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Abstract
The distance measure based on hesitant fuzzy sets is an effective tool in the field of 
treating similar objects where it distinguishes the difference between two objects. 
Several distance measures have been proposed so far by different researchers. In this 
paper, we have proposed modifications in the existing distance measure so that some 
situations in real life conditions can be handled easily with the proposed distance 
measure whereas the existing one can not. Finally, the validity and applicability of 
the proposed distance measure is discussed with some existing examples.

Keywords Hesitant fuzzy sets · Hesitant fuzzy elements · Distance measure · 
Similarity measure

1 Introduction

Distance and similarity measures are important tools for finding the differences 
between two objects. Distance and similarity measure can be applied in many areas 
such as decision making, pattern recognition, image processing, machine learning, 
market prediction and so on. Initially Wang [1] introduced the concept of fuzzy 
sets’ similarity measure with a computational formula. Since then many researchers 
started following this topic and extended further. There are many distance and simi-
larity measures proposed for fuzzy set, intuitionistic fuzzy set and fuzzy multiset etc. 
The Hamming distance, the Euclidean distance and the Housdorff distance are three 
popular and widely used distance measures. The relationship measure, the similarity 
measure and the fuzziness of fuzzy set are investigated by Zeng and Li [2]. Szmidt 
and Kacprzyk [3] studied a new distance between two intuitionistic fuzzy set. Torra 
and Narukawa [4] introduced weighted distance measure for intuitionistic fuzzy sets 
based on the Choquet integral with respect to the non-monotonic fuzzy measure. Xia 
and Xu [5] extended the distance and similarity measure based on hesitant fuzzy set. 
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Peng et al. [6] proposed the generalized hesitant fuzzy synergetic weighted distance 
measure and applied it to multi-criteria decision making problem. Li et al. [7] also 
studied new distance and similarity measure on hesitant fuzzy set and their applica-
tion in multi-criteria decision making problem. Wenyi et.al. [8] applied distance and 
similarity measures in pattern recognition. Harish et al. [9] used a new concept of 
dual hesitant fuzzy soft set in distance and similarity measure and have shown its 
application in MCDM problems. Pratiksha et al. [10] studied distance and similarity 
measures in interval-valued intuitionistic fuzzy set. Wei [11] introduced similarity 
measures for picture fuzzy sets and its application.

In our real life we come across certain situations where decision making method 
plays vital role. The decisions given by experts are based on their experience and 
perception about the conditions of the system and some times there is variation in 
perceiving the conditions among the experts. So even there is a variation in the vari-
ation among the experts in perception all the decisions or the outcomes are reason-
able though their impact on the system performance may differ. We have to consider 
each and every value given by those experts. For example two persons have drawn a 
picture from a certain given picture. Then the pictures are judged by two experts in 
terms of degree of their closeness/similarity to the original sample supplied to them. 
The view of the two experts on the degree of closeness of two pictures with the 
original is likely to be slightly different. And now if we want to find the degree of 
closeness of the two pictures to the original one with existing distance and similar-
ity measures, we may come out with equal value of degree of closeness for both the 
pictures which means that the method fails to solve the problem as it has failed to 
address the subtle difference in the perception of the experts. To solve these types of 
problems, we have proposed the modified distance measures in this paper.

The rest of the paper is organized as follows:
Section  2 gives the preliminaries and definition of hesitant fuzzy set and its 

related distance measures. In Sect.  3, the proposed modified distance measure 
is detailed. In Sect. 4, the proposed distance measure is applied on some existing 
examples and validity is studied. Section 5 consists of the conclusion and short note 
on future work.

2  Preliminaries

Throughout the paper, we use X = {x1, x2, x3,… , xn} to denote the universal set, 
HFS and HFE stand for hesitant fuzzy set and hesitant fuzzy element, respectively. A 
stands for a HFS and A(x) stands for a HFE, Ã stands for the set of all hesitant fuzzy 
sets in X. l(A(x)) stands for the total number of elements in A(x).

Definition 1 [12] Given a fixed set X, then a hesitant fuzzy set (HFS) on X is in 
terms of a function that when applied to X returns a subset of [0, 1].

