥ 1 − �i ⇒

∑n

j=1
aijxj ≥ ti2

2.	 Pr(
∑n

j=1
aijxj ≤ bi) ≥ 1 − �i ⇒

∑n

j=1
aijxj ≤ ti2

This situation is described by the Fig. 3, where the total area shaded by red lines 
is (1 − �i) and the area shaded by blue lines is �i . Hence, in this case the equiva-
lent deterministic form of the chance-constraint (6) is given by the Eq. (22) and the 
equivalent deterministic form of the chance-constraint (78) is given by the Eq. (23).

Hence, the equivalent deterministic form of the model (1)–(9) is given as:

subject to

Pr

�
n�
j=1

aijxj ≥ bi

�
≥ (1 − �i)

⇒ Pr

�
bi ≤

n�
j=1

aijxj

�
≥ (1 − �i)

⇒ �
∑n

j=1
aijxj

0

f (bi)dbi ≥ (1 − �i)

(21)
n�
j=1

aijxj ≥ ti1 +
√
(1 − �i)(ti3 − ti1)(ti2 − ti1), when

n�
j=1

aijxj ≤ ti2

(22)
n�
j=1

aijxj ≥ ti3 −
√
�i(ti3 − ti1)(ti3 − ti2), when

n�
j=1

aijxj ≥ ti2

(23)
n�
j=1

aijxj ≤ ti1 +
√
�i(ti3 − ti1)(ti2 − ti1), when

n�
j=1

aijxj ≤ ti2

(24)
n�
j=1

aijxj ≤ ti3 −
√
(1 − �i)(ti3 − ti1)(ti3 − ti2), when

n�
j=1

aijxj ≥ ti2

(25)min ∶ Z =

n∑
j=1

cjxj
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The above model is a linear programming model, using any linear programming 
technique or LP solver we can solve the problem to obtain the optimal solution.

2.1.3 � Case III: When bi follows trapezoidal distribution

Trapezoidal distributions [10, 15] have been advocated in risk analysis problems by 
[24] and Powell et al. [25]. They have also found application as membership func-
tions in fuzzy set theory (see, e.g. Chen and Hwang) [9].

In this case, we assume that bi (i = 1, 2, ...m) in the model (5)–(9) are independent 
random variables following trapezoidal distribution with parameters ti1 (minimum 
value), ti4 (maximum value), and with two most likely values ti3 and ti4.The notation 
of trapezoidal distribution is given by bi = (ti1, ti2, ti3, ti4) The pdf of bi is given by:

where hi =
2

((ti4−ti1)+(ti3−ti2))
, i = 1, 2, ..,m.

The graphical representation of the trapezoidal distribution is given by the Fig. 4. 
To solve the problem (5)–(9), we establish the deterministic form of the problem 
by finding the deterministic form of the chance-constraints containing random vari-
ables. In this case, right hand side parameter of the chance-constraints follows trap-
ezoidal distribution. Then from chance-constraint (6), we have

(26)
n�
j=1

aijxj ≥ ti3 −
√
�i(ti3 − ti1)(ti3 − ti2), i = 1, 2, ..., s

(27)
n�
j=1

aijxj ≤ ti1 +
√
�i(ti3 − ti1)(ti2 − ti1), i = s + 1, s + 2, ...,m

(28)0 < 𝛾i < 1, i = 1, 2...,m

(29)xj ≥ 0, j = 1, 2..., n

(30)f (bi) =

⎧⎪⎨⎪⎩

hi
(bi−ti1)

(ti2−ti1)
, if ti1 ≤ bi ≤ ti2

hi, if ti2 ≤ bi ≤ ti3

hi
(ti4−bi)

(ti4−ti3)
, if ti3 ≤ bi ≤ ti4

Fig. 3   b
i
 Follows triangular distribution
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Integrating above, we obtain, when 
∑n

j=1
aijxj ≤ ti2

when ti2 ≤ ∑n

j=1
aijxj ≤ ti3

when ti3 ≤ ∑n

j=1
aijxj ≤ ti4

which represent the equivalent deterministic form of the chance-constraint (6).
Similarly, the equivalent deterministic form of the chance-constraint (78) is given 

by: when 
∑n

j=1
aijxj ≤ ti2

when ti2 ≤ ∑n

j=1
aijxj ≤ ti3

Pr

�
n�
j=1

aijxj ≥ bi

�
≥ (1 − �i)

⇒ Pr

�
bi ≤

n�
j=1

aijxj

�
≥ (1 − �i)

⇒ �
∑n

j=1
aijxj

ai

f (bi)dbi ≥ (1 − �i)

