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Abstract
This paper investigates the resource availability cost problem in a PERT-type net-
work, where both activities duration and resource requirement are considered as 
stochastic parameters. The problem has two objective functions in which the first 
one, namely the project’s makespan, is to minimize the project’s duration. However, 
the second one tries to minimize the total cost of resources. Since its NP-hardness 
is proven in a strong sense, four well-known evolutionary algorithms including 
strength pareto evolution algorithm II, non-dominated sorting genetic algorithm II, 
multi-objective particle swarm optimization, and pareto envelope-based selection 
algorithm II are proposed to solve the problem. Furthermore, to enhance the algo-
rithms’ performance, some efficient mutation and crossover operators, as well as two 
novel operators called local search and movement, are employed to solution struc-
ture for producing new generations. Also, in order to tackle uncertainty, Monte-carlo 
simulation is utilized. In order to tune the effective parameters, the Taguchi method 
is used. The performance of our proposed algorithms is evaluated by numerical test 
problems in different size which generated based on PSPLIB benchmark problems. 
Finally, to assess the relative performance of the four proposed algorithms, six well-
known performance criteria are employed. Using relative percentage deviation and 
TOPSIS approach, the performance of algorithms is elucidated.
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1 Introduction

In the early 1960s, the project scheduling problem is decided by the schedule of 
allocating resources in order to optimize an objective function. Since Blazewicz 
et  al. [6] proved that the NP-hardness of RCPSP, the problem has been widely 
studied. The decision variables for the RCPSP are the starting time of the activi-
ties while the objective is to minimize the completion time of the project. For 
a comprehensive survey on exact and heuristic procedures, which have been 
applied to solve the deterministic RCPSP refers to Icmeli et al. [26], Elmaghraby, 
[18], Herroelen et al. [24], Demeulemeester et al. [15] and Kolisch and Hartmann 
[32].

The resource availability cost problem (RACP) is an extended form of RCPSP, 
which introduced by Mohring as the resource investment problem [41]. solving 
the problem, he proposed an exact method. Besides, the author proved that the 
problem belongs to the NP-hard class of problems due to its complexity. The 
RACP consists of scheduling the activities subject to the total cost of the required 
resources is minimized. In RACP, both activities’ start time, and the resources’ 
capacity value are decision variables. Besides, precedence relations, as well as 
a fixed deadline, are imposed. It is also assumed that the resources (no matter if 
they are employed or not) are assigned to the project for the total project duration, 
and the unit cost of each resource is to be fixed independently of its period of 
availability.

Plenty of studies have been fulfilled in this topic. Rangaswamy [50] devel-
oped a branch-and-bound algorithm to solve the RACP. To validate the algo-
rithms, he solved a set of problems introduced by Demeulemeester [14]. Drexl 
and Kimms [16] presented two lower-bound approaches for the RACP. Rodrigues 
and Yamashita [52] introduced an exact algorithm. To study about the heuristic 
and meta-heuristic methods in detail, which have been applied to solve RACP, 
refers to Yamashita et  al. [63], Shadrokh and Kianfar [54], Ranjbar et  al. [51], 
and Van Peteghem and Vanhoucke [61]. Nadjafi [44] defined a multi-mode RACP 
with recruitment and release dates for resources. To solve the problem, he pro-
posed the simulated annealing algorithm. Finally, Arjmand and Najafi [1] pro-
posed meta-heuristic algorithms to solve a multi-mode RACP in the determined 
environment.

Compare to the vast literature on deterministic project scheduling problems, 
there are minimal works considering uncertainty in the scheduling problems. 
Nonetheless, the complexity of the real project has forced scholars to consider 
uncertainty in the problem. A good example of which is vagueness in activity 
durations. Because of the ambiguity in activity durations, uncertainty exists in 
a project scheduling problem. Initially, Freeman [20] presented probability the-
ory into project scheduling problem. A substantial issue in stochastic networks 
with non-deterministic activity duration is the total completion time of the pro-
ject [23]. To deal with stochastic networks, authors employed different methods, 
i.e., Martin [40] applied series–parallel reductions to analyze PERT networks. 
Charnes et al. [7] presented a chance-constrained programming (CCT) approach 
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to solve PERT-type problems. Fatemi Ghomi and Hashemin [19] generalized 
the Gaussian quadrature formula to compute F(T). Kulkarni and Adlakha [35] 
applied a continuous-time Markov process method to PERT-type networks con-
sidering exponentially distributed activity durations. Elmaghraby [17] calculated 
lower bounds for the expected project completion time. Besides, several authors 
have applied the Monte Carlo simulation (MCS) to estimate F(T) in PERT net-
works, e.g., Golenko-Ginzburg and Gonik [21] employed a heuristic method for 
the problem in which the duration of activities are random variables. Tsai and 
Gemmil [60] propose a tabu search that can be applied to the RCPSP whether it 
has stochastic or deterministic activity duration times. Möhring and Stork [42] 
presented linear preselective policies to minimize the makespan with non-deter-
ministic activity durations. Stork [55] compares four different scheduling poli-
cies to minimize the makespan in stochastic RCPSP. Ke and Liu [28] employed 
a genetic algorithm to solve the RCPSP with stochastic activity durations. Bara-
daran and Fatemi-Ghomi [2] introduced a hybrid heuristic rule to solve the prob-
lem. Later on, they presented a hybrid algorithm based on scatter search [3]. Fur-
thermore, they presented the multi-mode stochastic RCPSP in which each activity 
has several execution modes and solved it with the same method [4]. Mukherjee 
and Basu [43] developed a method for solving an internal PERT/CPM in AOA 
networks. This method involves tabular, which is more intelligible for both tech-
nical and non-technical persons. Yellapu and Penmestsa [64] presented a math-
ematical model for stochastic RACP where availability to resources is periodical 
and described by resource calendar. To solve the problem, they employed a heu-
ristic algorithm. Goto [22] developed a max-plus-linear (MPL) representation to 
model and analyze discrete-event systems. Ning et al. [45] considered multi-mode 
cash flow balanced project scheduling problem with stochastic activity durations. 
To solve the problem, two meta-heuristic algorithms, namely Tabu Search (TA) 
and Simulated Annealing (SA) were developed. Their objective was to minimize 
the contractor’s maximal cumulative gap between cash outflows and cash inflows. 
Khalilzadeh et  al. [27] presented a heuristic algorithm for project scheduling 
with fuzzy parameters. Chen et al. [8] studied the performance of 17 priority rule 
heuristics and the justification technique on stochastic project scheduling prob-
lems. The outcome proved that the best priority rules performed as well as best 
meta-heuristic when the variance of activity duration was medium and outper-
formed all algorithms when this variance was high. Finally, Creemers [12] stud-
ied preemptive stochastic project scheduling problem in which activity durations 
are exponentially distributed. The author developed a new Markov chain to find 
an optimal solution.

Another emerging research area in this field considers flexible networks for 
project scheduling problem, in which some of the activities of the project may 
not be implemented. Several authors did research considering various assump-
tions. Kellenbrink and Helber [29] presented RCPSP with the flexible project 
structure, in which the activities that must be scheduled are not totally known. 
They employed a genetic algorithm to solve the problem. Tao et al. [58] investi-
gated a project scheduling problem with hierarchical alternative methods regard-
ing uncertain activity durations. A meta-heuristic combining average sample 
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approximation with an artificial algae algorithm is developed to solve the prob-
lem. Experimental results showed that the proposed method outperformed GA. 
Tao and Dong [57] considered resource constraint project scheduling problem 
with alternative activity chain inspired form project scheduling practices. They 
designed an AND-OR project network representation for the problem. To solve 
the problem, an extended simulated annealing algorithm was proposed. Later on, 
They extended their research considering multi-mode activities for the project 
[59]. They employed hybrid meta-heuristic algorithms to resolve the issue.

Resource unavailabilities in project scheduling problem is another term in this 
regard. Lambrechts et  al. [36] defined uncertainty as stochastic resource avail-
ability. They presented two parameters to model resources’ breakdown: meantime 
of failure of resources, and mean time to repair resources. They aimed at gen-
erating a stable baseline schedule for the problem. Therefore, they presented a 
tabu search procedure operating on a surrogate, free slack-based objective func-
tion [37]. They continued their work on resource constraint project scheduling 
problem subject to resource unavailabilities [38]. In this paper, they determined 
the impact of unexpected resource breakdown on activity durations. Using this 
information, they developed an approach in order to insert exact idle time into the 
project schedule. Ma et  al. [39] introduced the best surrogate measures for two 
types of disruptions in project scheduling, i.e., resource availability disruptions 
and activity duration disruptions. To deal with the above disruptions, they pro-
posed a general framework of slack-based surrogate robustness measures.

More detailed about the differences and similarities between this paper and the 
mentioned paper regarding stochastic project scheduling can be found in Table 1.

To the best of our knowledge, all papers concerning project scheduling prob-
lem with stochastic activity duration times just resolved problems concentrating 
on optimizing completion time under resource or cost limits. In addition, there is 
a few research in the field of RACP, considering both stochastic activity durations 
and resource requirements, simultaneously. To bridge the gap, in this paper, a 
resource availability cost problem with two types of uncertain environments, i.e., 
stochastic resource availabilities and stochastic activity durations, are taken into 
account. Furthermore, the problem is assumed with two objective functions; the 
first one, namely makespan, which minimizes the project completion time, and 
the second one tries to reduce the total resource cost. In order to deal with the 
uncertainty, we used Monte Carlo simulation (MCS). To solve the problem, four 
well-known meta-heuristic algorithms, namely SPEA-II, NSGA-II, PESA-II, and 
MOPSO, are employed. To evaluate the performance of the algorithms, a set of 
90 problems are generated based on PSPLIB benchmark problems. Also, six per-
formance criteria are applied to illustrate the algorithms’ performance.

The remainder of the paper is set out as follows. Section  2 is started with 
the problem formulation consisting of a mathematical model and notations. In 
Sect.  3, the solution approaches and meta-heuristic algorithms applied in the 
PERT-type network are defined. In Sect.  4, computational results are treated. 
Finally, in Sect. 5, the conclusion is explained.
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2  Mathematical model descriptions

The resource availability cost problem (RACP) in a PERT-type network can be con-
cerned with n activities j = 1, 2, …, n, in which Nodes 1 and n, initial and terminal 
nodes respectively, are considered to be dummies. Consequently, the start and end 
nodes have zero duration and zero resource consumption. Activities are represented on 
activity on node (AON) network. In addition, both activities durations dj and resource 
requirements rjk, in which k = 1, 2, …,ρ, are independent continuous random numbers 
with given distribution functions. The precedence relations of activities are assumed 
to be finished to start with zero time lags. Moreover, each activity j has a set of prede-
cessor Pj and can be started when all of its predecessors are terminated. Each activity 
has one execution mode. Remark that each resource k has a fixed resource cost of Ck 
for each unit of available capacity. We have two objective functions. The first one is to 
schedule activities such that the completion time of the project is minimized; however, 
the second one is to minimize the total cost of the resource capacities considering prec-
edence and resource constraints. According to the objective functions, the problem has 
two decision variables. Including xjt and Rk. Let xjt = 1, if activity j is finished at time t 
and 0 otherwise. Furthermore, activity j can be finished at a time between the earliest 
finish time (EFj) and latest finish time (LFj) . The mathematical model is as follow:

S.T.

Where the decision variables are:

(1)MinZ1 = E

[
T∑

t=EFn

t.xnt

]

(2)MinZ2 = E

[
�∑

k=1

Ck.Rk

]

(3)
T∑

t=1

xjt = 1; j = 1,… , n, t = 1,… , T

(4)
T∑

t=EFi

(
t + di

)
⋅ xit ≤

T∑

t=EFj

t ⋅ xjt; j = 1,… , n, i ∈ pj

(5)
n−1∑

j=2

rjk

t+dj−1∑

q=t

xjq ≤ RK ; k = 1,… , �, t = 1,… , T

(6)xjt ∈ {0, 1}; j = 1,… , n, t = 1,… , T

(7)RK ≥ 0; K = 1,… , �
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The first objective function (1) represents the expected value of the project 
makespan. However, the second objective function (2) denotes the expected total 
cost of the resource capacities. Constraint (3) assures that each activity can only 
be finished in one time period. Constraints (4) and (5) illustrate the precedence 
and resource constraints, respectively. Finally, Constraints (6) and (7) determine 
that the decision variables are binary and positive integer variables, respectively.