For convenience, the HFS is often expressed simply by mathematical symbol

A = (< x,A(x) > |x ∈ X)
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where A(x) is a set of some values in [0, 1], denoting the possible membership 
degree of the element x ∈ X to the set A. A(x) is called a hesitant fuzzy element 
(HFE).

Graphically we can represent fuzzy set as follows:

Figure a describes the concept of fuzzy set where �(x) is the membership values 
from 0 to 1 and x is an element of the crisp set. When decision maker gives his own 
view about the belongingness of a crisp value of x to the perception about the fact 
represented by x that means he shares his feelings towards the state of that particular 
problem. If he is fully satisfied and certain about the belongingness of the value of x 
in the particular state represented by a membership function or if he fully or confi-
dently disagree, he assigns the membership value 1 or 0 respectively. And for these 
types of un-ambiguous situations there is no hesitancy. However, if the designer is 
partially satisfied or has reservation in judging the belongingness of the value x in 
the state represented by the membership function then the membership value lies 
between 0 and 1. In case of fuzzy set we get only one membership value as shown in 
triangular membership function in Fig. a.

However, the issue is with the partial or reserved view about the belongingness of 
x to the particular membership state as there are chances of lot of variation among 
the experts/designers in their perception of the state. The challenge is how to rep-
resent the wide variation of views/reservation of designers more reasonably and 
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appropriately in these types of cases? The efforts in the making of more appropriate 
and accurate representation of belongingness of x to the membership state resulted 
into the development of higher level of fuzzy sets like type-2 fuzzy set, interval 
type-2 fuzzy set and intuitionistic fuzzy set to address the conditions with higher 
level of uncertainty or ambiguity. Why the extension? The answer is the require-
ment for more accurate and reasonable representation of the variation of degree of 
belongingness of x to the membership state due to higher uncertainty or ambigu-
ity. Hesitant fuzzy set comes under this category. However, there is a difference. 
While in other level fuzzy sets efforts are made for representing the varied values of 
degree of membership among the designers due to variation in their feelings about 
the belongingness of x to a particular membership state with another mathematical 
function which requires again another approximation (continuous) of really varied 
options (discrete) of experts. Whereas in hesitant fuzzy set all the varied opinions 
(values) about the belongingness of x to the particular membership set are consid-
ered instead of mathematical function thereby making the representation more real-
istic and true to the facts. The representation of type-2 fuzzy set is shown in Fig. b.

Further, there are some cases where the decision maker is confused to assign only 
one membership value because of higher uncertainty. So instead of giving only one 
membership value, if a set of values are considered then the representation will be 
closer to his feeling and more realistic. Moreover, some other cases are also there 
where more than one experts are engaged to evaluate a particular problem then each 
and every decision maker may suggested his own opinion as a value for the degree 
of belongingness. So, we get a number of membership values against a single crisp 
value and this extension is called hesitant fuzzy set. More variation means more 
hesitancy associated. In real life very often we can not take decision about a com-
plex system depending upon only one’s opinion. If we conduct an interview to select 
the best candidate where multiple criteria are to be judged but only one expert is 
engaged then the outcome may not be satisfactory because one expert is not able 
to judge all the criteria at the same time but if we engage more than one experts 
then the result will be better than the first case being varied opinions and ultimately 
wiser. So, in decision making problems hesitant fuzzy works as an important tool.

Definition 2 [13] Let A1 and A2 be two hesitant fuzzy sets on X = {x1, x2, x3,… , xn} , 
then the distance measure between A1 and A2 is denoted as d(A1,A2) , which satisfies 
the following properties:

 (D1) 0 ≤ d(A1,A2) ≤ 1;
 (D2) d(A1,A2) = 0 if and only if A1 = A2;
 (D3) d(A1,A2) = d(A2,A1).
 (D4) For three hesitant fuzzy elements A1(x) , A2(x) and A3(x) which 

have  t he  s ame  l eng t h  l  and  Ak(x) = {A1

k
(x),A2

k
(x),… ,Al

k
(x)} , 

k = 1, 2, 3  i f  Ai
1
(x) ≤ Ai

2
(x) ≤ Ai

3
(x), i = {1, 2,… , l}  t h e n 

d(A1(x),A2(x)) ≤ d(A1(x),A3(x)), d(A2(x),A3(x)) ≤ d(A1(x),A3(x)).
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Definition 3 [13] Let A1 and A2 be two hesitant fuzzy sets on X = {x1, x2, x3,… , xn} , 
then the similarity measure between A1 and A2 is denoted as s(A1,A2) , which satis-
fies the following properties:

 (S1) 0 ≤ s(A1,A2) ≤ 1;
 (S2) s(A1,A2) = 1 if and only if A1 = A2;
 (S3) s(A1,A2) = s(A2,A1).