(31)
n∑
j=1

aijxj ≥ ti1 +

√
2(1 − �i)(ti2 − ti1)

hi

(32)
n∑
j=1

aijxj ≥ 1

2

(
ti1 + ti2 +

2(1 − �i)

hi

)

(33)
n∑
j=1

aijxj ≥ ti4 −

√
2�i(ti4 − ti3)

hi

(34)
n∑
j=1

aijxj ≤ ti1 +

√
2�i(ti2 − ti1)

hi

(35)
n∑
j=1

aijxj ≤ 1

2

(
ti1 + ti2 +

2�i

hi

)

Fig. 4   Trapezoidal distribution

ti1 ti2 ti3 ti4 bi

f(bi)
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when ti3 ≤ ∑n

j=1
aijxj ≤ ti4

Similar to the case for triangular distribution, for this case, we consider 
�i ≤ Pr(bi ≤ ti2) ≤ Pr(bi ≤ ti3) ≤ 1 − �i also. Then, we have 

1.	 Pr(
∑n

j=1
aijxj ≥ bi) ≥ 1 − �i ⇒

∑n

j=1
aijxj ≥ ti3

2.	 Pr(
∑n

j=1
aijxj ≤ bi) ≥ 1 − �i ⇒

∑n

j=1
aijxj ≤ ti2

This situation is described by the Fig. 5, where the total area shaded by red lines 
is (1 − �i) and the area shaded by blue lines is �i . Hence, in this case the equivalent 
deterministic form of the chance-constraint (6) is given by the Eq. (33). The equiva-
lent deterministic form of the chance-constraint (78) is given by the Eq. (34).

Hence, the equivalent deterministic form of the model (1)–(9) is given by:

subject to

where hi =
2

((ti4−ti1)+(ti3−ti2))
, i = 1, 2, ..,m. The above model is a linear programming 

model, using any linear programming technique or LP solver we can solve the prob-
lem to obtain the optimal solution.

(36)
n∑
j=1

aijxj ≤ ti4 −

√
2(1 − �i)(ti4 − ti3)

hi

(37)min ∶ Z =

n∑
j=1

cjxj

(38)
n∑
j=1

aijxj ≥ ti4 −

√
2�i(ti4 − ti3)

hi
, i = 1, 2, ..., s

(39)
n∑
j=1

aijxj ≤ ti1 +

√
2�i(ti2 − ti1)

hi
, i = s + 1, s + 2, ...,m

(40)0 < 𝛾i < 1, i = 1, 2...,m

(41)xj ≥ 0, j = 1, 2..., n

ti1 ti2 ti3 ti4

1− γi

γi

Fig. 5   First situation
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3 � Numerical examples and result discussion

In the following section, we present some numerical examples to illustrate the mod-
els and methodology described in the previous section.

Example 1  In this example, we consider a problem related to a transportation prob-
lem where demands and supplies follow independent triangular and trapezoidal dis-
tribution. We use our model and methodology to solve the problem.

The ABC Sawmill Company’s CEO asks to see next month’s log hauling sched-
ule to his three sawmills. He wants to make sure he keeps a steady, adequate flow 
of logs to his sawmills to capitalize on the good lumber market. Secondary, but still 
important to him, is to minimize the cost of transportation. The harvesting group 
plans to move to three new logging sites. The distance from each site to each saw-
mill is in Table 1. The average hauling cost is Rs. 20 per mile for both loaded and 
empty trucks. Hence, the transportation costs are given by the Table 2. The logging 
supervisor estimated the number of truckloads of logs coming off each harvest site 
weekly. The number of truckloads varies because terrain and cutting patterns are not 
unique for each site. The supply at the harvesting site and the demands at the mills 
are not unique for every week. From the past data, these values are considered as 
triangular distributions. The supply and demands are given by the Table 3. Supervi-
sor wants that, the supply from harvesting site 1 should meet at least 99% . Similarly, 
the supply from harvesting site 2 and harvesting site 3 should meet at least 98% and 
97% , respectively. On the other hand, weekly demand at Mill 1, Mill 2 and Mill 3 
should meet at least 96% , 95% , and 94% , respectively.