3  Solution approaches

In this section, four well-known multi-objective algorithms, i.e., SPEA-II, 
PESA-II, NSGA-II, and MOPSO, which have been widely applied to many 
NP-hard problems, as well as employed operators are discussed in the ensuing 
sub-sections.

3.1  Common characteristics of algorithms

This section denotes common elements of our algorithms, including solution 
representation, generating a feasible solution, and applying our algorithms to the 
PERT network.

3.1.1  Solution representation

Designing a convenient solution representation is one of the key factors of the pro-
cess of solving any problem. Also, for each solution in the original space, there is 
a unique solution in the encoded space and each encoded solution pertains to one 
feasible solution in the original space [47]. According to the model, the solution 
representation for meta-heuristic algorithms consists of two parts: the first part is 
an activity sequence, which has been proposed by Kolisch and Hartmann [31] as an 
adequate representation, and the second part represents a list of available resource 
capacities. The chromosome structure for a solution I is demonstrated in Fig. 1.

xjt

{
1 if activity j is completed in time period t

0 otherwise

RK TheResource level for a resource type

Fig. 1  Chromosome structure
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3.1.2  Generating a feasible solution

Since Kelley [30] introduced a schedule generation scheme, several heuristic 
methods have been proposed [33]. The scheduling generation scheme constructed 
a feasible schedule by assigning the start times to the activities. There are two 
different schemes to decode the solution: the serial schedule generation scheme 
(SSGS) and the parallel schedule generation scheme (PSGS).

In the RCPSP cases, the set of schedules, which is generated through the 
SSGS or the PSGS, have different properties [34]. In this Paper, the serial-SGS is 
employed to decode a solution. SSGS includes several stages in which the activity 
with the highest priority is chosen and assigned the earliest possible starting time 
(ESS) if the activity does not violate both the precedence relation and resource 
level. In order to build a feasible capacity list, a number for each employed 
resource between a defined the lower and upper bound should be chosen. The 
lower and upper bound is calculated via Eqs. (8) and (9).

Each solution or individual of the MOEAs posses a fitness value. Owing to the 
fact that the problem has several constraints, a randomly generated solution might 
be infeasible. Note that an infeasible solution may either has an activity started 
before its predecessors that have been finished or the resource requirements in 
any time periods are greater than the maximum level. In this regard, the technique 
called Repair, which is explained later, is employed to resolve the issue.

3.1.3  Applying meta‑heuristic algorithms in PERT‑type network

The solution techniques, which are available for resource-constrained project 
scheduling with stochastic activity durations, are very restricted. Owing to com-
putational complexity in the uncertainty, optimal solution or heuristics for sched-
uling have been found useful for large-deterministic problems, and they are not 
appropriate. In this regard, various methods are developed. One of the renowned 
procedures, which are employed in the stochastic project scheduling environment, 
is Monte Carlo simulation (MCS). This method has become more practical when 
it is difficult or impossible to use mathematical methods. In this method, the ran-
dom numbers are generated as the activity completion time. Then, the time of 
the longest path is determined as the project completion time. This procedure is 
repeated for the number we want the network to be simulated [19].

(8)Rk = Max

{
n∑

i=1

rik ⋅ di

T
, max
i=1,…,n

{
rik
}
}

(9)Rk =

n∑

i=1

rik
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3.2  Strength pareto evolution algorithm (SPEA‑II)

SPEA-II is one of the efficient algorithms in the field of multi-objective optimi-
zation (MOO). This algorithm is based on the domination concept and forming a 
Pareto Front. SPEA-II is found by [66]. They tried to improve the performance of 
SPEA and overcome the potential weakness. The overall pseudo code of the SPEA-
II is explained in Fig. 2.

3.3  Non‑dominated sorting genetic algorithm (NSGA‑II)

Widely used in the literature, NSGA-II is considered as one of the well-known 
multi-objective evolutionary algorithms (MOEA’s), developed by [13]. Moreover, 
NSGA-II has ensured a high resolving capacity for multi-objective combinatorial 
optimization problems. The structure of NSGA-II is given in Fig. 3.

3.4  Multi‑objective particle swarm optimization (MOPSO)

MOPSO is inspired by the PSO algorithm to solve multi-objective problems. This 
method is motivated by the simulation of social behavior. In order to determine the 
movement, each individual utilizes two pieces of information. The first one is their 
own experience, i.e., they have tried the different alternatives and find out the best 
state so far. The second one is others’ experiences; that is, they have utilized other 
individuals’ information.Therefore, each individual makes his decision regarding 
both his own experiences and others’ experiences [10]. Figure 4 shows the pseudo-
code of the MOPSO algorithm.

Fig. 2  Pseudo code of the SPEA-II
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3.5  Pareto envelope based selection (PESA‑II)

PESA-II is one of the well-known algorithms in the multi-objective optimiza-
tion area. This algorithm uses a grid-based selection strategy instead of assigning 
a selective fitness to an individual. Using Deb’s test suite of ‘T’ functions with 
varying properties, the performance of this algorithm is proved [11]. The overall 
structure of the algorithm is depicted in Fig. 5.

Fig. 3  Pseudo code of the NSGA-II

Fig. 4  Pseudo code of the MOPSO
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3.6  Mutation

The mutation is an operator that only applied to the activity list. In this article, we 
defined three different operators that change the activities sequence order, but only 
one of them, which is selected randomly, will be applied to the chosen chromosome. 
It should be mentioned that capacity list for the new chromosome will be obtained 
through the selected member. An example of mutation operators is illustrated in 
Fig. 6. Also, the employed structure of the swap, insertion, and reversion operators 
are described, respectively.

3.6.1  Swap operator

In this operator, we initially choose two numbers, a and b, randomly from the inter-
val [2 n-1]. The numbers are selected activities. We consider the smaller number a. 
Note that the initial and terminal node cannot be selected. Let individual 

Fig. 5  Pseudo code of the PESA-II

Fig. 6  Mutation operator for activity list
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I =
((

jI
1
,… , jI

n

)
,
(
RI
1
,… ,RI

�

))
 be the selected chromosome for mutation. For 

 Oa < Ob, i.e., activity a precedes activity b, the activity list of I is replaced by (
jI
1
,… , jI

a−1
, jI
b
, jI
a+1

,… , jI
b−1

, jI
a
, jI
b+1

,… , jI
n

)
 . An example of a swap operator is shown 

in Fig. 6a. In this example, a and b are 4 and 3, respectively.

3.6.2  Insertion operator

Like Swap operator, Let a and b two randomly selected numbers from the 
interval [2 n-1]. The numbers are the selected activity and their new place, 
respectively. Therefore, let the activity list of the selected chromosome be (
jI
1
,… , jI

a−1
, jI
a
, jI
a+1

,… , jI
b−1

, jI
b
, jI
b+1

,… , jI
n

)
 . After applying insertion, activity list 

will be 
(
jI
1
,… , jI

a−1
, jI
a+1

,… , jI
b−1

, jI
a
, jI
b
, jI
b+1

,… , jI
n

)
 . Fig. 6b demonstrates an example 

in which a and b are 1 and 3, respectively.

3.6.3  Reversion operator

This operator will select two activities from the activity list and 
reverses the sequence of the activities between them. Let chromosome 
I =

(
jI
1
,… , jI

a−1
, jI
a
, jI
a+1

,… , jI
b−1

, jI
b
, jI
b+1

,… , jI
n

)
 as the selected member and a and b 

as the selected activities. After applying reversion, the obtained activity list will be 
Inew =

(
jI
1
,… , jI

a−1
, jI
b
, jI
b−1

,… , jI
a+1

, jI
a
, jI
b+1

,… , jI
n

)
 . In Fig. 6c, an example, consider-

ing a and b are 4 and 5, respectively, are shown.

3.7  Crossover

Crossover is also applied to the activity list. We employed two permutation-based 
crossover operators for the activity list of the chromosome. The first operator crosso-
ver, called one-point crossover, selects an integer number r randomly from the inter-
val [2 n-1]. Note that the initial and terminal nodes are dummy activities. Let 
P1 =

((
j1
1
,… , j1

n

)
,
(
R1
1
,… ,R1

�

))
 and P2 =

((
j2
1
,… , j2

n

)
,
(
R2
1
,… ,R2

�

))
 be selected 

parents. Two children C1 and C2 are defined through the crossover whose activity 
lists are C1 =

(
j
c1
1
,… , j

c1
r , j

c2
r+1

,… , j
c2
n

)
 and C2 =

(
j
c2
1
,… , j

c2
r , j

c1
r+1

,… , j
c1
n

)
 respec-

tively. 
(
j
c1
1
,… , j

c1
r

)
=
(
j1
1
,… , j1

r

)
 and 

(
j
c1
r+1

,… , j
c1
n

)
=
(
j2
r+1

,… , j2
n

)
 where 

j2
b
∉
{
j
c2
1
,… , j

c2
r

}
 Moreover, 

(
j
c2
1
,… , j

c2
r

)
=
(
j2
1
,… , j2

r

)
 and (

j
c2
r+1

,… , j
c2
n

)
=
(
j1
r+1

,… , j1
n

)
 where j1

b
∉
{
j
c1
1
,… , j

c1
r

}
 . Figure 7a shows an example 

of this operator.
The second crossover operator is a two-point crossover, in which two integer 

numbers, r1 and r2, r1 < r2 are generated from the interval [2 n−1], which is called 
cutting point. Two children called C1 and C2 are defined by this crossover. Their 
activity lists are C1 =

(
j
c1
1
,… , j

c1
r1
, j
c1
r+1

,… , j
c1
r2
, j
c1
r2+1

,… , j
c1
n

)
 and 

C2 =
(
j
c2
1
,… , j

c2
r1
, j
c2
r+1

,… , j
c2
r2
, j
c2
r2+1

,… , j
c2
n

)
 respectively. Thus, 

(
j
c1
1
,… , j

c1
r

)
=
(
j1
1
,… , j1

r

)
 and jc1a , a = r1 + 1,… , r2 is jb

2
 where b is the lowest 

index such that j2
b
∉
{
j
c1
1
,… , j

c1
a−1

}
 and jc1a , a = r2 + 1,… , n is jb

1
 where b is the 
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lowest index such that j1
b
∉
{
j
c1
1
,… , j

c1
a−1

}
 The definition of C2 is similar to C1. An 

example is illustrated in Fig. 7b.

3.8  Local search

This operator is exerted to the second part, namely the capacity list, of a chromo-
some. This operator consists of one-point and multi-point operators. Remark that 
one of the operators is selected randomly and employed. Figure 8 illustrates an 
example of both a one-point and multi-point local search.

Fig. 7  Crossover operator for activity list

Fig. 8  Local Search operator for a capacity list
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3.9  Movement

This operator is designed to minimize both objective functions simultaneously 
(Fig. 9). To do so, this operator alters both parts of the solution: activity list, and 
capacity list. Initially, a solution and resource type K are chosen randomly.

It is noticeable that by applying all the mentioned operators, to the chromosome, 
the solutions might be infeasible in terms of precedence constraints. Therefore, a 
function called repair function is used to make the chromosome feasible. To elu-
cidate the issue, an example is provided to show how this method works. Table 2 
illustrates the activities and their related prerequisite activities. Since the relation 
between activities in this paper is FS(0), an activity can only be started if all of its 

Fig. 9  Pseudo code of the movement

Table 2  Precedence relationship 
of example

Nodes Prereq-
uisite 
activities

1 []
2 1
3 1
4 1
5 2
6 [3,4]
7 [4,6]
8 [4,5]
9 [7,8]
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prerequisite activities have been fulfilled. Figure 10 clarifies the repair function by 
which a solution changed to a feasible one. Accordingly, the precedence relation-
ships of all the activities are monitored. If its prerequisite activities are not finished, 
the activity shifted to place forward and started at the earliest possible time. Con-
sidering Fig. 10, two activities that are not in the right place have been moved after 
their precedence activities. This function is applied to all newly generated solution 
before their evaluating its fitness. As a result, all the solutions generated will be 
feasible.