The following property can be obtained as:

Property 1 If d is the distance measure between hesitant fuzzy sets A1 and A2 , then 
s(A1,A2) = 1 − d(A1,A2) is the similarity measure between hesitant fuzzy sets A1 and 
A2.

Property 2 If s is the similarity measure between hesitant fuzzy sets A1 and A2 , then 
d(A1,A2) = 1 − s(A1,A2) is the distance measure between hesitant fuzzy sets A1 and 
A2.

Sometimes it can be happened that the number of elements in different hesitant 
fuzzy elements may be different i.e. if A1 and A2 be two HFEs then in most of 
the cases l(A1(x)) ≠ l(A2(x)) . According to Xu and Xia [13], the optimist expert 
can extend the shorter one by adding the maximum value while the pessimist 
expert add the minimum value to make the lengths equal. This selection of the 
values mainly depends on the decision makers’ risk preferences. In this paper, the 
shorter one is extended by adding minimum value.

The hesitant normalized Hamming distance, Euclidean distance and general-
ized hesitant normalized distance given in [13] as follows:
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where 𝜆 > 0,A
j

1
(xi) and Aj

2
(xi) are the jth values in A1(xi) and A2(xi) , respectively, 

and lxi = max{l(A1(xi)), l(A2(xi))}.
If the weight wi of each element xi ∈ X is taken into account, Xu and Xia [13] 

defined the generalized hesitant weighted distance as follows:

For two HFEs A1(x) and A2(x) on X = {x1, x2, x3,… , xn} , Xia and Xu [14] proposed 
several distance measure between A1(x) and A2(x) as follows:

and

where Aj

1
(xi) and Aj

2
(xi) are the jth values in A1(xi) and A2(xi) , respectively, and 

lxi = max{l(A1(xi)), l(A2(xi))}.

Definition 4 [7] Let A be a hesitant fuzzy set on X = {x1, x2, x3,… , xn} , and for 
any xi ∈ X , l(A(xi)) be the length of A(xi) . Denote

where u(A(xi)) is the hesitant degree of (A(xi)) and u(A) is the hesitant degree of A.

For two HFSs A1(x) and A2(x) on X = {x1, x2, x3,… , xn} , Li et al. [7] proposed the 
normalized Hamming distance, normalized Euclidean distance, normalized general-
ized distance and generalized hesitant weighted distance, all including hesitant degree 
as follows:
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and

and

where 𝜆 > 0,A
j

1
(xi) and Aj

2
(xi) are the jth values in A1(xi) and A2(xi) , respectively, 

and lxi = max{l(A1(xi)), l(A2(xi))},wi is the weight of each xi ∈ X s.t. 0 ≤ wi ≤ 1 and ∑n

i=1
wi = 1.

In hesitant fuzzy set, when the similarity between two objects is calculated, the 
divergence of HFSs is taken into account. The divergence of HFSs includes the 
divergence of HFEs. If we notice more closely, the similarity is measured accord-
ing to the divergence of HFEs which consists of their lengths and values. Li et al. 
[7] introduced the hesitant degree where they have considered the length of diver-
gence because the divergence of the values only can not solve some special type 
of problems. But real life problems are so complicated that the existing distance 
measures also fail to give any reasonable results for such problems.

Example 1 Let X = {x} . Let us assume that there exists two patterns which are 
represented by hesitant fuzzy sets A1 = {0.9, 0.8, 0.7} and A2 = {0.7, 0.6, 0.2} . 
Now there is a sample to be recognized which is represented by a hesitant set 
A = {0.7, 0.65, 0.6} , the principle of minimum distance measure of hesitant fuzzy 
set is given by:

which means the sample A belongs to the pattern Ai0.

