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Abstract
To maximize profit in a competitive market environment, for retailers, it became 
necessary to optimize preservation, pricing, and marketing strategies together with 
inventory ordering policies. This study deals with the problem of optimizing price, 
advertisement frequency, preservation technology (PT) investment and ordering 
policies simultaneously for non-instantaneous deteriorating items whose deteriora-
tion rate can be reduced by investing in PT, while demand depends on both selling 
price and frequency of advertisement. The supplier allows some credit period to set-
tle the account, and under this policy, three possible cases considered separately. 
We adopt three-parameter Weibull distribution deterioration and partial backlogs 
of shortages in a general framework to formulate the model. An iterative algorithm 
is provided to obtain the optimal solution, then the proposed model is illustrated 
through numerical examples. The concavity of the total profit function with respect 
to decision variables shown graphically. Sensitivity analysis has been conducted to 
investigate the impact of each parameter. PT investment and credit period are ben-
eficial for the retailer, and also can earn more profit through advertisement. Value-
added food products, such as bottled fruit juice, soft drinks, packed fruits, bread, 
cake, processed meat, etc., needs preservation technology and their demand depends 
on the price as well as marketing. Profit maximization of such items can be studied 
with the help of new model developed in this paper.
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1  Introduction

Deteriorating inventory systems are studied extensively in the past few years. In 
traditional economic order quantity (EOQ) model the deteriorating nature of the 
items was not considered. But, deterioration is a characteristic of almost all com-
modities, which means damage, decay, spoilage, loss of utility, vaporization, etc. 
Nahmias [30], Rafat [33], Goyal and Giri [15], Li et  al. [23], Bakker et  al. [1], 
and Janssen et al. [19] time to time provided up to the date literature review on 
deteriorating inventory problems. Ghare and Schreder [13] proposed an expo-
nential deteriorating inventory model with constant demand. Covert and Philip 
[5] derived an economic order quantity model for items having two-parameter 
Weibull distribution deterioration with constant demand, and Philip [32] extended 
the work of Covert and Philip to the case of three-parameter Weibull distribution. 
Most of the earlier developed models assumed constant demand, but several fac-
tors affect the demand. Selling price and advertisement are the major factors for 
the demand. Cohen [4], Mukhopadhyay et al. [29], Dye [7], Maihami and Kama-
labadi [26] and Mahmoodi [25], considered price-dependent demand and derived 
joint pricing and replenishment policies for deteriorating inventory systems. 
Together with price, advertisement also plays a very crucial role in sales. A regu-
lar frequency of advertisement through different mediums such as banners, news-
paper, magazine, internet, radio, and television significantly increase the demand 
of the product. Till now, very few researchers studied the effect of advertisement 
policies on inventory. Kotler [20] first incorporated marketing policies into inven-
tory and derived an optimal marketing policy but not EOQ. Subramanyam and 
Kumaraswamy [39] further extended the problem of inventory by incorporating 
demand as a function of price and frequency of advertisement. Also Urban [41], 
Bhunia and Maiti [3], Goyal and Gunasekaran [16] and Pal et al. [31] studied the 
impact of pricing and advertisement policies on inventory policies.

Most of the researchers consider that the deterioration rate is exogenous vari-
able, which is not subject to control. But in practice, this phenomenon can be 
controlled and reduced by procedural changes, cooling storages or specialized 
types of equipment. When deterioration rate of a product is significantly high, 
it is possible to reduce the economic losses due to deterioration by investing in 
PT. Hsu et al. [18] first proposed a model incorporating preservation technology 
investment to reduce the deterioration. They considered that the reduced deterio-
ration rate is a function of PT investment cost and the resultant deterioration rate 
is the difference between the original deterioration rate and reduced deteriora-
tion rate. After that, Lee and Dye [21], Dye and Hsieh [9], Hsieh and Dye [17] 
and Mishra [27], etc. studied the effect of preservation technology investment on 
inventory policies assuming controllable deterioration situation through investing 
in PT. Zang et al. [43] designed an effective algorithm to address the problem of 
pricing, preservation technology investment, and inventory control for deteriorat-
ing items. Liu et al. [24], Dye and Yang [10], Dye et al. [11] and Zang et al. [44] 
studied the joint pricing and preservation technology investment strategies. They 
assumed that the deterioration process starts as soon as the commodities enter 
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into the inventory system. But, some commodities such as fruits, vegetables, pro-
cessed foodstuffs, etc. does not deteriorate at the beginning stage, they maintain 
fresh quality for some time duration. This phenomenon of products is known as 
non-instantaneous-deterioration. Dye [8], Mishra [28], Tsao [40], and Bardhan 
et al. [2] studied the effect of PT investment on inventory for non-instantaneous 
deteriorating items. Li et al. [22] presented a model for joint pricing, PT invest-
ment for non-instantaneous deteriorating items. Shah et al. [37] derived a model 
to maximize profit through optimizing price, advertisement frequency and inven-
tory ordering policies.