Table 1   Distances between 
logging sites and mills

Mill A Mill B Mill C

Logging site 1 6 8 10
Logging site 2 7 11 11
Logging site 2 4 5 12

Table 2   Round-trip 
transportation costs for ABC 
sawmill company

Mill A Mill B Mill C

Logging site 1 240 320 400
Logging site 2 280 440 440
Logging site 3 160 200 320

Table 3   Supply from the logging sites and demand at the mills

Supply (si = (si1, si2, si3)) Demand (dj = (dj1, dj2, dj3))

Logging site 1 (230, 250, 270) Mill 1 (180, 195, 210)
Logging site 2 (250, 265, 290) Mill 2 (80, 100, 120)
Logging site 3 (240, 260, 280) Mill 3 (180, 195, 220)
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We can formulate the problem as a chance constrained model where the hauling 
costs is minimized and meet each of the sawmills’ daily demand while not exceed-
ing the maximum number of truckloads from each site.

Let xij = Hauling costs from Site i to Mill j, i = 1, 2, 3 (logging sites), j = 1, 2, 3 
(sawmills)

The mathematical model of the problem is given by:

subject to

where, si, (i = 1, 2, 3) and di, (i = 1, 2, 3) are triangular random variables and 
given by the Table 3. From the given data, we have �1 = 0.01 , �2 = 0.02 , �3 = 0.03 , 
�4 = 0.04 , �5 = 0.05 , �6 = 0.06 . Now, using (25)–(29), the equivalent deterministic 
model of (42)–(49) can be formulated as follows:

subject to

(42)
min ∶ Z = 240x11 + 320x12 + 400x13

+ 280x21 + 440x22 + 440x23 + 160x31 + 200x32 + 480x33

(43)Pr(x11 + x12 + x13 ≤ s1) ≥ 0.99

(44)Pr(x21 + x22 + x23 ≤ s2) ≥ 0.98

(45)Pr(x31 + x32 + x33 ≤ s3) ≥ 0.97

(46)Pr(x11 + x21 + x31 ≥ d1) ≥ 0.96

(47)Pr(x12 + x22 + x32 ≥ d2) ≥ 0.95

(48)Pr(x13 + x23 + x33 ≥ d3) ≥ 0.94

(49)xij ∈ {0, 1, 2, ...}, i = 1, 2, 3; j = 1, 2..., n

(50)
min ∶ Z = 240x11 + 320x12 + 400x13

+ 280x21 + 440x22 + 440x23 + 160x31 + 200x32 + 480x33

(51)x11 + x12 + x13 ≤ 232.828

(52)x21 + x22 + x23 ≤ 253.464

(53)x31 + x32 + x33 ≤ 244.899

(54)x11 + x21 + x31 ≥ 205.757
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Using LINGO 11.0 [29], we obtain the optimal solution. Same result is obtained by 
using Matlab and Maple software also.The optimal hauling cost is Rs. 149,320 and 
the optimal solution is given by the Table 4.

bi Follows Trapezoidal Distribution Next, we consider the the above problem 
(Example 1), with the changes that supply parameters Si, (i = 1, 2, 3) and demand 
parameters dj, (j = 1, 2, 3) follow trapezoidal distribution. In this case, the supply 
and demand are given by the Table 5. Now, using (37)–(41), the equivalent deter-
ministic model of (42)–(49) can be formulated as follows:

subject to

(55)x12 + x22 + x32 ≥ 113.675

(56)x13 + x23 + x33 ≥ 212.254

(57)xij ∈ {0, 1, 2, ...}, i = 1, 2, 3; j = 1, 2, 3

(58)
min ∶ Z = 240x11 + 320x12 + 400x13

+ 280x21 + 440x22 + 440x23 + 160x31 + 200x32 + 480x33

(59)x11 + x12 + x13 ≤ 232.449

(60)x21 + x22 + x23 ≤ 253.464

(61)x31 + x32 + x33 ≤ 244.243

(62)x11 + x21 + x31 ≥ 206.838

Table 4   Optimal solution 
(triangular case)

Mill A Mill B Mill C

Logging site 1 19 0 213
Logging site 2 57 0 0
Logging site 3 130 114 0

Table 5   Supply from the logging sites and demand at the mills

Supply (si = (si1, si2, si3, si4)) Demand (dj = (dj1, dj2, dj3, dj4))

Logging site 1 (230, 240, 260, 270) Mill 1 (180, 185, 205, 210)
Logging site 2 (250, 260, 280, 290) Mill 2 (80, 90, 110, 120)
Logging site 3 (240, 250, 270, 280) Mill 3 (180, 190, 210, 220)
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Using LINGO 11.0, we obtain the optimal solution. Same result is obtained by using 
Matlab and Maple software also. The optimal hauling cost is Rs. 150,360 and the 
optimal solution is given by the Table 6.