4  Computational experiments

In this section, the performance of the proposed four multi-objective algorithms, 
namely PESA-II, NSGA-II, and MOPSO, are compared. Note that the algorithms 
studied in this paper are coded using MATLAB 2014a.

4.1  The test problems

Since the presented mathematical model is a newly defined problem in some aspects, 
we redefine a set of 90 standard problems categorized into three different groups, 
small, medium, and hard, from PSPLIB. More details about the problems are pro-
vided in Table 3.

These standard test problems containing the activities and predecessor relations 
between the activities are chosen as our fundamental test problems. Also, some new 

Fig. 10  An example of a repair function

Table 3  Test problem classification

Problem 
groups

File name at PSPLIB # problems Size of the problems # non-dummy 
activities

# renewable 
resources

1 J1059.m 10 Small 10 2
2 J1062.m 10 Small 10 3
3 J1064.m 10 Small 10 4
4 J2059.m 10 Medium 20 2
5 J2060.m 10 Medium 20 3
6 J2064.m 10 Medium 20 4
7 J3045.m 10 Large 30 2
8 J3047.m 10 Large 30 3
9 J3048.m 10 Large 30 4
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data are required for our problems, according to its mathematical model, which are 
produced and described as below:

• The number of (non-dummy) activities in different groups is 10, 20, or 30.
• The activity duration is stochastic and is randomly produced by uniform U(1,10).
• Resource requirement rik is also considered as a stochastic parameter randomly 

produced by uniform U(1,10).
• The maximal number of predecessors and successors for each activity is equal to 

three.
• The network complexity (NC) coefficient is assumed to be three.
• Resource Factor (RF) is considered to be 1.5.
• The number of renewable resources considering different groups varies from 2 to 

4.
• The average cost of each resource level Ck is supposed to be equal.
• The number of initial and terminal activities is equal to three.

4.2  Comparison criteria for algorithms evaluation

In this paper, six comparison criteria are applied to evaluate the performance of the 
algorithms. For more information about criteria, refer to Table 4.

4.3  Parameters tuning

It is obvious that the various levels of the parameters affect the quality of the solu-
tions obtained by the hybrid algorithms. Thereby, selecting the best combination of 
parameters can augment the search process to find more suitable solution, and pre-
vent being trapped in a local optimum. There are many techniques for designing an 

Table 4  Performance criteria

Metris Criteria calculation Brief description

CPU-time (↓) – This criterion shows elapsed time
NPS (↑) – This criterion illustrates the number of 

solutions in pareto fronts
MID [49] (↓) MID =

∑n

i=1
ci

n

This criterion calculates total nearness 
of solutions from the ideal solution

Spacing
[53] (↓) S =

�
1

n−1
×

n∑

i=1

(di − d̄)2
is defined to measure the closeness of 

solution within Pareto Front

Diversity
[65] (↑) D =

�
M∑

m=1

�
maxi=1∶�Q� f

i
m
−mini=1∶�Q� f

i
m

�2
This measure defines the extension of 

solutions

Simultaneous 
Metrics (SM)

[48] (↓)

SM =
MID

D
This measure two well-known criteria 

at the same time
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experimental investigation. Although a full factorial experiment is most appropriate 
used method, the investigation becomes more complicated when the number of fac-
tors and their decided levels is significantly increased. To overcome this defect, frac-
tional factorial experiments are used to diminish the number of required tests [9].

In this regard, the Taguchi method is utilized to set the parameters of the pre-
sented algorithms. This method that is designed based on orthogonal arrays can be 
used efficiently as an alternative for the full factorial experimental design to investi-
gate a group of factors. These factors are divided into two groups: controllable noise 
factors and noise factors. The method initial goal is to select the best level of the fac-
tors such that the effect of controllable factors is maximized and the effect of noise 
factors is minimized [56]. Hence, a measure called signal to noise ratio (S/N) is 
employed to evaluate the algorithms’ performance. The value is calculated through 
Eq. (10):

where n and Y are the number of orthogonal arrays and the response value, respec-
tively. SM criterion is the most crucial criterion among the mentioned criteria due 
to the fact that it considers two critical criteria, MID and D, simultaneously, SM is 
applied for tuning the parameters. Consequently, the response factor is calculated 
through the Eq. (11);

where MID and D are considered to assess convergence and diversity, respectively. 
For each algorithm, three levels of parameters are shown in Table  5. Using the 
Minitab software, the orthogonal arrays are obtained.

As we mentioned before, we divide the test problems into small, medium, and 
large size problems. In this paper, the Taguchi method is applied to all scales for 
parameter tuning. To do so, for each category of problem, one problem is randomly 
selected. To yield more reliable results, each problem is tackled five times. The 
best result among the 5-time runs of each problem is considered the result of that 
problem.

Parameter tuning by the Taguchi method is explained in detail by representing 
the step by step results for small-size problems. The result for each level is repre-
sented in Figs. 11 and 12. Accordingly, the optimal levels of factors are represented 
in Table 6. The orthogonal arrays of these designs along with the all experimental 
results are represented in (“Appendix 1”). Furthermore, the delta value represented 
in Table  7, the Archive size has the most influence on the SPEA-II. P-movement 
and P-local search operators are the other practical factors on SPEA-II, respectively. 
Therefore, movement and local search operators have an impact on SPEA-II.

(10)S∕N Ratio = −10 log
1

n

(
S
(
Y2

))

(11)SM = MID∕D
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4.4  The computational results

In this section, the performance of the proposed algorithm is evaluated. Remark that 
the computational results are presented in (“Appendix 2”). Figure 13 illustrates Box-
Plots of each criterion, of the four presented algorithms. Furthermore, Fig. 14 shows 
the results of the problems for different criteria graphically. According to Figs. 13, 
and 14, in terms of some criteria, it is denoted that the SPEA-II has the best perfor-
mance; e.g., the obtained result of NPS criterion shows that SPEA-II outperforms 
other algorithms. Afterward, MOPSO, PESA-II, and NSGA-II are placed, respec-
tively. Moreover, in terms of CPU-time, the SPEA-II, and MOPSO has also obtained 
the best performance, respectively. However, the results of the PESA-II and NSGA-
II are slightly close. However, in terms of other criteria, the outcomes are very close. 

Table 5  Algorithm parameter 
ranges along with their levels

Alg. Parameters Symbol Parameter level

Level 1 Level 2 Level 3

SPEA-II Pop size A 40 45 50
Archive size B 25 30 35
P-crossover C 0.7 0.8 0.9
P-mutation D 0.1 0.2 0.3
P-local search E 0.4 0.5 0.6
P-movement F 0.4 0.5 0.6
Max iteration G 100 200 300

PESA-II Pop size A 40 45 50
Archive size B 25 30 35
P-crossover C 0.7 0.8 0.9
P-mutation D 0.1 0.2 0.3
Max iteration E 100 200 300
N-Grid F 5 8 10

NSGA-II Pop size A 25 30 35
P-crossover B 0.7 0.8 0.9
P-mutation C 0.1 0.2 0.3
Max iteration D 100 200 300

MOPSO C1 A 1 1.5 2
C2 B 1 1.5 2
W C 0.7 0.8 0.9
Pop size D 40 45 50
Rep size E 25 30 35
N-Grid F 5 8 10
Max iteration G 100 200 300
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Fig. 11  The S/N ratio plots for each level of the factors (small-size problem)

Fig. 12  The mean plots for each level of the factors (small-size problem)
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Table 6  Parameters setting values

Alg. Parameters Symbol Selected level

Small-size 
problems

Medium-size 
problems

Large-size 
problems

SPEA-II Pop size A 1 2 2
Archive size B 1 2 3
P-crossover C 2 2 3
P-mutation D 1 3 3
P-local search E 1 3 2
P-movement F 1 1 1
Max iteration G 1 1 1

PESA-II Pop size A 1 1 2
Archive size B 3 3 3
P-crossover C 1 1 2
P-mutation D 1 1 3
Max iteration E 1 2 2
N- Grid F 2 1 1

NSGA-II Pop size A 1 1 1
P-crossover B 1 3 2
P-mutation C 2 2 2
Max iteration D 1 1 1
P-local search E 2 1 1

MOPSO C1 A 1 1 1
C2 B 1 3 2
W C 1 2 1
Pop size D 3 2 2
Rep size E 3 3 3
N- Grid F 1 1 1
Max iteration G 1 1 1

Table 7  S/N ratio value for 
SPEA-II

Response Table for the signal to noise ratio (smaller is better)

Level A B C D E F G

1 1.640 1.617 1.650 1.630 1.632 1.622 1.638
2 1.657 1.675 1.645 1.655 1.642 1.666 1.647
3 1.650 1.655 1.652 1.661 1.673 1.658 1.662
Delta 0.017 0.058 0.007 0.031 0.042 0.044 0.025
Rank 6 1 7 4 3 2 5
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4.5  Sensitivity analysis

Since the results in some of the criteria are very close, and we cannot compare them, 
in this section, we use the Relative Percentage Deviation (RPD). In this method, the 
obtained results of these performance criteria for each problem are transformed to a 
Relative Percentage Deviation (RPD) that is calculated by Eq. (12):

where Algorithmsolution is the obtained value for each experiment by each perfor-
mance criteria, Bestsolution is the best value between the obtained values of four algo-
rithms. Then, the average of the RPD’s obtained for problems are calculated. The 

(12)RPD =
|||
|

Algorithmsolution − Bestsolution

Bestsolution

|||
|
× 100
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Fig. 13  Box-plot results for statistical comparison
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results are shown in Table 8. Remark that the less value shows the higher perfor-
mance. Also, the best result in each metric is bolded. Accordingly, SPEA-II has the 
best performance in NPS, MID, and CPU-time criteria. Furthermore, MOPSO has 
gain better results in D and SM criteria, and PESA-II is the best in terms of S crite-
rion. Remark that NSGA-II has obtained the worst results.

Fig. 14  A detailed comparison of criteria on different test problems

Table 8  Average RPD for criteria on test problems

Alg. NPS (%) MID (%) S (%) D (%) SM (%) CPU-time (%)

NSGA-II 31.92 2.87 66.92 6.44 6.41 266.94
PESA-II 17.39 1.85 21.54 8.27 7.42 285.68
MOPSO 6.94 3.73 61.25 2.20 2.46 91.00
SPEA-II 1.45 0.62 31.66 9.73 8.06 0.00
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4.6  TOPSIS approach

Since the algorithms’ results are close in some aspects, and each of the defined algo-
rithms has some advantages in some criteria rather than others, we cannot certainly 
determine which algorithm has the best performance. Hence, in order to investi-
gate the performance more comprehensively, a Multi-Attribute Decision Making 
(MADM) technique is employed. We apply a renown multi-attribute decision-mak-
ing method called TOPSIS (a technique for order performance by similarity to ideal 
solution), which was introduced by Hwang and Yoon [25]. This method can also be 
integrated with other approaches, e.g., AHP and Fuzzy techniques, to deal with vari-
ous decision-making problems [5, 46].

TOPSIS is a practical and useful technique for ranking alternatives. This method 
is derived from the Euclidean distance of each quality performance of the distance 
between the positive ideal solution and the negative ideal one. TOPSIS considers 
both positive and negative simultaneously to chose the most suitable alternative: the 
most preferred alternative should not only have the shortest distance from the posi-
tive ideal solution but also have the longest distance from the negative ideal solu-
tion. The final score is calculated according to the distance between the positive and 
negative ideal [62]. The overall process of the TOPSIS method to find the best pos-
sible solution is described in Fig. 15.

Fig. 15  Flow chart for the TOPSIS method



959

1 3

OPSEARCH (2020) 57:935–985 

To evaluate the algorithms’ performance more precisely, the final score for algo-
rithms are calculated. As it is obvious, the more (less) final score shows a better 
result. Figure 16 demonstrates the results graphically. Remark that, in Fig. 16, the 
problems are distinguished by their number of renewable resources and activities. 
Furthermore, Fig. 16a–c demonstrate the results from all problems with two, three, 
and four renewable resources, respectively, and Fig. 16d illustrates the final result, 
considering all test problems.