One of the best practices in businesses is the supplier allows some credit period 
to the retailer to settle the account. If the retailer can’t settle the account before the 
given credit period, then the supplier will charge interest at some rate on the remain-
ing amount. This policy is beneficial for both the supplier and retailer. By allowing 
the credit period, the supplier can increase sales and potential customers by attract-
ing and motivating new customers. The retailer can take advantage of it because it 
is not always true that the retailer has adequate capital. Also, the retailer can earn 
interest on sales revenue till settlement. Goyal [14] derived economic order quantity 
considering permissible delay in payments. Dave [6] considered delay in payments 
for deteriorating items. Geetha and Uthayakumar [12] proposed a model for non-
instantaneous deteriorating items with permissible delay in payments. Shaikh et al. 
[38] presented an EOQ model with PT, trade credit and partial backlogging for dete-
riorating items. Yang et al. [42] studied the joint problem of preservation technology 
investment and trade credit as a dynamic programming problem. Shah et  al. [36] 
developed a joint pricing, PT investment model under two level trade credit financ-
ing. Rathore [34] proposed a deteriorating inventory model considering time, price 
and advertisement dependent demand, with preservation technology investment and 
trade credit. A brief summary of the literature review is given in Table 1. 

Researchers are still studying more and more practical inventory systems to fit 
into real-world situations, and they are trying to optimize all possible strategies to 
minimize cost or maximize profit. Recently, Sarkar [35] proposed an EPQ model for 
better management of defective items in a multistage production system by rework-
ing imperfect items. He developed the model for manufacturing unit wherein imper-
fect products are inspected in each stage or at the end of the cycle, and they are 
reworked. So there is no wastage of the products and which helps in minimizing the 
cost. While in our paper, we have developed the model for perishable products by 
investing in preservation technology. Which helps in reducing the wastage and that 
way our profit is maximized.

In our model, we optimize price, advertisement frequency, preservation 
technology investment, together with inventory ordering policies under trade 
credit. Till now, no study deals with the optimization of all these major strat-
egies together. But, our study is closely related to Rathore [34]. Our work dif-
fers from his work, mainly in five aspects. First, he considered the frequency of 
advertisement as a continuous variable, while in our model, we considered the 
frequency of advertisement as a positive integer which is more realistic. Also, we 
provided an iterative algorithm to obtain the optimal frequency of advertisement. 
Second, in his model price is not a decision variable, while in our model, price 
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is one of the decision variables. Third, his model is developed for instantaneous 
deterioration case, while we considered non-instantaneous deterioration which 
is also applicable for instantaneous deterioration case by fixing no deterioration 
period zero. Fourth, in his model, shortages are not allowed, while in our model, 
shortages are allowed and partially backlogged. Fifth, in his model, deteriora-
tion cost is constant, while we considered three-parameter Weibull distribution 
deterioration.

2 � Notations

CO Ordering cost ($/order).
C Purchase cost ($/unit).
Cd Deterioration cost ($/unit).
Ch Holding cost ($/unit/unit time).
Ca Advertisement cost ($/advertisement).
Cs Lost sale cost ($/unit).
P Selling price ($/unit).
Td Length of time during which there is no deterioration.
T1 Time point at which inventory becomes zero.
T Length of inventory order cycle.
M Credit period to settle the account.
Ic Rate of interest charged on the remaining amount.
Ie Rate of interest earned on sales revenue.
A Frequency of advertisement per cycle.
D(A,P) Demand function.
a, b,m Demand parameters.
�, � Deterioration parameters.
I1(t) Inventory level during t ∈

[

0,Td
]

.
I2(t) Inventory level during t ∈

[

Td ,T1
]

.
I3(t) Inventory level during t ∈

[

T1,T
]

.
I0 Initial inventory.
� Inventory Backlog coefficient.
IB Inventory Backlogged.
� Preservation technology investment per unit time.
m(�) Proportion of reduced deterioration rate (0 ≤ m(�) ≤ 1).
k PT investment coefficient.
�′ Maximum PT investment budget.
Q. Order quantity per order cycle T.
TPi