Now applying the above mentioned distance measures Eqs. (1) and (7), we get,
dh(A1,A) = 0.15 , dh(A2,A) = 0.15 , and dhh(A1,A) = 0.075 , dhh(A2,A) = 0.075 , 
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From Eq.  (1) we can not get the minimum distance and after applying hesitant 
degree in Eq. (7), again the problem remains unsolved.

The difference between the membership values of A2 is very large. This shows 
that the pattern A2 is unique. Finally we can conclude that the sample A belongs to 
the pattern A1 as having similar small difference between the values. After applying 
the standard distance measure on the above example, we observe equal distances in 
all the cases. So the above example increases our hesitancy and for that reason it can 
not be clearly stated that A belongs to the pattern A1.

Therefore, to solve these types of problems we need to modify the existing dis-
tance measure. In the following section we have proposed a new distance measure 
for overcoming the above limitations.

3  Proposed methodology

In the following, some new distance measures are proposed.

Definition 5 Let A1 and A2 be two HFSs on X = {x1, x2, x3,… , xn} , then the modi-
fied normalized Hamming distance between A1(xi) and A2(xi) is defined as:

The modified normalized Euclidean distance between A1(xi) and A2(xi) is defined 
as

and the modified normalized generalized distance between A1(xi) and A2(xi) is 
defined as
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Usually, the weight of the element x ∈ X should be taken into account. The 

weighted distance measures for HFSs are presented as follows:
Assume that the weight of xi ∈ X is wi(i = 1, 2,… , n) , where 0 ≤ wi ≤ 1 and ∑n
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The modified normalized weighted Hamming distance between A1(xi) and A2(xi) 
is defined as:

The modified normalized weighted Euclidean distance between A1(xi) and A2(xi) is 
defined as

and the modified normalized weighted generalized distance between A1(xi) and 
A2(xi) is defined as

where 𝜆 > 0,A
j

1
(xi) and Aj

2
(xi) are the jth values in A1(xi) and A2(xi) respectively, 

and lxi = max{l(A1(xi)), l(A2(xi))}.

4  Application

Applying the proposed distance measure in the above Example  1, we get 
dmh(A1,A) = 0.1017 and dmh(A2,A) = 0.18 . The distance measure between A and A1 
is less than that of A and A2 . So clearly we can say that A belongs to the pattern 
A1 which is exactly matched what we have observed initially and also logically we 
have explained the similarity of A and A1 . But the same example is not solved by the 
existing distance measures.

To validate the proposed distance measure, the following example is taken into 
account.

Example 2 [7] Let X = {x} . Let us assume that there exist two patterns which 
are represented by hesitant fuzzy sets h1 = {0.97, 0.95, 0.88, 0.86, 0.82, 0.8} and 
h2 = {0.45} . Now there is a sample to be recognized which is represented by a hesi-
tant set h = {0.75, 0.73, 0.7, 0.65, 0.6, 0.55}.

Firstly, we extend h2 as h2 = {0.45, 0.45, 0.45, 0.45, 0.45, 0.45} , and apply the 
proposed distance measure, dmh(h, h1) = 0.142, dmh(h, h2) = 0.187 . Since the dis-
tance between h and h1 is less than that of h and h2 . This shows that h belongs to the 
pattern h1 . According to Li et. al. [7], dhh(h, h1) = 0.10835, dhh(h, h2) = 0.52165 . 
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That means h belongs to the pattern h1 which is exactly similar with our result. 
Therefore, this proves that the proposed distance measure is valid.

The proposed distance measure can solve the following example which is not 
solved by the existing measures:

Example 3 Suppose that E denotes the set of all equilateral triangle, where 
E = {�, �, �|� = � = � = 60◦} . For every triangle T, then T is considered as a fuzzy 
set in E, thus the membership degree of the fuzzy set T is used to reflect the degree 
that the triangle (fuzzy set) T is related to the equilateral triangle (Fig. 1).

Let us consider a real life example. Let E1 be a triangle such that 
E1 = {�, �, �|� = 70◦, � = 55◦, � = 55◦} which is similar to the equilateral 
triangle.