Accordingly, it is implied that the number of activities has no impact on the 
efficiency of SPEA-II, and SPEA-II has gained the best result in almost all modes. 
Meanwhile, MOPSO is sensitive to the number of activities and has obtained the 
most relevant result in all problems with 30 activities. Moreover, NSGA-II is 
sensitive to the number of resources. As a result, by increasing the number of 
resources, NSGA-II has a better performance. However, it is clear that by increas-
ing the number of activities, MOPSO has better performance. As a result, it has 
the best performance in problems with 30 activities.

In addition, the final result is demonstrated in Table 9. Accordingly, NSGA-II 
with 0.8975 values score has the worst result. In contrast, SPEA-II has gained a 
0.8157 value score and be in the first place. Moreover, after SPEA-II, MOPSO, 
and PESA-II with 0.4766 and 0.4353 value score are placed, respectively.

Fig. 16  TOPSIS results
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5  Conclusions and future research

In this paper, a bi-objective resource availability cost problem with stochastic activ-
ity durations and resource requirement are considered. Furthermore, in order to con-
sider uncertainty in the model, a PERT-type network, where activities require a ran-
dom amount of resources of various types with random duration, is considered. The 
problem has two objectives, in which the first one is to minimize the regular crite-
rion namely project’s makespan, and the second one is to minimize the total resource 
cost. Since the problem is NP-hard in the strong sense, meta-heuristic algorithms 
are presented. To do so, four meta-heuristic algorithms, namely SPEA-II, PESA-II, 
MOPSO, and NSGA-II, are employed to solve the problem. The parameters of these 
algorithms are tuned by the Taguchi method, and finally, six performance criteria 
are used to analyze the diversity and convergence of proposed algorithms. Results 
for project completion time are provided from Monte Carlo simulation (MCS) runs. 
The performance of the algorithms is tested on the redefined problem from PSPLIB, 
including different sizes. Moreover, to investigate the performance of the algorithms 
more comprehensively, a MADM technique called TOPSIS and RPD method are 
applied.

According to the obtained results, in terms of NPS and CPU-time criteria, SPEA-
II has acquired the best performance. Furthermore, Average RPD for criteria on all 
test problems has shown that PESA-II has relatively best performance considering 
S criterion with an average 21.54 percent deviation. Regarding D and SM criteria, 
MOPSO with average less deviation has represented the best performance. Consid-
ering Fig. 16d, it is noteworthy that MOPSO, in contrast to PESA-II, has shown bet-
ter performance by increasing the complexity of the problem. It is also proved that 
SPEA-II has the best performance in all types of problems. According to Table 7, it 
has been determined that movement and local search, after the archive size, have the 
most impact on the performance of the SPEA-II, respectively.

Some extensions of this research as a future study might be of interest. We 
can consider multiple execution modes for each activity, considering the required 
resource and activity duration. We can also consider preemption in the model. 
Finally, applying other solution approaches to this model would be proper research 
as a future study.

Table 9  TOPSIS final result Alg. Final score Rank

NSGA-II 0.0829 4
PESA-II 0.4353 3
MOPSO 0.4766 2
SPEA-II 0.8157 1
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Appendix 1: Tuning the algorithms’ parameters

See Tables 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21.

Table 10  Computational results 
to tune SPEA-II for small-size 
problem

A B C D E F G R1 R2 R3 R4 R5

1 1 1 1 1 1 1 1 1.507 1.624 1.492 1.518 1.605
2 1 1 1 1 2 2 2 1.774 1.584 1.750 1.693 1.661
3 1 1 1 1 3 3 3 1.868 1.696 1.938 1.975 1.773
4 1 2 2 2 1 1 1 1.645 1.714 1.700 1.684 1.798
5 1 2 2 2 2 2 2 1.679 1.682 1.729 1.698 1.709
6 1 2 2 2 3 3 3 1.698 1.699 1.680 1.702 1.739
7 1 3 3 3 1 1 1 1.617 1.700 1.701 1.699 1.712
8 1 3 3 3 2 2 2 1.698 1.720 1.700 1.688 1.682
9 1 3 3 3 3 3 3 1.698 1.698 1.685 1.698 1.698
10 2 1 2 3 1 2 3 1.946 1.659 1.727 1.796 1.966
11 2 1 2 3 2 3 1 1.632 1.677 1.812 1.946 1.746
12 2 1 2 3 3 1 2 1.959 1.613 1.925 1.677 1.608
13 2 2 3 1 1 2 3 1.700 1.698 1.694 1.698 1.832
14 2 2 3 1 2 3 1 1.743 1.710 1.635 1.700 1.708
15 2 2 3 1 3 1 2 1.709 1.681 1.699 1.698 1.671
16 2 3 1 2 1 2 3 1.659 1.670 1.700 1.698 1.700
17 2 3 1 2 2 3 1 1.700 1.701 1.702 1.677 1.702
18 2 3 1 2 3 1 2 1.679 1.699 1.682 1.698 1.699
19 3 1 3 2 1 3 2 1.777 1.838 1.845 2.009 1.550
20 3 1 3 2 2 1 3 1.776 1.804 2.099 2.054 1.669
21 3 1 3 2 3 2 1 2.030 1.811 1.735 1.661 1.800
22 3 2 1 3 1 3 2 1.671 1.676 1.701 1.688 1.693
23 3 2 1 3 2 1 3 1.698 1.713 1.697 1.707 1.706
24 3 2 1 3 3 2 1 1.699 1.702 1.705 1.705 1.700
25 3 3 2 1 1 3 2 1.698 1.698 1.764 1.703 1.701
26 3 3 2 1 2 1 3 1.681 1.521 1.700 1.689 1.702
27 3 3 2 1 3 2 1 1.712 1.680 1.703 1.702 1.681
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Table 11  Computational results 
to tune PESA-II for small-size 
problem

A B C D E F R1 R2 R3 R4 R5

1 1 1 1 1 1 1 4.028 4.105 5.094 3.441 3.460
2 1 1 1 1 2 2 2.592 3.794 3.678 2.444 2.946
3 1 1 1 1 3 3 2.879 2.294 1.932 1.939 2.100
4 1 2 2 2 1 1 1.958 1.470 1.520 1.409 1.554
5 1 2 2 2 2 2 1.360 1.416 2.227 1.447 1.693
6 1 2 2 2 3 3 2.754 2.120 3.071 2.141 2.194
7 1 3 3 3 1 1 1.674 1.317 1.472 1.231 1.285
8 1 3 3 3 2 2 2.289 2.125 1.872 1.936 3.103
9 1 3 3 3 3 3 1.775 1.306 1.350 2.074 1.489
10 2 1 2 3 1 2 3.140 1.829 1.871 2.134 2.680
11 2 1 2 3 2 3 3.238 4.989 5.569 3.315 3.176
12 2 1 2 3 3 1 7.892 5.783 7.789 7.451 5.253
13 2 2 3 1 1 2 1.449 1.592 1.609 1.574 1.270
14 2 2 3 1 2 3 1.478 1.529 1.991 1.881 1.690
15 2 2 3 1 3 1 3.482 1.989 2.041 2.656 2.331
16 2 3 1 2 1 2 1.760 1.297 1.162 1.370 1.234
17 2 3 1 2 2 3 2.486 1.714 1.706 2.693 2.593
18 2 3 1 2 3 1 1.538 1.593 1.818 2.086 1.610
19 3 1 3 2 1 3 6.391 7.429 8.457 9.508 7.399
20 3 1 3 2 2 1 4.054 3.424 5.780 4.225 6.876
21 3 1 3 2 3 2 9.166 8.504 7.164 8.750 4.087
22 3 2 1 3 1 3 1.722 1.721 1.576 2.871 1.535
23 3 2 1 3 2 1 1.949 1.774 1.569 1.407 1.615
24 3 2 1 3 3 2 4.358 5.225 3.197 3.652 5.614
25 3 3 2 1 1 3 2.438 1.802 2.323 2.263 1.787
26 3 3 2 1 2 1 1.805 1.812 2.089 2.679 1.824
27 3 3 2 1 3 2 1.634 1.281 1.594 1.966 1.772
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Table 12  Computational results 
to tune NSGA-II for small-size 
problem

A B C D E R1 R2 R3 R4 R5

1 1 1 1 1 1 1.495 1.988 1.956 2.211 2.090
2 1 1 1 1 2 2.045 1.732 1.687 1.423 1.433
3 1 1 1 1 3 1.846 1.436 2.028 1.638 1.954
4 1 2 2 2 1 1.709 1.578 2.643 1.880 1.651
5 1 2 2 2 2 1.565 2.656 1.772 1.974 1.482
6 1 2 2 2 3 1.440 1.899 1.833 1.413 1.972
7 1 3 3 3 1 1.579 1.650 2.518 2.660 1.641
8 1 3 3 3 2 1.786 1.803 2.232 2.404 1.508
9 1 3 3 3 3 1.620 1.722 1.646 1.592 2.378
10 2 1 2 3 1 1.570 1.984 1.652 2.326 1.913
11 2 1 2 3 2 2.745 2.101 2.675 1.752 1.577
12 2 1 2 3 3 2.530 1.658 1.529 1.514 1.520
13 2 2 3 1 1 1.685 1.653 2.672 1.571 2.391
14 2 2 3 1 2 1.453 1.713 1.683 1.531 1.794
15 2 2 3 1 3 1.622 2.244 1.560 1.800 1.804
16 2 3 1 2 1 1.575 1.644 1.786 2.035 1.585
17 2 3 1 2 2 1.580 1.950 1.573 1.724 1.635
18 2 3 1 2 3 1.504 1.521 1.652 1.936 1.782
19 3 1 3 2 1 1.893 1.979 1.442 1.478 1.628
20 3 1 3 2 2 1.559 1.809 2.379 1.825 1.541
21 3 1 3 2 3 1.601 2.878 1.528 2.329 2.278
22 3 2 1 3 1 1.784 1.571 1.838 1.985 1.691
23 3 2 1 3 2 1.942 1.828 1.536 1.569 2.042
24 3 2 1 3 3 1.967 1.688 1.860 1.736 1.524
25 3 3 2 1 1 2.123 1.684 1.916 1.561 1.867
26 3 3 2 1 2 1.515 1.741 1.460 1.441 1.550
27 3 3 2 1 3 1.983 2.454 1.482 1.889 1.703
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Table 13  Computational results 
to tune MOPSO for small-size 
problem

A B C D E F G R1 R2 R3 R4 R5

1 1 1 1 1 1 1 1 2.816 3.078 1.947 1.985 2.185
2 1 1 1 1 2 2 2 1.837 1.538 1.917 2.188 1.809
3 1 1 1 1 3 3 3 1.758 1.889 1.617 1.619 1.673
4 1 2 2 2 1 1 1 4.763 4.148 3.349 2.988 4.049
5 1 2 2 2 2 2 2 1.945 1.519 1.486 1.889 1.454
6 1 2 2 2 3 3 3 1.644 1.827 1.675 1.650 2.903
7 1 3 3 3 1 1 1 1.882 2.899 3.154 3.568 2.555
8 1 3 3 3 2 2 2 2.816 3.297 1.983 1.968 2.608
9 1 3 3 3 3 3 3 1.809 1.410 1.809 1.469 1.488
10 2 1 2 3 1 2 3 1.847 2.070 3.139 2.273 1.910
11 2 1 2 3 2 3 1 2.112 2.703 2.203 1.682 1.836
12 2 1 2 3 3 1 2 1.602 2.326 1.627 1.557 1.855
13 2 2 3 1 1 2 3 4.601 3.401 3.256 3.233 3.908
14 2 2 3 1 2 3 1 1.933 1.899 2.707 2.625 2.313
15 2 2 3 1 3 1 2 2.276 1.809 1.565 1.664 1.785
16 2 3 1 2 1 2 3 2.336 3.103 3.431 3.589 2.724
17 2 3 1 2 2 3 1 1.455 1.433 1.554 1.452 1.703
18 2 3 1 2 3 1 2 1.918 2.102 1.776 1.420 1.367
19 3 1 3 2 1 3 2 2.582 4.450 2.724 2.690 2.913
20 3 1 3 2 2 1 3 1.798 1.810 1.748 1.590 1.820
21 3 1 3 2 3 2 1 1.742 2.594 1.454 1.722 2.044
22 3 2 1 3 1 3 2 2.804 2.219 2.153 1.910 2.499
23 3 2 1 3 2 1 3 1.678 1.893 2.081 1.917 1.713
24 3 2 1 3 3 2 1 1.991 1.926 1.723 1.687 1.752
25 3 3 2 1 1 3 2 3.459 3.232 3.883 3.192 3.450
26 3 3 2 1 2 1 3 2.530 1.531 1.616 2.253 1.535
27 3 3 2 1 3 2 1 2.242 1.922 1.864 1.793 1.966
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Table 14  Computational results 
to tune SPEA-II for medium-
size problem