(

A,T1,T ,P, �
)

. Total profit function for case i  , (i = 1, 2, 3).
(

A∗,T∗
1
,T∗,P∗, �∗

)

Optimal solution.
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3 � Assumptions

•	 The inventory system involves a single non-instantaneous deteriorating item.
•	 Demand is a function of selling price and advertisement frequency. We assume 

the demand function as (described by Kotler [20]) follows: 

 where A(> 0) is the frequency of advertisement, P(> C) is the selling price, 
a(> 0) is the scaling factor, b(≥ 1) is the index of price elasticity and m is the 
shape parameter, where 0 ≤ m < 1 . Since 𝜕D(A,P)

𝜕A
> 0 and 𝜕D(A,P)

𝜕P
< 0 , the demand 

function is an increasing function of the advertisement frequency (A) and 
decreasing function of price (P) , which reflect a real situation.

•	 The lifetime (t) of the product follows three-parameter Weibull distribution 
f (t) = ��

(

t − Td
)�−1

e−�(t−Td)
�

 , where 𝛼(> 0) is the scale parameter, 𝛽(> 0) is the 
shape parameter and Td(≥ 0) (deterioration free life) is the location parameter. 

The cumulative distribution function is F(t) =
t

∫

Td

f (t)dt = 1 − e−a(t−Td)
�

 , hence 

the deterioration rate is f (t)

1−F(t)
= ��

(

t − Td
)�−1.

•	 The deterioration rate can be reduced by investing in preservation technol-
ogy. The proportion of reduced deterioration rate (as in Hsu et  al. [18]) is 
m(�) = 1 − e−k×� , where, k(≥ 0) is the simulation coefficient representing the 
percentage increase in m(�) per dollar increase in � . When � = 0 , the reduced 
deterioration rate m(�) = 0 , and for � → ∞, lim�→∞ m(�) = 1 . But we set con-
straint 0 ≤ � ≤ �′ , where, �′ is the maximum PT investment allowed.

•	 Instantaneous replenishment and infinite replenishment rate.
•	 Shortages are allowed and partially backlogged. The fraction of unsatisfied 

demand backlogged is D(A,P)e−�(T−t) for t ∈
[

T1, T
]

, where backlogging param-
eter � is a positive constant and (T − t) is the waiting time.

•	 The supplier will allow some credit period to the retailer, and the retailer must 
settle the account before placing the next order.

4 � Model development

As shown in Fig.  1, initially the inventory system has I0 units. During the time 
interval 

[

0, Td
]

 there will be no deterioration and hence the inventory level decrease 
in this period due to demand only. During the interval 

[

Td, T1
]

 the inventory level 
decrease due to demand and as well as deterioration, but in this period the deterio-
ration rate will be reduced by investing in preservation technology. At time T1 the 
inventory reaches to zero and the demand will be partially backlogged during 

[

T1, T
]

 . 
If the supplier allow credit period M units of the time to settle the account then 
three cases are possible (1) 0 ≤ M ≤ Td , (2) Td ≤ M ≤ T1 and (3) T1 ≤ M ≤ T  (See 
Figs. 2, 3 and 4).

D(A,P) = AmaP−b
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According to the above description, the differential equations representing the 
inventory status within different time intervals given below.

(1)
dI1(t)

dt
= −D(A,P), 0 ≤ t ≤ Td

Fig. 1   Graphical representation of the inventory system

Fig. 2   0 ≤ M ≤ Td
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(2)
dI2(t)

dt
= −��

(

t − Td
)�−1

(1 − m(�))I2(t) − D(A,P), Td ≤ t ≤ T1

(3)
dI3(t)

dt
= −D(A,P)e−�(T−t), T1 ≤ t ≤ T

Fig. 3   Td ≤ M ≤ T1

Fig. 4   T1 ≤ M ≤ T
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Using the boundary conditions I1(0) = I0, I2
(

T1
)

= 0 and I3
(

T1
)

= 0 , we get the 
solution of Eqs. (1), (2) and (3) respectively as follows.

Using the condition I1
(

Td
)

= I2
(

Td
)

The maximum amount of demand backlogged per cycle is obtained by putting 
t = T  in Eq. (6) and considering positive quantity.