Graphically, it is shown in Fig. 2.
Now consider another two triangles T1 and T2 such that 

T1 = {�, �, �|� = 75◦, � = 55◦, � = 50◦} and T2 = {�, �, �|� = 80◦, � = 50◦, � = 50◦} 
represented by Fig. 3 and Fig. 4 respectively.

Suppose the membership values of E1, T1 and T2 given by the decision makers 
are as follows:

A = {(E1, h), (T1, h1), (T2, h2)} i.e. A = {(E1, {0.6, 0.5}), (T1, {0.7, 0.65}), (T2, {0.7, 0.35})}.
According to the expert’s decision, none of the triangles belongs to the set of 

equilateral triangles. Now, if we compare the similarity among these three trian-
gles E1, T1 and T2 , we have to decide a sample image among these three. Initially 
let us consider E1 as the sample image. Using distance measures, the minimum 
distance between ( E1, T1 ) and ( E1, T2 ) can be calculated.

From the above membership values, we get h1 = {0.7, 0.65} and 
h2 = {0.7, 0.35} , and h = {0.6, 0.5} . If we think logically again we get that 

Fig. 1  Graphical representation 
of the equilateral triangle E



594 OPSEARCH (2020) 57:584–602

1 3

the difference between the values of h2 is very large, so the shape of the tri-
angle h2 is unique and never similar to h. This means h belongs to h1 . 
When we apply the Hamming distance measure equation (1), then we have 
dh(h, h1) = 0.125, dh(h, h2) = 0.125 . If we apply the Euclidean distance meas-
ure equation (2), then de(h, h1) = 0.127, de(h, h2) = 0.127 . If we apply the 
Hamming distance measure including hesitant degree equation (7), then 
dhh(h, h1) = 0.0625, dhh(h, h2) = 0.0625 . That means none of the existing distance 
measures can solve this problem. Now applying the proposed distance measure 
equation (11) and (12), then we have dmh(h, h1) = 0.1037, dmh(h, h2) = 0.1267 , 
dme(h, h1) = 0.1070, dme(h, h2) = 0.1361 . That means the sample h belongs to the 
pattern h1 , which is exactly matched with our initial assumption. It indicates that 
dmh and dme are reasonable.

Fig. 2  Graphical representation 
of the triangle E1

Fig. 3  Graphical representation 
of the triangle T1
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Also the following example is a special type of example which can not be 
solved by the distance measure including hesitant degree but it is solved by the 
standard distance measure as well as the proposed distance measure.

Example 4 Let us consider another real life example where E1 is almost similar to 
equilateral triangle such that E1 = {�, �, �|� = 62◦, � = 59◦, � = 59◦} graphically 
shown in Fig. 5.

Also let us consider another two triangles T1 and T2 such that 
T1 = {�, �, �|� = 64◦, � = 58◦, � = 58◦} and T2 = {�, �, �|� = 82◦, � = 50◦, � = 48◦} 
(Fig. 6 and Fig. 7 respectively).

Suppose the membership values of E1, T1 and T2 given by the decision makers are 
as follows:

A = {(E1, h), (T1, h1), (T2, h2)} i.e. A = {(E1, {0.9}), (T1, {0.95, 0.9}), (T2, {0.4})}.

Fig. 4  Graphical representation 
of the triangle T2

Fig. 5  Graphical representation 
of the triangle E1
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According to the expert’s decision, the triangles E1 and T1 are almost similar to 
the equilateral triangle. Using distance measures the similarity among these trian-
gles E1, T1 and T2 can be compared. Initially let the sample image be E1 . The mini-
mum distance between ( E1, T1 ) and ( E1, T2 ) can be calculated as follows.

For calculation we have h1 = {0.95, 0.9} and h2 = {0.4} , and a triangle h = {0.9} . 
If we think logically again we get that the difference between the values of h1 is very 
small and this indicates that the shape of the triangle is almost equivalent to the 
equilateral triangle, so the shape of the triangle h1 may be similar to h. This means 
h belongs to h1 . But the membership value of h2 is 0.4, which indicates that the 
shape is not exactly similar to the equilateral triangle because the decision maker is 
fully confident that the shape is particular and with this confident he has assiged the 
membership value of h2 . So the shape of h2 is not matched with h.