A B C D E F G R1 R2 R3 R4 R5

1 1 1 1 1 1 1 1 2.114 1.408 1.461 1.840 1.861
2 1 1 1 1 2 2 2 2.344 2.140 3.556 2.481 2.135
3 1 1 1 1 3 3 3 2.563 2.909 1.688 1.561 1.541
4 1 2 2 2 1 1 1 1.862 1.197 1.218 1.343 1.501
5 1 2 2 2 2 2 2 1.288 1.658 2.265 1.640 1.742
6 1 2 2 2 3 3 3 1.815 1.294 1.304 1.349 1.685
7 1 3 3 3 1 1 1 1.508 1.228 1.462 1.621 1.686
8 1 3 3 3 2 2 2 1.298 1.738 1.575 1.379 1.244
9 1 3 3 3 3 3 3 1.582 1.338 2.039 1.248 1.637
10 2 1 2 3 1 2 3 2.293 2.117 2.340 2.149 1.474
11 2 1 2 3 2 3 1 1.270 1.295 1.753 1.214 1.338
12 2 1 2 3 3 1 2 1.509 1.663 1.366 1.307 1.425
13 2 2 3 1 1 2 3 1.373 1.222 1.963 1.466 1.388
14 2 2 3 1 2 3 1 1.245 1.156 1.247 1.504 1.361
15 2 2 3 1 3 1 2 1.631 1.206 1.223 1.486 1.801
16 2 3 1 2 1 2 3 1.939 1.594 1.607 1.264 1.245
17 2 3 1 2 2 3 1 1.586 1.285 1.224 1.422 1.659
18 2 3 1 2 3 1 2 1.239 1.491 2.015 1.328 1.719
19 3 1 3 2 1 3 2 1.514 2.633 1.861 2.708 2.163
20 3 1 3 2 2 1 3 1.524 1.995 1.644 1.527 1.819
21 3 1 3 2 3 2 1 1.350 1.553 1.557 2.007 1.648
22 3 2 1 3 1 3 2 1.669 1.489 1.517 1.938 1.333
23 3 2 1 3 2 1 3 1.484 1.249 1.293 1.592 1.767
24 3 2 1 3 3 2 1 1.209 1.287 1.257 1.212 1.219
25 3 3 2 1 1 3 2 1.519 1.403 1.832 1.301 1.441
26 3 3 2 1 2 1 3 1.365 2.009 1.322 1.263 1.265
27 3 3 2 1 3 2 1 1.867 1.426 1.192 1.260 1.633
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Table 15  Computational results 
to tune PESA-II for medium-
size problem

A B C D E F R1 R2 R3 R4 R5

1 1 1 1 1 1 1 1.759 1.7192 1.735 1.721 1.801
2 1 1 1 1 2 2 1.539 1.4239 1.891 1.441 2.642
3 1 1 1 1 3 3 2.176 1.8677 1.922 2.624 3.032
4 1 2 2 2 1 1 1.296 1.414 1.298 1.717 1.996
5 1 2 2 2 2 2 1.587 2.390 1.696 1.982 1.775
6 1 2 2 2 3 3 1.766 1.212 1.659 1.612 1.938
7 1 3 3 3 1 1 1.713 2.483 1.347 1.373 1.551
8 1 3 3 3 2 2 1.406 1.436 1.520 2.635 1.758
9 1 3 3 3 3 3 1.622 1.456 1.644 1.243 1.240
10 2 1 2 3 1 2 2.899 4.124 2.796 3.029 2.662
11 2 1 2 3 2 3 2.429 2.917 1.917 2.539 2.483
12 2 1 2 3 3 1 1.962 1.602 2.588 1.639 1.620
13 2 2 3 1 1 2 1.481 1.159 1.280 1.121 1.748
14 2 2 3 1 2 3 1.200 1.156 1.326 1.348 1.742
15 2 2 3 1 3 1 1.718 1.929 1.677 1.695 2.590
16 2 3 1 2 1 2 1.453 1.444 1.352 1.728 1.375
17 2 3 1 2 2 3 1.390 1.248 1.129 2.023 1.201
18 2 3 1 2 3 1 1.434 1.320 1.137 1.278 1.131
19 3 1 3 2 1 3 10.12 10.494 10.60 7.760 6.769
20 3 1 3 2 2 1 2.112 2.257 2.303 2.514 2.318
21 3 1 3 2 3 2 4.912 4.510 5.884 5.380 5.722
22 3 2 1 3 1 3 1.679 1.654 1.560 2.799 1.576
23 3 2 1 3 2 1 1.669 2.020 1.643 2.153 2.393
24 3 2 1 3 3 2 1.359 1.861 1.450 1.627 1.788
25 3 3 2 1 1 3 1.287 1.312 1.197 1.172 1.294
26 3 3 2 1 2 1 2.232 1.499 1.956 1.479 1.480
27 3 3 2 1 3 2 1.472 1.523 1.474 1.394 1.805
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Table 16  Computational results 
to tune NSGA-II for medium-
size problem

A B C D E R1 R2 R3 R4 R5

1 1 1 1 1 1 1.110 1.055 1.071 1.223 1.069
2 1 1 1 1 2 1.222 1.448 1.102 1.615 1.103
3 1 1 1 1 3 1.122 1.124 1.488 1.343 1.535
4 1 2 2 2 1 1.525 2.088 1.472 1.172 1.122
5 1 2 2 2 2 1.912 1.216 1.179 1.078 1.179
6 1 2 2 2 3 1.151 1.811 1.271 1.209 1.690
7 1 3 3 3 1 1.983 1.134 1.246 1.472 1.406
8 1 3 3 3 2 1.721 1.995 1.500 1.699 1.116
9 1 3 3 3 3 1.106 1.559 1.106 1.735 1.953
10 2 1 2 3 1 1.798 1.762 1.108 1.370 1.322
11 2 1 2 3 2 1.134 1.535 1.235 1.351 1.188
12 2 1 2 3 3 1.768 1.129 1.891 1.866 1.128
13 2 2 3 1 1 1.232 1.613 1.128 1.174 1.460
14 2 2 3 1 2 1.301 1.374 1.126 1.527 1.490
15 2 2 3 1 3 2.013 1.075 1.792 1.119 1.225
16 2 3 1 2 1 1.127 1.692 1.686 1.197 1.182
17 2 3 1 2 2 1.106 1.491 1.241 1.165 1.109
18 2 3 1 2 3 1.245 1.687 1.167 1.118 1.759
19 3 1 3 2 1 1.165 1.835 1.193 2.139 1.540
20 3 1 3 2 2 1.444 1.202 1.772 1.180 1.212
21 3 1 3 2 3 1.405 1.271 1.144 1.144 1.744
22 3 2 1 3 1 1.661 1.231 1.556 1.136 1.781
23 3 2 1 3 2 1.313 1.404 1.218 1.140 1.581
24 3 2 1 3 3 1.985 1.257 1.104 1.171 1.453
25 3 3 2 1 1 1.257 1.042 1.076 1.305 1.183
26 3 3 2 1 2 1.365 1.252 2.000 1.269 1.113
27 3 3 2 1 3 1.126 1.168 1.401 1.101 1.104
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Table 17  Computational results 
to tune MOPSO for medium-
size problem

A B C D E F G R1 R2 R3 R4 R5

1 1 1 1 1 1 1 1 1.674 1.334 1.228 1.723 1.215
2 1 1 1 1 2 2 2 1.950 1.227 1.223 1.272 1.215
3 1 1 1 1 3 3 3 1.165 2.058 1.147 1.473 1.384
4 1 2 2 2 1 1 1 1.528 1.480 1.648 1.952 1.418
5 1 2 2 2 2 2 2 1.293 1.081 1.165 1.574 1.082
6 1 2 2 2 3 3 3 1.191 1.661 1.198 1.446 1.234
7 1 3 3 3 1 1 1 1.648 1.246 1.252 1.787 1.414
8 1 3 3 3 2 2 2 1.302 1.593 1.642 1.382 1.846
9 1 3 3 3 3 3 3 1.732 1.577 1.345 1.362 1.126
10 2 1 2 3 1 2 3 2.114 1.250 1.468 1.334 1.730
11 2 1 2 3 2 3 1 1.240 1.316 1.581 1.607 1.233
12 2 1 2 3 3 1 2 1.250 1.279 1.154 1.194 1.160
13 2 2 3 1 1 2 3 1.839 1.906 1.532 2.419 1.541
14 2 2 3 1 2 3 1 1.387 1.179 1.142 1.606 1.308
15 2 2 3 1 3 1 2 1.072 1.429 1.176 1.053 1.059
16 2 3 1 2 1 2 3 1.466 1.743 2.416 1.445 2.037
17 2 3 1 2 2 3 1 1.786 1.374 1.738 1.171 1.217
18 2 3 1 2 3 1 2 1.172 1.108 1.199 1.968 1.214
19 3 1 3 2 1 3 2 2.865 3.020 3.347 2.660 3.798
20 3 1 3 2 2 1 3 1.114 1.659 1.216 1.121 1.227
21 3 1 3 2 3 2 1 1.100 1.155 1.243 1.585 1.285
22 3 2 1 3 1 3 2 1.946 1.638 1.514 1.994 1.489
23 3 2 1 3 2 1 3 1.333 1.374 1.190 1.597 1.398
24 3 2 1 3 3 2 1 1.103 1.187 1.498 1.864 1.202
25 3 3 2 1 1 3 2 1.503 1.889 2.455 2.840 1.523
26 3 3 2 1 2 1 3 1.469 1.451 1.190 2.077 1.188
27 3 3 2 1 3 2 1 1.670 1.064 1.142 1.272 1.315
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Table 18  Computational results to tune SPEA-II for large-size problem

A B C D E F G R1 R2 R3 R4 R5

1 1 1 1 1 1 1 1 1.674 1.445 1.425 1.765 1.939
2 1 1 1 1 2 2 2 1.356 1.413 1.519 1.708 1.603
3 1 1 1 1 3 3 3 1.580 1.939 2.058 1.867 1.353
4 1 2 2 2 1 1 1 1.626 1.473 1.600 1.584 1.169
5 1 2 2 2 2 2 2 1.637 1.2703 1.856 1.880 1.521
6 1 2 2 2 3 3 3 2.011 1.4122 1.496 1.527 1.938
7 1 3 3 3 1 1 1 1.050 1.099 1.691 1.126 1.175
8 1 3 3 3 2 2 2 1.187 1.009 1.692 1.969 1.188
9 1 3 3 3 3 3 3 1.108 1.598 1.034 1.520 1.206
10 2 1 2 3 1 2 3 1.669 1.229 1.428 1.227 1.312
11 2 1 2 3 2 3 1 1.094 1.271 1.613 1.092 1.249
12 2 1 2 3 3 1 2 1.295 1.097 1.256 1.030 1.514
13 2 2 3 1 1 2 3 1.214 1.236 1.345 1.346 1.160
14 2 2 3 1 2 3 1 1.072 1.154 1.255 1.137 1.070
15 2 2 3 1 3 1 2 1.471 1.482 1.579 1.529 1.163
16 2 3 1 2 1 2 3 1.395 1.144 1.526 1.062 0.988
17 2 3 1 2 2 3 1 1.273 0.980 0.964 1.380 1.169
18 2 3 1 2 3 1 2 1.691 0.917 1.209 1.567 1.016
19 3 1 3 2 1 3 2 1.790 2.705 1.458 1.507 1.425
20 3 1 3 2 2 1 3 1.089 1.288 1.754 1.522 1.678
21 3 1 3 2 3 2 1 1.304 1.294 1.267 1.286 1.311
22 3 2 1 3 1 3 2 2.144 1.378 1.304 2.034 1.448
23 3 2 1 3 2 1 3 1.658 1.378 1.445 1.054 1.276
24 3 2 1 3 3 2 1 1.472 1.1552 1.388 1.423 1.165
25 3 3 2 1 1 3 2 1.126 1.250 1.235 1.060 1.328
26 3 3 2 1 2 1 3 1.169 1.370 1.342 1.280 1.620
27 3 3 2 1 3 2 1 0.958 1.058 1.380 1.313 1.191
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Table 19  Computational results 
to tune PESA-II for large-size 
problem