Order quantity per cycle:

Purchase cost:

Lost sale cost:

Deterioration cost:

(4)I1(t) = −D(A,P)t + I0

(5)
I2(t) =D(A,P)

[

T1 − t +
�(1 − m(�))

(� + 1)

{

(

T1 − Td
)(�+1)

−
(

T − Td
)(�+1)

}

]

×
[

1 − �(1 − m(�))
(

t − Td
)]

(6)I3(t) =
−D(A,P)

�

[

e−δ(T−t) − e−δ(T−T1)
]

(7)I0 = D(A,P)

[

T1 +
�(1 − m(�))

(� + 1)

(

T1 − Td
)(�+1)

]

(8)IB =
D(A,P)

�

[

1 − e−δ(T−T1)
]

(9)Q = I0 + IB = D(A,P)

[

T1 +
�(1 − m(�))

� + 1

(

T1 − Td

)β+1
+

1

�

[

1 − e−δ(T−T1)
]

]

(10)PC = C ⋅ Q

(11)

LSC =Cs

T

∫

T1

[

D(A,P) − D(A,P)e−δ(T−t)
]

dt

=CsD(A,P)

[

T − T1 −
1

�
+

e−δ(T−T1)

�

]
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Holding cost:

Total sales revenue:

Preservation technology investment:

Advertisement cost:

Case 1 0 ≤ M ≤ Td
Interest Charged:

Interest earned:

(12)
DC =Cd

⎡

⎢

⎢

⎣

I2
�

Td
�

−

T1

∫

Td

D(A,P)dt

⎤

⎥

⎥

⎦

=
CdD(A,P)α(1 −m(ξ))

β + 1

�

T1 − Td
��+1

(13)

HC =Ch

⎡

⎢

⎢

⎣

Td

∫

0

I1(t)dt +

T1

∫

Td

I2(t)dt

⎤

⎥

⎥

⎦

=ChD(A,P)

�

T2
1

2
+

α(1 −m(ξ))

β + 1
Td

�

T1 − Td

�β+1
+

αβ(1 −m(ξ))

(β + 1)(β + 2)

�

T1 − Td

�β+2

−
α2(1 −m(ξ))

2

2(β + 1)2

�

T1 − Td

�2(β+1)

�

(14)
SR =P

⎡

⎢

⎢

⎣

T1

∫

0

D(A,P)dt +

T

∫

T1

D(A,P)e−�(T−t)dt

⎤

⎥

⎥

⎦

=PD(A,P)
�

T1 +
1

�

�

1 − e−�(T−T1)
��

(15)PTI =
(

T1 − Td
)

�

(16)AC = CaA

(17)

IC1 =CIc

⎡

⎢

⎢

⎣

Td

∫

M

I1(t)dt +

T1

∫

Td

I2(t)dt

⎤

⎥

⎥

⎦

=CIcD(A,P)

�
�

T1 −M
�2

2
+

�(1 − m(�))

� + 1

�

Td −M
��

T1 − Td
�β+1

+
αβ(1 −m(ξ))

(β + 1)(β + 2)

�

T1 − Td

�β+2
−

α2(1 −m(ξ))
2

2(β + 1)2

�

T1 − Td

�2(β+1)

�
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Total profit per unit time:

So, in this case, the objective is to maximize Z1 = TP1

(

A, T1, T ,P, �
)

.

When M ≥ Td there are two possibilities either Td ≤ M ≤ T1 or T1 ≤ M ≤ T .
Case 2 Td ≤ M ≤ T1
Interest Charged:

(18)
IE1 =PIe

M

∫

0

D(A,P)tdt

=
PIeD(A,P)M

2

2

(19)

TP1

(

A, T1, T ,P, �
)

=
1

T

[

SR − PC − DC − LSC − HC − OC − PTI − AC − IC1 + IE1

]

TP1

(

A, T1, T ,P, �
)

=
1

T

[

PD(A,P)

[

T1 +
1

�

(

1 − e−δ(T−T1)
)]

− CD(A,P)

[

T1 +
�(1 − m(�))

� + 1

(

T1 − Td

)β+1
+

1

�

[

1 − e−δ(T−T1)
]

]

−
CdD(A,P)α(1 −m(ξ))

β + 1

(

T1 − Td
)�+1

− CsD(A,P)

[

T − T1 −
1

�
+

e−δ(T−T1)

�

]

− ChD(A,P)

[

T2

1

2
+

α(1 −m(ξ))

β + 1
Td

(

T1 − Td

)β+1
+

αβ(1 −m(ξ))

(β + 1)(β + 2)

(

T1 − Td

)β+2

−
α2(1 −m(ξ))2

2(β + 1)2

(

T1 − Td

)2(β+1)

]