Fig. 6  Graphical representation 
of the triangle T1

Fig. 7  Graphical representation 
of the triangle T2
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For solving this problem existing distance measure including hesitant degree is 
not sufficient. If we apply the Hamming distance measure including hesitant degree 
equation (7), then dhh(h, h1) = 0.2625, dhh(h, h2) = 0.25 . That means if we add hesi-
tant degree to the distance measure the result becomes different which is beyond 
our intuition. So, hesitant degree can not provide the actual result of the solu-
tion. When we apply the Hamming distance measure equation  (1), then we have 
dh(h, h1) = 0.025, dh(h, h2) = 0.5 . If we apply the Euclidean distance measure equa-
tion (2), then de(h, h1) = 0.035, de(h, h2) = 0.5 . Now applying the proposed distance 
measure equation (11) and (12), then we have dmh(h, h1) = 0.014, dmh(h, h2) = 0.385 , 
dme(h, h1) = 0.019, dme(h, h2) = 0.385 . That means the sample h belongs to the pat-
tern h1 , which is exactly matched with our initial assumption. This indicates that the 
proposed measure reasonable and acceptable.

The proposed distance measure is applied in multi criteria decision making prob-
lem with some special assumption:

Example 5 [13], (Alternative selection) Energy is an indispensable factor for the 
socio-economic development of societies. Suppose that there are five alternatives 
(energy projects) Pi(i = 1, 2, 3, 4, 5) to be invested, and four attributes to be con-
sidered: c1 : technological; c2 : environmental; c3 : socio-political; c4 : economic. The 
attribute weight vector is w = (0.15, 0.3, 0.2, 0.35) . Several decision makers are 
invited to evaluate the performance of the five alternatives. To get a more reason-
able result, it is better that the decision makers give their evaluations anonymously. 
Thus, each value provided only means that it is possible value, but its importance 
is unknown. So, it is reasonable to allow these values repeated many times appear 
only once, and all possible evaluations for an alternative under the attributes can be 
considered as HFS. The result evaluated by the decision makers are contained in a 
hesitant fuzzy decision matrix, shown in Table 1.

Suppose that the ideal alternative is P∗ = {1} seen as a special HFS, we can 
select the best alternative by calculating the distance between each alternative and 
the ideal alternative.

Now the generalized hesitant weighted distance dwg proposed by Xu and Xia 
[13] Eq. (4) and the modified generalized weighted distance dmwg proposed in this 
paper Eq. (16) are shown in Tables 2 and 3, respectively to calculate the deviations 
between each alternative and the ideal alternative. 

Table 1  Hesitant fuzzy decision matrix

c1 c2 c3 c4

P1 { 0.5, 0.4, 0.3} { 0.9, 0.8, 0.7, 0.1} { 0.5, 0.4, 0.2} { 0.9, 0.6, 0.5, 0.3}
P2 { 0.5, 0.3} { 0.9, 0.7, 0.6, 0.5, 0.2} { 0.8, 0.6, 0.5, 0.1} { 0.7, 0.4, 0.3}
P3 { 0.7, 0.6} { 0.9, 0.6} { 0.7, 0.5, 0.3} { 0.6, 0.4}
P4 { 0.8, 0.7, 0.4, 0.3} { 0.7, 0.4, 0.2} { 0.8, 0.1} { 0.9, 0.8, 0.6}
P5 { 0.9, 0.7, 0.6, 0.3, 0.1} { 0.8, 0.7, 0.6, 0.4} { 0.9, 0.8, 0.7} { 0.9, 0.7, 0.6, 0.3}
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The result obtained by using the proposed distance measure dmwg is exactly 
similar to that of dwg . To investigate this, we consider � = 1 in the following. For 
calculating dwg , the divergence of the values are considered, so P5 is the best alter-
native. The proposed distance measure is also depends on the divergence of the 
values of HFEs. The results obtained from the proposed measure is much smaller 
than that of the existing one, which indicates that the measure of the divergence 
of the values gives the clear picture of the actual distance of the given alterna-
tives to the ideal alternative. Since the ranking of the alternative has not changed, 
so we can say that the proposed distance measure is correct and reasonable.