A B C D E F R1 R2 R3 R4 R5

1 1 1 1 1 1 1 2.163 1.872 1.812 2.661 1.762
2 1 1 1 1 2 2 1.213 1.776 1.113 1.344 1.109
3 1 1 1 1 3 3 1.548 1.309 1.425 1.948 1.217
4 1 2 2 2 1 1 0.996 1.073 1.753 1.622 0.983
5 1 2 2 2 2 2 0.909 1.195 0.912 1.262 1.230
6 1 2 2 2 3 3 1.231 1.133 1.356 1.325 1.290
7 1 3 3 3 1 1 0.918 1.184 1.776 1.034 0.933
8 1 3 3 3 2 2 0.889 0.965 0.854 0.857 0.947
9 1 3 3 3 3 3 1.115 1.192 1.114 1.411 0.921
10 2 1 2 3 1 2 1.108 1.829 1.240 1.168 1.080
11 2 1 2 3 2 3 1.596 1.718 1.599 1.373 2.036
12 2 1 2 3 3 1 0.925 0.913 0.913 1.249 1.242
13 2 2 3 1 1 2 1.137 0.993 1.288 1.290 1.701
14 2 2 3 1 2 3 1.293 1.238 1.031 1.021 1.142
15 2 2 3 1 3 1 1.246 1.744 0.959 1.261 1.546
16 2 3 1 2 1 2 0.913 1.018 1.133 1.069 0.931
17 2 3 1 2 2 3 1.011 1.117 1.378 1.148 0.989
18 2 3 1 2 3 1 0.986 1.166 1.283 0.997 0.951
19 3 1 3 2 1 3 2.235 2.826 2.721 2.193 3.375
20 3 1 3 2 2 1 1.516 1.933 1.229 1.371 1.170
21 3 1 3 2 3 2 4.222 5.191 4.533 4.597 3.764
22 3 2 1 3 1 3 1.705 1.020 1.079 1.110 1.066
23 3 2 1 3 2 1 1.205 1.712 1.577 1.641 1.649
24 3 2 1 3 3 2 0.996 1.244 0.960 1.164 1.087
25 3 3 2 1 1 3 1.023 1.310 1.737 1.003 1.151
26 3 3 2 1 2 1 0.972 1.296 1.064 1.732 0.928
27 3 3 2 1 3 2 1.427 0.996 1.067 0.897 1.108



971

1 3

OPSEARCH (2020) 57:935–985 

Table 20  Computational results 
to tune NSGA-II for large-size 
problem

A B C D E R1 R2 R3 R4 R5

1 1 1 1 1 1 0.950 0.834 0.918 0.817 0.857
2 1 1 1 1 2 0.878 0.816 0.891 1.343 0.881
3 1 1 1 1 3 1.115 1.209 0.910 0.880 0.843
4 1 2 2 2 1 0.787 1.356 0.806 0.972 0.988
5 1 2 2 2 2 1.300 0.832 1.180 1.366 0.988
6 1 2 2 2 3 1.128 0.916 0.997 0.810 1.122
7 1 3 3 3 1 0.813 1.364 0.938 0.818 1.089
8 1 3 3 3 2 0.985 0.941 1.554 0.851 1.053
9 1 3 3 3 3 1.025 0.906 0.858 1.078 0.893
10 2 1 2 3 1 0.827 1.451 1.246 1.062 0.814
11 2 1 2 3 2 0.859 0.881 0.911 0.804 1.214
12 2 1 2 3 3 0.870 1.014 0.864 1.491 1.243
13 2 2 3 1 1 0.965 0.994 1.250 1.423 0.840
14 2 2 3 1 2 1.178 1.265 0.855 0.816 1.071
15 2 2 3 1 3 0.881 1.072 0.841 1.119 1.026
16 2 3 1 2 1 0.840 1.035 1.167 0.967 1.106
17 2 3 1 2 2 0.956 0.817 1.169 1.358 0.983
18 2 3 1 2 3 1.033 0.857 0.848 0.832 1.157
19 3 1 3 2 1 0.839 1.287 0.879 0.920 0.874
20 3 1 3 2 2 1.099 1.229 0.856 0.977 1.159
21 3 1 3 2 3 0.830 0.840 1.211 0.859 0.825
22 3 2 1 3 1 0.909 0.837 1.000 0.924 0.845
23 3 2 1 3 2 0.841 0.912 1.333 1.018 0.841
24 3 2 1 3 3 1.064 1.385 1.000 0.832 1.268
25 3 3 2 1 1 1.021 1.125 0.880 0.852 0.909
26 3 3 2 1 2 0.930 0.912 0.927 0.927 0.809
27 3 3 2 1 3 1.116 0.797 1.100 1.288 1.251
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Appendix 2: Computational results for meta‑heuristic algorithms

See Tables 22, 23, 24 and 25.

Table 21  Computational results 
to tune MOPSO for large-size 
problem

A B C D E F G R1 R2 R3 R4 R5

1 1 1 1 1 1 1 1 1.464 1.896 1.386 1.306 1.395
2 1 1 1 1 2 2 2 1.681 1.503 1.357 1.210 1.236
3 1 1 1 1 3 3 3 2.275 1.567 1.249 2.008 1.226
4 1 2 2 2 1 1 1 1.369 1.280 1.613 1.937 1.497
5 1 2 2 2 2 2 2 1.224 1.229 1.239 1.749 1.283
6 1 2 2 2 3 3 3 1.338 1.214 1.744 1.180 1.297
7 1 3 3 3 1 1 1 1.273 1.393 1.449 1.573 1.850
8 1 3 3 3 2 2 2 1.421 2.169 1.316 1.239 2.046
9 1 3 3 3 3 3 3 1.354 1.290 1.227 1.931 1.821
10 2 1 2 3 1 2 3 2.382 2.279 2.230 2.019 1.617
11 2 1 2 3 2 3 1 1.813 1.259 1.928 1.756 1.218
12 2 1 2 3 3 1 2 2.004 1.576 1.132 1.657 1.343
13 2 2 3 1 1 2 3 1.606 2.039 1.648 2.538 1.789
14 2 2 3 1 2 3 1 1.214 1.111 1.351 1.419 1.190
15 2 2 3 1 3 1 2 1.957 1.158 1.758 1.335 1.477
16 2 3 1 2 1 2 3 1.358 1.397 1.567 1.321 1.386
17 2 3 1 2 2 3 1 1.756 1.580 1.648 1.483 1.280
18 2 3 1 2 3 1 2 1.965 1.219 1.261 1.529 1.529
19 3 1 3 2 1 3 2 2.828 1.587 1.733 1.963 2.487
20 3 1 3 2 2 1 3 1.526 1.218 1.531 1.372 1.867
21 3 1 3 2 3 2 1 1.095 1.754 1.194 1.164 1.177
22 3 2 1 3 1 3 2 1.977 1.312 1.336 1.677 1.318
23 3 2 1 3 2 1 3 1.233 1.266 1.663 1.763 1.253
24 3 2 1 3 3 2 1 1.331 1.353 1.400 1.205 1.343
25 3 3 2 1 1 3 2 2.678 2.238 1.633 1.850 2.234
26 3 3 2 1 2 1 3 2.264 1.295 1.258 1.250 1.276
27 3 3 2 1 3 2 1 1.360 1.326 1.360 1.187 1.165

Table 22  Computational result for NSGA-II

NPS MID S D SM CPU-time

1 13 47.1397726 1.15514457 30.4138127 1.54994618 404.3489
2 14 46.5531889 1.14757269 32.4228315 1.43581503 397.0284
3 13 44.6858388 0.87398293 27.1543735 1.64562216 409.4317
4 17 44.3317657 0.60863879 31.7672788 1.39551663 381.7427
5 14 41.9738496 1.04049861 28.4822752 1.47368317 381.5333
6 13 45.5707014 1.41738293 34.5114474 1.32045176 389.9926
7 14 41.8368186 0.47717115 31.4006369 1.33235573 394.3176
8 13 45.4065354 1.03923048 32.9660431 1.37737293 411.0373
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Table 22  (continued)

NPS MID S D SM CPU-time

9 13 49.1203646 1.66101606 35.3553391 1.38933372 406.3892
10 11 48.7703652 1.33811265 27.9885691 1.74251013 408.6667
11 18 72.8973812 1.5999183 64.899923 1.12322755 696.1833
12 17 70.3960096 1.19311752 54.7507078 1.28575524 689.1406
13 18 67.2382325 1.28276662 55.6366785 1.20852348 661.4166
14 16 71.8669353 1.8461672 58.5795186 1.226827 675.1025
15 17 70.9549977 1.92686121 60.5775536 1.17130841 720.5656
16 20 70.071016 0.9399888 54.9796326 1.27449044 717.5923
17 15 73.0580059 1.51695183 53.5350353 1.36467653 664.5466
18 19 73.0448098 1.18153434 53.5350353 1.36443003 651.9568
19 12 67.657309 1.63762578 42.9343685 1.575831 656.0386
20 16 68.0715497 1.53046834 65.4794624 1.03958626 650.2064
21 22 85.5844727 2.06378797 105.78204 0.8090643 1330.8438
22 17 99.261788 2.48876889 79.294136 1.25181751 1108.4926
23 17 92.8723042 0.96885317 72.7189109 1.27714102 1005.9143
24 16 92.6021098 1.83693585 87.5646047 1.05752901 999.5877
25 18 95.491341 2.58325427 85.2997069 1.11948029 922.791
26 18 96.4027623 1.04999222 77.5695817 1.2427908 1001.0809
27 19 96.0988283 1.55089109 73.7750635 1.30259228 958.3336
28 17 103.598463 2.8660282 97.0286556 1.06770997 1004.7133
29 20 93.6121928 1.9801648 80.7727677 1.15895735 1093.9078
30 17 92.320798 2.33990322 73.2273173 1.26074259 967.8371
31 21 60.4677456 1.20964379 42.2018957 1.4328206 435.3822
32 15 58.1854484 0.63079693 38.901928 1.49569575 401.2917
33 18 64.0299562 1.69951935 51.1601407 1.25155942 438.0152
34 17 58.5739585 1.34508911 40.174121 1.45800224 415.2276
35 19 62.7519031 0.95194476 50.7290844 1.23700051 422.2327
36 18 60.5144835 0.61484894 41.1052308 1.4721845 416.8058
37 20 60.6945383 0.89195232 50.8806447 1.19288069 396.8396
38 19 60.0498626 1.33456084 47.6629835 1.25988468 395.0797
39 19 61.0855837 1.31424939 49.6423207 1.23051427 414.7991
40 18 57.781136 1.14674874 47.8539445 1.20744772 384.4491
41 20 82.7788412 0.95509713 69.0344841 1.19909408 662.4643
42 17 85.3435522 0.93234366 71.1376131 1.19969659 707.0633
43 22 86.1738884 1.1483095 82.3660124 1.04623116 678.6003
44 22 93.7030719 1.4105355 90.2804519 1.03791098 719.3565
45 21 84.8868424 1.89784339 75.1664819 1.12931775 697.8747
46 19 81.7312804 1.45983256 82.3465846 0.99252787 695.0214
47 19 85.3236462 1.34015797 76.5404468 1.11475239 682.0479
48 22 87.5135909 2.52807611 93.8400767 0.93258226 733.8909
49 19 90.7119066 1.35370404 85.7055424 1.05841354 682.6297
50 16 79.5131544 2.62202212 62.5856214 1.27047 638.7042
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Table 22  (continued)