− CO −
(

T1 − Td
)

� − CaA

− CIcD(A,P)

[
(

T1 −M
)2

2
+

�(1 − m(�))

� + 1

(

Td −M
)(

T1 − Td
)β+1

+
αβ(1 −m(ξ))

(β + 1)(β + 2)

(

T1 − Td

)β+2
−

α2(1 −m(ξ))2

2(β + 1)2

(

T1 − Td

)2(β+1)

]

+
PIeD(A,P)M

2

2

]

(20)

Subject to

Td ≤ T1
T1 ≤ T

C ≤ P

𝜉 ≤ 𝜉�

and T1 ≥ 0, T ≥ 0,P ≥ 0, 𝜉 ≥ 0,A is a positive integer (A > 0)

⎫

⎪

⎪

⎬

⎪

⎪

⎭
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Interest earned:

Total profit per unit time:

So, in this case, the objective is to maximize Z2 = TP2

(

A, T1, T ,P, �
)

.

(21)

IC2 =CIc

T1

∫

M

I2(t)dt

=CIcD(A,P)

[
(

T1 −M
)2

2
−

�(1 − m(�))

� + 1

(

T1 −M
)

{

(

T1 − Td

)β+1
+
(

M − Td

)β+1
}

]

−
2α(1 −m(ξ))

(β + 1)(β + 2)

{

(

T1 − Td

)β+2
−
(

M − Td

)β+2
}

−
α2(1 −m(ξ))

2

2(β + 1)2

{

(

T1 − Td

)β+1
−
(

M − Td

)β+1
}2

(22)
IE2 =PIe

M

∫

0

D(A,P)tdt

=
PIeD(A,P)M

2

2

(23)

TP2

(

A,T1, T ,P, �
)

=
1

T

[

SR − PC − DC − LSC − HC − OC − PTI − AC − IC2 + IE2

]

TP2

(

A,T1, T ,P, �
)

=
1

T

[

PD(A,P)

[

T1 +
1

�

(

1 − e−δ(T−T1)
)]

− CD(A,P)

[

T1 +
�(1 − m(�))

� + 1

(

T1 − Td

)β+1
+

1

�

[

1 − e−δ(T−T1)
]

]

−
CdD(A,P)α(1 −m(ξ))

β + 1

(

T1 − Td
)�+1

− CsD(A,P)

[

T − T1 −
1

�
+

e−δ(T−T1)

�

]

− ChD(A,P)

[

T2

1

2
+

α(1 −m(ξ))

β + 1
Td

(

T1 − Td

)β+1
+

αβ(1 −m(ξ))

(β + 1)(β + 2)

(

T1 − Td

)β+2

−
α2(1 −m(ξ))

2

2(β + 1)
2

(

T1 − Td

)2(β+1)

]

− CO −
(

T1 − Td
)

� − CaA

− CIcD(A,P)

[
(

T1 −M
)2

2
−

�(1 − m(�))

� + 1

(

T1 −M
)

{

(

T1 − Td

)β+1
+
(

M − Td

)β+1
}

−
2α(1 −m(ξ))

(β + 1)(β + 2)

{

(

T1 − Td

)β+2
−
(

M − Td

)β+2
}

−
α2(1 −m(ξ))

2

2(β + 1)
2

{

(

T1 − Td

)β+1
−
(

M − Td

)β+1
}2

]

+
PIeD(A,P)M

2

2

]



287

1 3

OPSEARCH (2020) 57:274–300	

Case 3 T1 ≤ M ≤ T

Interest charged: In this case there is no interest charged

Interest earned:

Total profit per unit time:

So, in this case, the objective is to maximize Z3 = TP3

(

A, T1, T ,P, �
)

.

(24)

Subject to

M ≤ T1
T1 ≤ T

C ≤ P

𝜉 ≤ 𝜉�

and T1 ≥ 0, T ≥ 0,P ≥ 0, 𝜉 ≥ 0,A is a positive integer (A > 0).