If we assume that the given decision matrix where the values of P3 and P5 are 
slightly changed, which is represented in Table 4 as follows:

Now the generalized hesitant weighted distance dwg proposed by Xu and Xia 
[13] Eq. (4) and the modified generalized weighted distance dmwg proposed in this 
paper Eq. (16) are shown in Tables 5 and 6, respectively to calculate the devia-
tions between each alternative and the ideal alternative, considering � = 1. 

According to the problem we have considered, the existing distance measure 
dwg fails to arrange the ranking because the alternative P3 and P5 have the same 
distance with the ideal alternative. But when we apply the proposed distance 
measure dmwg , the ranking comes out appropriately. With this assumed multi 

Table 2  Results obtain by distance measure dwg
P1 P2 P3 P4 P5 Rankings

� = 1 0.4779 0.5027 0.4025 0.4292 0.3558 P5 > P3 > P4 > P1 > P2

� = 2 0.5378 0.5451 0.4366 0.5052 0.4129 P5 > P3 > P4 > P1 > P2

� = 6 0.6599 0.6476 0.5156 0.6704 0.5699 P3 > P5 > P2 > P1 > P4

� = 10 0.7213 0.7046 0.5607 0.7373 0.6537 P3 > P5 > P2 > P1 > P4

Table 3  Results obtain by distance measure dmwg
P1 P2 P3 P4 P5 Rankings

� = 1 0.3499 0.3630 0.2661 0.3155 0.2393 P5 > P3 > P4 > P1 > P2

� = 2 0.4159 0.3708 0.2978 0.3179 0.3005 P3 > P5 > P4 > P2 > P1

� = 6 0.5658 0.4714 0.3778 0.5859 0.4807 P3 > P2 > P5 > P1 > P4

� = 10 0.6400 0.5207 0.4210 0.6583 0.5796 P3 > P2 > P5 > P1 > P4

Table 4  Assumed hesitant fuzzy decision matrix

c1 c2 c3 c4

P1 { 0.5, 0.4, 0.3} { 0.9, 0.8, 0.7, 0.1} { 0.5, 0.4, 0.2} { 0.9, 0.6, 0.5, 0.3}
P2 { 0.5, 0.3} { 0.9, 0.7, 0.6, 0.5, 0.2} { 0.8, 0.6, 0.5, 0.1} { 0.7, 0.4, 0.3}
P3 { 0.9, 0.7, 0.6} { 0.9, 0.8, 0.6} { 0.9, 0.5, 0.3} { 0.6, 0.4}
P4 { 0.8, 0.7, 0.4, 0.3} { 0.7, 0.4, 0.2} { 0.8, 0.1} { 0.9, 0.8, 0.6}
P5 { 0.9, 0.7, 0.6, 0.3, 0.1} { 0.8, 0.7, 0.5, 0.3} { 0.9, 0.8, 0.7} { 0.9, 0.7, 0.6, 0.3}
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criteria decision making problem, we can conclude that the proposed distance 
measure is better and reasonable then the existing ones.

5  Results and discussion

Suppose a sample object (i.e. equilateral triangle) is given and two more objects 
(i.e. similar to equilateral triangle) are to be judged by experts that which one 
of the given objects belongs to the sample object. Then the experts give their 
own feelings in terms of membership value according to the best of their knowl-
edge. After getting their views, we can easily reach to the final solution. All these 
events are based on our perception that which object belongs to the given sample. 
To make the method of decision making based on the perceptions more scien-
tific some mathematical indices like distance measures are proposed. That is why 
many researchers have proposed distance measure based on some logic. But in 
real life all the problems we face are not always similar. In this paper we have 
modified the formula of distance measure to overcome the limitation that we have 
faced in some examples. All the formulae of distance measure depend upon the 
differences of the membership values given by experts. But in some cases it may 
happen that after measuring all the distances, the value of the outcome is either 
equal or incorrect. We have proposed the Example 3 where the distance measure 
given by all the traditional methods failed to give the final solution because the 
distance measure given by them is equal for all the cases. Again in Example 4 we 
have seen that the outcome given by the existing distance measure [7] is incor-
rect. In these cases our proposed distance measure works properly and has given 
an accurate result. Examples 2, 3, 4, 5 are enough to show that our proposed dis-
tance measure is better than the existing measures.