NPS MID S D SM CPU-time

51 19 115.819691 2.90297287 115.725365 1.00081509 933.6823
52 19 101.486267 1.6393195 109.726205 0.92490456 953.0442
53 21 109.115458 2.40158678 120.104788 0.90850215 967.9273
54 21 111.224499 2.13398799 107.389757 1.03570863 1034.5938
55 22 107.612987 1.92805669 105.321603 1.02175607 999.0513
56 22 109.436572 2.51946535 112.738458 0.97071198 968.0552
57 21 106.23281 2.67366344 110.897129 0.96575281 1010.9819
58 22 105.504872 2.07174352 104.847508 1.00626972 963.4064
59 18 113.882639 2.56711226 99.4693923 1.14490133 950.4535
60 20 108.271654 2.27160968 96.0866276 1.12681292 946.9389
61 17 69.2478202 0.9677141 42.3254061 1.63608165 405.0061
62 19 74.3631908 1.36094223 61.6574408 1.20607002 388.7741
63 18 71.4652213 1.5555929 62.2337529 1.1483354 363.6207
64 18 77.8979603 1.70864775 62.5542964 1.24528553 448.1217
65 18 72.2655991 1.51747985 54.0281408 1.3375548 406.0335
66 19 70.9955457 1.32329555 56.8369598 1.24910878 414.6287
67 21 70.3966444 0.83694456 53.9559079 1.30470688 421.5453
68 20 75.5779339 1.58539386 69.5402042 1.08682358 405.0503
69 22 72.8661413 0.91149466 53.0298029 1.37406019 441.3907
70 19 72.8539632 0.5467608 49.2913786 1.47802649 407.9489
71 18 93.7656905 1.00547521 77.5613306 1.20892318 688.5269
72 20 93.1837068 3.37005388 94.9092198 0.98181933 680.50007
73 21 103.345572 1.56372571 93.7360123 1.10251727 702.9857
74 19 102.589858 2.18115265 93.9795722 1.0916187 695.2888
75 20 102.673426 1.3105242 91.7014722 1.11964861 702.8019
76 19 98.0873783 1.31851414 85.5628424 1.14637821 693.5988
77 19 101.514088 1.3268703 79.6075373 1.27518187 714.0684
78 20 94.0399773 1.43152477 72.2775207 1.30109578 662.4655
79 20 95.6773009 1.07869317 77.498129 1.23457562 663.8926
80 19 94.6860621 2.05298243 78.249345 1.21005565 653.0656
81 22 120.66524 2.49761791 119.787979 1.00732344 975.9642
82 24 125.118734 2.58949942 138.657852 0.90235592 980.3482
83 24 132.832551 2.26491834 158.250561 0.83938123 986.1662
84 26 131.234808 2.06127668 142.330461 0.92204303 990.0802
85 21 125.603573 2.1627804 132.313869 0.94928501 993.3865
86 20 127.975749 3.35157465 110.272571 1.16054017 980.9684
87 20 120.66464 2.82812938 124.52309 0.96901418 948.9089
88 23 127.827031 2.0052106 137.148241 0.93203551 932.1596
89 23 129.445911 2.07975371 142.043514 0.91131166 975.2262
90 22 120.215464 2.22189031 120.531158 0.99738081 934.8399
Average 18.678 84.755 1.645 75.316 1.194 695.156
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Table 23  Computational result for PESA-II

NPS MID S D SM CPU-time

1 17 46.2698057 0.43639567 29.6984848 1.5579854 406.0273
2 19 46.1834017 0.69727959 31.8276609 1.45104605 412.659
3 16 43.9355437 0.50924781 25.7945731 1.70328633 398.7296
4 19 43.7818727 0.47041104 30.9864487 1.41293613 409.1372
5 16 41.9716088 0.32145503 27.6810404 1.51625835 387.2319
6 21 45.0858437 0.52517571 34.5114474 1.30640257 388.2439
7 19 40.7798261 0.50355462 29.8328678 1.36694288 391.9545
8 17 44.368793 0.90805221 32.9660431 1.3458938 421.2683
9 18 48.599952 1.4087495 35.3553391 1.37461422 435.3863
10 18 47.9740198 1.21008831 27.9885691 1.71405761 382.3779
11 21 72.6601356 0.90811159 62.4256358 1.16394707 713.7333
12 22 69.1902886 1.02615155 56.6127194 1.22216861 663.8644
13 21 66.764215 0.61690472 52.8393793 1.2635314 684.9124
14 24 71.5541353 0.90505825 57.6451212 1.24128693 664.2288
15 23 69.7407554 1.26453603 59.7414429 1.16737648 667.5721
16 19 70.2049691 0.94677044 54.5046787 1.28805399 718.8464
17 21 72.1141803 0.87998918 52.4785671 1.37416443 639.0639
18 21 70.2138496 0.66590433 52.6501662 1.33359217 634.8961
19 20 65.6409439 0.46724275 40.6649726 1.61418881 670.2005
20 23 67.0746197 0.96896506 64.3506022 1.04233088 639.9411
21 29 88.669748 1.80535602 102.342562 0.86640149 1246.1992
22 24 93.4927504 1.46851004 79.2933793 1.17907385 901.9445
23 22 93.0473478 1.45620036 72.5407472 1.28269078 853.4562
24 23 96.1832789 1.26628522 86.7640479 1.10856145 901.8319
25 24 97.1595563 1.81647054 83.5693724 1.16262159 918.5218
26 22 94.759046 1.10284952 75.6066135 1.25331689 908.1244
27 24 94.6240866 0.96413963 76.4222481 1.2381746 916.5098
28 22 105.970194 1.95831008 97.0286556 1.09215358 985.2157
29 24 92.778661 0.9895102 79.8764045 1.16152776 916.3508
30 19 95.5031521 2.00189968 73.5923909 1.29773134 900.379
31 19 60.0937133 1.19868349 42.2018957 1.42395768 407.7626
32 17 56.4009118 0.50278635 35.571899 1.58554683 396.3088
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Table 23  (continued)

NPS MID S D SM CPU-time

33 25 62.2233139 0.66206747 51.1601407 1.21624595 414.7023

34 19 58.0389241 1.08773062 40.174121 1.44468436 391.5689

35 23 62.1139035 0.90081211 49.1674689 1.26331302 412.679

36 21 59.9946615 0.41069048 40.3316253 1.48753394 410.5243

37 21 59.3438614 0.85940179 48.259714 1.22967702 393.7719

38 21 59.3968807 0.98927583 47.6629835 1.2461847 390.8066

39 24 60.0932839 0.74152213 49.5241355 1.21341409 411.5321

40 19 56.6401288 0.6680687 43.4165867 1.30457351 385.5541

41 20 81.2239629 1.16429333 68.8967343 1.17892326 1333.3063

42 21 84.5021358 1.05270626 68.8726361 1.22693337 985.6504

43 22 85.4659355 1.49845519 79.7568806 1.07158072 971.6923
44 25 90.7169138 1.47673062 88.391176 1.02631188 1166.7499
45 21 83.7930893 1.19427204 73.8704271 1.13432523 1179.3059
46 22 79.2681778 1.12638563 75.3721434 1.05169064 697.7265
47 21 83.4234039 1.14953407 75.9041501 1.09906249 1763.2838
48 23 87.8347139 1.23803363 93.5694395 0.93871155 1677.4041
49 22 91.2229532 1.71582903 83.738641 1.08937704 841.3523
50 24 80.9203292 1.25230223 62.4374887 1.29602152 999.2546
51 25 115.96777 1.7218401 104.618545 1.10848196 958.3031
52 27 100.284664 1.9533593 109.935618 0.91221267 899.2519
53 25 108.864057 2.38103619 116.720007 0.93269406 894.9629
54 23 108.967093 1.2657857 106.001132 1.02798047 987.6576
55 26 105.331474 1.72849423 105.304511 1.00025605 983.5607
56 28 111.577453 1.52880629 110.171503 1.01276147 967.1907
57 26 107.101322 1.18513875 108.064055 0.99109109 973.3899
58 24 106.467204 1.427829 102.727796 1.03640114 915.1254
59 24 113.931788 1.51958232 98.0051019 1.16250874 939.2668
60 26 104.655286 1.31976688 96.0866276 1.08917639 880.7009
61 21 71.1871774 0.93990881 48.335908 1.4727597 398.1095
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Table 23  (continued)

NPS MID S D SM CPU-time

62 22 69.4314409 1.16760012 55.3772516 1.25378994 384.9892
63 25 69.8640444 1.06580173 51.9234051 1.34552124 391.4617
64 23 76.3089709 1.29748921 64.4127317 1.1846877 415.3885
65 21 70.8058727 0.97414187 51.3813196 1.37804699 401.7340
66 20 70.5037648 0.90565475 53.4269595 1.31962899 408.9691
67 21 69.0724372 0.93253367 52.2612667 1.32167553 418.9994
68 24 74.0236898 1.11335763 61.358292 1.20641705 399.6253
69 23 71.6670996 0.82125904 51.3824873 1.39477677 406.5263
70 29 66.7932027 0.7338407 49.1011202 1.36031933 409.9435
71 23 91.7796345 1.06752271 72.427619 1.2671911 638.0336
72 24 95.6457181 1.58831786 95.131488 1.00540547 668.6071
73 26 101.008215 1.09505181 87.6926451 1.15184363 664.0481
74 26 99.8748489 1.30263638 88.0009091 1.13492974 657.4868
75 24 101.872887 1.37829973 91.2175422 1.11681245 649.1887
76 21 96.6816313 1.5655822 86.0009302 1.12419285 688.4834

77 21 99.2324103 1.48311127 78.4948406 1.26419023 708.8898

78 24 93.3707034 1.21094047 71.5614421 1.30476274 662.6285

79 23 94.2379752 1.20171156 73.830617 1.2764078 657.4473

80 25 102.368686 1.8521339 105.550936 0.96985105 711.6483

81 25 121.320452 2.01988449 118.249905 1.02596659 912.8097

82 25 123.200852 2.56872212 128.29279 0.96031002 916.9095

83 27 131.576697 2.9035002 156.984076 0.83815315 959.221

84 25 131.282616 1.81901072 136.080711 0.96474081 937.7472

85 25 121.518148 2.99435024 128.088095 0.94870759 959.8625
86 25 126.361489 1.36154324 106.566224 1.18575553 980.3902
87 26 119.611587 1.88607855 123.239604 0.97056127 907.5629
88 27 127.347931 1.88017093 133.206606 0.95601813 929.685
89 25 129.186669 2.66852019 137.153345 0.94191409 987.1512
90 25 125.347579 2.75095135 139.517024 0.89843931 1063.8213
Average 22.589 84.052 1.266 73.997 1.205 727.850
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Table 24  Computational result for MOPSO

NPS MID S D SM CPU-time

1 19 47.2107897 0.79970755 31.689746 1.48978126 145.66547
2 20 47.1284923 0.51524138 33.8354843 1.39287181 136.8452
3 16 44.6985034 0.3732738 28.5895086 1.56345826 139.8835
4 18 44.3615237 0.65698857 28.5895086 1.55167143 142.2329
5 16 42.686323 0.80145701 30.120425 1.4171886 127.9942
6 19 45.9763095 0.67121257 36.0693776 1.27466324 136.0378
7 19 41.7532943 0.50215908 31.4006369 1.32969578 131.5177
8 19 45.5088274 0.57236556 33.7010386 1.35036869 142.6247
9 17 49.4571082 1.70051895 36.4878062 1.35544209 141.3721
10 17 48.4487608 0.58158 28.8506499 1.6792953 131.0916
11 27 73.5991631 1.41962236 68.6002915 1.07286954 482.5437
12 26 71.7070074 1.02719933 59.4763819 1.20563836 834.5827
13 24 67.820667 1.40072445 60.4470016 1.12198563 878.4093
14 27 73.1875309 0.81243891 64.2435989 1.13921904 715.8227
15 25 70.8194416 1.15836091 60.9133811 1.16262536 320.2755
16 25 70.5733818 1.52385476 60.3075451 1.17022475 289.4074
17 23 74.6473029 0.67601483 55.7584074 1.33876318 303.734
18 24 71.9219682 1.40227558 57.2646488 1.25595755 508.1873
19 23 66.9349379 0.87010063 47.848093 1.39890503 778.8503
20 28 70.8099069 1.45605832 79.3987405 0.89182658 526.6253
21 28 88.1762886 1.27208532 86.3733755 1.02087348 705.6707
22 26 97.6535316 1.59163196 86.5390085 1.12843368 546.3543
23 26 93.0589351 1.17444586 77.0633506 1.20756409 515.0402
24 28 95.6772963 1.94954886 91.7877988 1.04237489 521.0693
25 27 100.525614 1.1469767 88.8686671 1.1311705 549.4704
26 27 96.6220411 1.5358211 83.3088231 1.15980562 551.9013
27 25 97.0208513 0.75643903 79.2487224 1.22425761 537.6956
28 28 103.590094 2.0187219 104.115513 0.9949535 510.6354
29 29 94.9201121 1.55629977 92.4400346 1.02682904 514.8878
30 25 96.6080744 1.85098172 83.8250559 1.15249639 513.7072
31 22 60.354482 0.7066781 39.0824769 1.54428498 143.6008
32 23 57.525495 0.56791693 40.511233 1.41998875 140.1819
33 23 62.9250832 0.77209228 48.9608006 1.28521353 147.469
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Table 24  (continued)