From the optimal solution of the problem, we observe that the transportation 
cost is higher for the trapezoidal case (i.e. Rs. 150,360) than the triangular case 
(i.e. Rs. 149,320). But, for both the cases, the selected source and the destinations 
are same with variations in the values.

Example 2  In this example, we illustrate the methodology for power function distri-
bution. We consider the following transportation problem:

subject to

(63)x12 + x22 + x32 ≥ 114.523

(64)x13 + x23 + x33 ≥ 214

(65)xij ∈ {0, 1, 2, ...}, i = 1, 2, 3; j = 1, 2, 3

(66)
min ∶ Z = 240x11 + 320x12 + 400x13

+ 280x21 + 440x22 + 440x23 + 160x31 + 200x32 + 480x33

(67)Pr(x11 + x12 + x13 ≤ s1) ≥ 0.99

(68)Pr(x21 + x22 + x23 ≤ s2) ≥ 0.98

(69)Pr(x31 + x32 + x33 ≤ s3) ≥ 0.97

(70)Pr(x11 + x21 + x31 ≥ d1) ≥ 0.96

(71)Pr(x12 + x22 + x32 ≥ d2) ≥ 0.95

(72)Pr(x13 + x23 + x33 ≥ d3) ≥ 0.94

(73)xij ∈ {0, 1, 2, ...}, i = 1, 2, 3; j = 1, 2..., n

Table 6   Optimal solution Mill A Mill B Mill C

Logging site 1 18 0 214
Logging site 2 60 0 0
Logging site 3 129 115 0



1296	 OPSEARCH (2020) 57:1281–1298

1 3

where si, (i = 1, 2, 3) and di, (i = 1, 2, 3) are random variables and fol-
low power function distribution with known parameters. From the given 
data, we have �1 = 0.01 , �2 = 0.02 , �3 = 0.03 , �4 = 0.04 , �5 = 0.05 , 
�6 = 0.06 . The mean and variances of the random variables are given by: 
E(s1) = 150, E(s2) = 170, E(s3) = 260, E(d1) = 195, E(d2) = 100, E(d3) = 200   ; 
Var(s1) = 18, Var(s2) = 15, Var(s3) = 20, Var(d1) = 25, Var(d2) = 10, Var(d3) = 60.

Using Eqs. (11) and (12), the corresponding parameters are calculated as:

�1 = 154.3643 , �1 = 34.3694 (corresponding to s1)
�2 = 173.9622 , �2 = 42.9052 (corresponding to s2)
�3 = 264.5497 , �3 = 57.1463 (corresponding to s3)
�4 = 200.0656 , �4 = 38.0128 (corresponding to d1)
�5 = 103.2550 , �5 = 30.6385 (corresponding to d2)
�6 = 208.0517 , �6 = 24.8392 (corresponding to d3)

Following the model given by (15)–(29), the equivalent deterministic model of 
(66)–(73) can be formulated as:

subject to

The above deterministic model is solved by using LINGO 11.0 [29]. Same result is 
obtained by using Matlab and Maple software also. The obtained optimal solution is 
given by:

(74)
min ∶ Z = 240x11 + 320x12 + 400x13

+ 280x21 + 440x22 + 440x23 + 160x31 + 200x32 + 480x33

(75)x11 + x12 + x13 ≤ 135.007

(76)x21 + x22 + x23 ≤ 152.802

(77)x31 + x32 + x33 ≤ 248.805

(78)x11 + x21 + x31 ≥ 199.851

(79)x12 + x22 + x32 ≥ 103.082

(80)x13 + x23 + x33 ≥ 207.534

(81)xij ∈ {0, 1, 2, ...}, i = 1, 2, 3; j = 1, 2, 3

Z
∗ = 145640 at x∗

11
= 0, x∗

12
= 0, x∗

13
= 135, x∗

21
= 56, x∗

22
= 73,

x
∗
23

= 0, x∗
31

= 144, x∗
32

= 104, x∗
33

= 0.
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4 � Conclusions

In this paper, we consider a stochastic linear programming problem where some 
chance-constraints are involved. In these chance-constraints, the right hand side 
parameters are considered as random variables. By considering the fact that the 
random variables follows power function distribution or triangular distribution or 
trapezoidal distribution with known parameters, we establish the equivalent deter-
ministic form of the chance-constraints. Deterministic model for each case has 
been given and in each case equivalent deterministic models are all linear. It will 
be interesting to study the chance-constraint problem with technological coef-
ficients and cost coefficients as triangular and trapezoidal distribution. We can 
apply the result of this study in portfolio optimization. The study can be extended 
for nonlinear chance-constrained problem and in multi-objective framework.
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