We can apply our proposed distance measure successfully in the field of image 
classification, pattern recognition, image processing, machine learning, market 
prediction, power plant site selection, many areas in engineering and medical sci-
ence etc. where decision making method plays an important role. In this paper, 
the proposed method is applied in Example  5 which is a multi criteria decision 

Table 5  Results obtain by distance measure dwg
P1 P2 P3 P4 P5 Rankings

� = 1 0.4779 0.5027 0.372 0.4292 0.372 P5 = P3 > P4 > P1 > P2

Table 6  Results obtain by distance measure dmwg
P1 P2 P3 P4 P5 Rankings

� = 1 0.3499 0.3249 0.2457 0.3155 0.2537 P3 > P5 > P4 > P2 > P1
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making problem and the results what we have discussed are fully logical and more 
appropriate.

6  Conclusion

Using hesitant fuzzy set many distance and similarity measures have been pro-
posed so far. In this paper, we have proposed modifications of some existing dis-
tance measures to overcome the limitations of the existing measures to deal with 
real life situations and give appropriate results. In our day to day life we come 
across different situations like pattern recognition i.e. if doctors want to diagnose 
a patient by drawing similarity of symptoms of two patients based on their per-
ceptions/views on different parameters, some situations may arise due to higher 
hesitancy leading to failure of the decision making process to come out with clear 
verdict about the disease if the existing distance measures are used. But if the 
proposed measures are used then they can handle not only the normal situations 
which can be handled with the existing measures but also the intricate situations 
with higher hesitancy wherein the existing measures failed. In these situations 
our method comes out with a satisfactory solution better than the existing ones 
because after mathematical calculation the existing formulas give equal value in 
some cases and that is why we can not conclude the solution of the problem prop-
erly but the proposed method gives clear distinctive value so we can easily reach 
to a clear verdict or solution.

In our future work, we will further modify the hesitant degree so that new dis-
tance and similarity measure including hesitant degree can solve more intricate and 
complex problems where the existing distance measures including hesitant degree 
can not solve.

Appendix

Theorem  1 dmh(A1,A2), dme(A1,A2) and dmg(A1,A2) satisfy the properties 
(D1)–(D4).

Proof We have,

If Aj

1
(xi) = 1 and Aj

2
(xi) = 0 then dmh(A1,A2) = 1.

If Aj

1
(xi) = A

j

2
(xi) then dmh(A1,A2) = 0.

And when Aj

1
(xi) ≠ A

j

2
(xi) then 0 < dmh(A1,A2) < 1.

Therefore, properties (D1) and (D2) are satisfied.
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1
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⎤⎥⎥⎦
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If we interchange A1 and A2 , the result will not change i.e. 
dmh(A1,A2) = dmh(A2,A1) . Therefore property (D3) is satisfied.

Now if A
j

1
(xi) ≤ A

j

2
(xi) and A

j

1
(xi) ≤ A

j

3
(xi) , then we can get easily 

dmh(A1,A2) ≤ dmh(A1,A3) . And if Aj

2
(xi) ≤ A

j

3
(xi) and Aj

1
(xi) ≤ A

j

3
(xi) , then we have 

dmh(A2,A3) ≤ dmh(A1,A3) . This shows that (D4) is satisfied.
Similarly we can proof that dme(A1,A2) and dmg(A1,A2) satisfy all the properties.  

 ◻

Theorem  2 When Aj

1
(xi) + A

j

2
(xi) = 1 , then dh(A1,A2), de(A1,A2) and dg(A1,A2) 

becomes the special case of dmh(A1,A2), dme(A1,A2) and dmg(A1,A2) , where Aj

1
(xi) 

and Aj

2
(xi) are the j th values in A1(xi) and A2(xi).

Proof We have,

If Aj

1
(xi) + A

j

2
(xi) = 1 then the above distance measure becomes,

Similarly de(A1,A2) and dg(A1,A2) are the special cases of dme(A1,A2) and 
dmg(A1,A2) respectively.   ◻
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