NPS MID S D SM CPU-time

34 20 58.5542033 0.81602374 39.0082043 1.50107405 129.691
35 25 62.031124 0.73084426 48.2700735 1.28508451 141.4495
36 24 62.9362608 1.13169105 52.1724065 1.20631316 148.1504
37 27 58.9823174 1.88955745 53.5421329 1.10160567 129.1143
38 22 60.2504445 0.63135942 43.6022935 1.38181824 141.425
39 24 60.1387306 1.5582413 51.7304552 1.16254014 140.0592
40 21 55.5816264 2.65923369 48.2103723 1.15289768 128.146
41 26 85.6219223 1.32046612 79.1760065 1.08141249 330.6834
42 29 85.8713147 1.19357888 76.5665723 1.12152486 301.2688
43 29 91.2944675 1.27677241 103.070073 0.88575146 309.702
44 28 95.386611 3.08745542 100.396016 0.95010355 302.9874
45 29 86.3417094 1.10011195 84.0061902 1.02780175 303.9911
46 30 80.768561 1.51470949 82.3150047 0.98121310 281.5435
47 28 85.4029025 1.7907168 77.776346 1.09805753 329.1288
48 29 91.2742067 1.58651957 104.478897 0.87361380 302.8387
49 29 91.0936728 2.84761589 93.1652296 0.97776470 310.932
50 26 82.3971688 1.09684863 68.270345 1.20692475 322.4328
51 29 111.212506 1.80915842 113.856225 0.97678025 529.3281
52 29 100.411811 2.06872084 116.578557 0.86132316 522.6306
53 29 108.74034 1.06118254 106.001132 1.02584137 494.9708
54 30 113.418832 1.33817512 114.049288 0.99447208 570.5058
55 26 110.590869 2.83173228 123.223374 0.89748288 552.6276
56 27 112.623416 2.06719045 121.928504 0.92368407 539.061
57 30 109.133306 3.11879729 117.443603 0.92924019 510.8029
58 30 109.784166 1.649298 116.928867 0.93889703 536.2339
59 28 116.025448 2.03144591 105.13401 1.10359576 530.875
60 29 110.975835 1.87326274 106.396689 1.04694184 498.7081
61 27 75.9742604 0.6704168 59.9286242 1.26774578 135.7040
62 24 68.73086 1.18143857 49.0505861 1.40122403 130.6302
63 27 70.4639347 2.74252156 60.2756999 1.16902723 129.4805
64 20 71.7953221 1.81357455 51.3813196 1.39730397 147.7210
65 23 73.1117685 2.07984873 58.3177503 1.25367951 134.0006
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Table 24  (continued)

NPS MID S D SM CPU-time

66 24 69.9830486 1.96944044 60.1295269 1.16387162 410.7584
67 23 69.2060001 1.52991255 48.5732437 1.42477617 359.4070
68 24 72.885556 1.81287665 63.8087768 1.14224970 379.9615
69 23 71.047282 1.94112962 49.6080639 1.43217204 355.2310
70 24 71.390226 1.33953269 44.7320914 1.59595101 385.4683
71 27 96.8352539 3.38645702 95.4670624 1.01433156 297.7737
72 29 97.325186 1.56507448 97.3120753 1.00013473 282.2374
73 26 107.546795 2.06607767 108.226614 0.99371856 301.1156
74 28 102.015209 1.90212913 86.2786184 1.18239271 322.71373
75 29 105.444654 2.06605214 101.212647 1.04181302 331.2807
76 30 100.03617 1.26868563 90.1441069 1.10973611 306.2976
77 29 100.794657 3.74699223 89.3756119 1.12776466 323.9188
78 29 97.3267348 4.34843837 98.2637268 0.99046452 291.6533
79 28 98.7343301 1.51671463 82.6145266 1.19512069 315.9374
80 29 103.892955 1.22556913 92.9191046 1.11810112 324.9288
81 29 123.926468 3.55172892 142.249645 0.87119003 506.7652
82 30 123.69209 1.81173696 134.380058 0.92046463 518.1973
83 30 128.14392 2.65454717 145.041925 0.88349572 545.4812
84 28 131.352243 3.25997046 132.280006 0.99298637 568.7789
85 28 126.927491 2.71008307 140.563011 0.90299354 560.0773
86 30 128.435177 1.2945154 119.200839 1.07746873 530.7032
87 28 121.702129 2.12291603 116.283963 1.04659427 542.7187
88 29 129.460824 2.12746525 139.248555 0.92971036 529.8913
89 29 131.725787 2.68198698 143.401534 0.91858004 565.0641
90 30 124.151312 2.84746308 137.887635 0.90038031 554.0897
Average 25.733 85.609 1.635 79.124 1.152 370.430
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Table 25  Computational result for SPEA-II

NPS MID S D SM CPU-time

1 19 45.8196092 0.65257027 29.6984848 1.54282649 111.686
2 19 46.1038027 1.07066138 31.8276609 1.44854511 107.9909
3 18 43.8531578 0.54616907 25.7945731 1.70009241 105.9649
4 23 43.8539851 0.28727973 30.9864487 1.41526335 112.9407
5 17 41.8713699 0.64431907 27.9256155 1.49938933 110.9128
6 22 45.3297431 0.43444745 34.884322 1.30257882 110.3131
7 16 41.0320875 0.54680892 28.6803068 1.43067115 104.573
8 17 44.7477963 0.9087807 32.9660431 1.35739058 110.7285
9 17 48.7841204 1.52850369 35.3553391 1.37982329 114.4998
10 16 48.0838218 1.23382873 27.9885691 1.71798071 110.001
11 28 69.4455447 1.21267556 59.5116795 1.16692295 185.9419
12 26 69.087195 0.95743246 55.7584074 1.23904534 183.1662
13 25 65.1640361 1.14376571 53.0135832 1.22919509 175.8171
14 30 70.3001797 1.04399762 60.7170487 1.15783262 182.6557
15 27 68.7360636 1.28146995 61.7562952 1.11302116 185.7314
16 27 68.2450069 0.97361195 54.5046787 1.25209447 184.5096
17 25 71.15649 1.02368615 53.6809091 1.32554555 177.1059
18 27 69.143808 0.92785326 52.6501662 1.31326856 172.1769
19 24 65.0515052 0.67801928 42.8886931 1.51675186 177.4057
20 30 66.6622409 0.97443175 65.3587026 1.01994437 171.038
21 30 88.6049831 1.49078395 102.083299 0.86796747 337.3966
22 26 92.0240535 1.89486756 79.8521133 1.15243103 268.697
23 30 89.459707 1.21060448 73.6114122 1.21529671 247.376
24 30 94.1057577 1.66486339 87.7437177 1.07250707 259.3033
25 29 94.3153218 1.53834407 87.2900911 1.08048142 263.7475
26 27 93.270563 1.46262068 79.7481034 1.16956465 262.8124
27 30 91.6872375 1.31197841 73.2273173 1.25209062 253.3518
28 29 101.09627 1.65859457 91.9193124 1.0998371 268.857
29 30 89.2111615 1.48240252 85.3531487 1.04520059 255.6408
30 27 91.1942278 1.80066464 77.6309217 1.17471525 249.7666
31 26 59.621649 1.02660006 42.2018957 1.41277182 112.0819
32 19 56.2065457 1.38412047 35.571899 1.5800828 110.9581
33 26 62.3879428 1.04029582 51.1601407 1.21946386 117.6835
34 23 58.4904442 1.06959414 41.0238955 1.42576524 110.9026
35 24 63.0999088 0.94508645 49.1674689 1.28336703 115.2032
36 26 60.3006636 0.62264943 40.3316253 1.49512109 115.2988
37 24 60.1259726 0.79052358 50.8806447 1.18170619 110.5635
38 29 60.0917305 0.606695 47.6629835 1.26076309 109.2707
39 27 60.0469936 0.64162365 48.8401474 1.22945971 113.3477
40 26 56.6188544 0.64925993 43.4165867 1.3040835 114.1766
41 30 81.5640106 1.68689336 74.8227238 1.09009678 192.9555
42 29 83.1205462 1.55305198 72.4985517 1.1465132 184.7751
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Table 25  (continued)

NPS MID S D SM CPU-time

43 30 83.9103998 0.88932365 81.3181407 1.03187799 186.3201
44 30 89.3322797 1.51561982 84.2911621 1.059806 199.6176
45 30 83.6032312 1.45662182 73.4019073 1.138979 202.0862
46 30 77.4973461 1.21972298 71.8913068 1.07797938 186.4877
47 30 81.1963993 1.31547815 69.3423392 1.17094982 190.6368
48 30 84.0538942 1.51206641 82.4545936 1.01939614 193.1974
49 30 90.3641727 1.08362949 80.1560977 1.12735244 189.6752
50 30 79.6169145 0.71554175 64.0312424 1.2434073 178.5168
51 30 108.437173 1.995397 101.360545 1.0698164 256.3998
52 30 95.4507922 2.68297313 108.00537 0.88375969 251.9227
53 30 103.39612 2.40495657 103.128851 1.0025916 258.8875
54 30 107.780678 1.59360792 108.475988 0.9935902 266.713
55 30 103.915476 1.56554864 108.216265 0.96025746 293.6362
56 30 108.804908 2.10667249 108.216265 1.00543951 268.7855
57 30 105.347279 2.99581317 106.850363 0.98593281 266.0543
58 30 103.446839 1.4507707 104.635749 0.98863763 266.6034
59 30 109.985012 2.12388713 97.4790234 1.12829415 271.9166
60 30 101.681347 1.08942672 92.1366377 1.10359298 257.2033
61 23 70.2693016 0.88362351 48.9799959 1.43465307 115.975
62 26 72.1023135 0.91765588 57.2450871 1.25953714 108.5034
63 24 68.314609 1.16885922 50.8464355 1.34354765 118.6758
64 30 75.8700466 0.97899785 62.6498204 1.21101778 118.4195
65 25 69.8810733 2.01745715 51.3813196 1.36004824 114.1784
66 27 72.2973523 0.60355075 53.4269595 1.35319983 114.0728
67 27 69.8136062 0.90358577 53.9559079 1.29390105 110.2614
68 29 74.3510139 0.81705949 61.1820235 1.21524281 115.9344
69 23 71.3463822 0.73258436 47.8016736 1.49254988 109.3489
70 23 72.5739761 0.86878226 49.2913786 1.47234624 116.597
71 29 91.4517049 1.28461913 73.830617 1.23866911 181.5128
72 30 91.6995699 1.06034044 77.8973684 1.17718444 181.8349
73 30 101.488575 1.0995924 82.3507134 1.2323946 200.6126
74 30 100.139989 1.87881107 88.0009091 1.13794267 190.7096
75 30 100.904473 1.9137494 91.4846435 1.10296623 185.4717
76 30 97.837655 1.51725705 91.0140648 1.07497292 193.0036
77 30 98.2993649 0.99917207 76.0392004 1.2927459 199.6152
78 30 93.8447176 1.19115514 70.2933852 1.33504337 184.8566
79 30 95.1474691 1.42709415 73.1160721 1.30132085 195.2044
80 30 101.600279 2.11257864 93.6726214 1.08463153 198.8545
81 30 119.489763 1.78241732 102.64989 1.16405154 259.0925
82 30 120.69847 1.77230287 102.566271 1.1767852 266.4988
83 30 128.860154 1.54199453 120.910049 1.06575222 290.6421
84 30 127.808574 1.97578444 136.880094 0.93372652 269.4998
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