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(25)IC3 = 0

(26)
IE3 =PIe

⎡

⎢

⎢

⎣

T1

∫

0

D(A,P)tdt +
�

M − T1
�

T1

∫

0

D(A,P)dt

⎤

⎥

⎥

⎦

=PIeD(A,P)T1

�

M −
T1

2

�

(27)

TP3

(

A, T1, T ,P, �
)

=
1

T

[

SR − PC − DC − LSC − HC − OC − PTI − AC − IC3 + IE3

]

TP2

(

A, T1, T ,P, �
)

=
1

T

[

PD(A,P)

[

T1 +
1

�

(

1 − e−δ(T−T1)
)]

− CD(A,P)

[

T1 +
�(1 − m(�))

� + 1

(

T1 − Td

)β+1
+

1

�

[

1 − e−δ(T−T1)
]

]

−
CdD(A,P)α(1 −m(ξ))

β + 1

(

T1 − Td
)�+1

− CsD(A,P)

[

T − T1 −
1

�
+

e−δ(T−T1)

�

]

− ChD(A,P)

[

T2

1

2
+

α(1 −m(ξ))

β + 1
Td

(

T1 − Td

)β+1
+

αβ(1 −m(ξ))

(β + 1)(β + 2)

(

T1 − Td

)β+2

−
α2(1 −m(ξ))2

2(β + 1)2

(

T1 − Td

)2(β+1)

]

− CO −
(

T1 − Td
)

� − CaA

− 0 + PIeD(A,P)T1

(

M −
T1

2

)]

(28)

Subject to

T1 ≤ M

M ≤ T

C ≤ P

𝜉 ≤ 𝜉�

and T1 ≥ 0, T ≥ 0,P ≥ 0, 𝜉 ≥ 0,A is a positive integer (A > 0).

⎫

⎪

⎪

⎬

⎪

⎪

⎭
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The optimal order quantity corresponding to the optimal solution 
(

A∗, T∗
1
, T∗,P∗, �∗

)

 
is

5 � Solution methodology

For fixed T1, T ,P, and � the second order partial derivative of TPi

(

A, T1, T ,P, �
)

 with 
respect to A gives,

where

and X3 = PIeT1

(

M −
T1

2

)

Because of 0 ≤ m < 1,
𝜕2TPi

𝜕A2
< 0 . Therefore, TPi

(

A, T1, T ,P, �
)

 is a concave 
function of A and hence the problem of finding the global optimal solution of the 
advertisement frequency (A*), reduces to find the local optimum solution. Con-
cavity of the total profit function, with respect to other decision variables, has 
been shown graphically by means of numerical examples in concavity section. 
Since the variable A is a positive integer, we suggest the following algorithm to 
find the optimal solution of the proposed inventory system.

(29)Q∗ = D(A∗,P∗)

[

T∗

1
+

�(1 − m(�∗))

� + 1

(

T∗

1
− Td

)β+1
+

1

�

[

1 − e−δ(T
∗−T∗

1 )
]

]

�2TPi

�A2
=
m(m − 1)D(A,P)

TA2

[

P

[

T1 +
1

�

(

1 − e−δ(T−T1)
)]

−
Cdα(1 −m(ξ))

β + 1

(

T1 − Td
)�+1

− Cs

[

T − T1 −
1

�
+

e−δ(T−T1)

�

]

− Ch

[

T2
1

2
+

α(1 −m(ξ))

β + 1
Td

(

T1 − Td

)β+1
+

αβ(1 −m(ξ))

(β + 1)(β + 2)

(

T1 − Td

)β+2

−
α2(1 −m(ξ))

2

2(β + 1)2

(

T1 − Td

)2(β+1)

]

− Xi

]

(i = 1, 2, 3)

X1 = − CIc

[
(

T1 −M
)2

2
+

�(1 − m(�))

� + 1

(

Td −M
)(

T1 − Td
)β+1

+
αβ(1 −m(ξ))

(β + 1)(β + 2)

(

T1 − Td

)β+2
−

α2(1 −m(ξ))
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2(β + 1)2
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)2(β+1)

]

+
PIeM
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X2 = − CIcD(A,P)
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(

T1 −M
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+
(
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−
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(β + 1)(β + 2)

{
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−
(
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−
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{

(
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−
(
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+
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Algorithm:

Step 1	� Assign numerical values to all the parameters in appropriate units.
Step 2	� Set A = 1.
Step 3	� Compare M and Td . If M ≤ Td then go to step 4. Otherwise go to step 8.
Step 4	� Find the optimal solution of TP1

(

T1, T ,P, �|A
)

 subject to the constraints 
in Eq. (20).

	� Then obtain the corresponding total profit TP1

(

A, T∗
1
, T∗,P∗, �∗

)

 and go to 
next step.

Step 5	� Set A� = A + 1 and repeat step 4 to get TP1

(

A�, T∗
1
, T∗,P∗, �∗

)

 and go to 
next step.

Step 6	� If TP1

(

A�, T∗
1
, T∗,P∗, �∗

)

≥ TP1

(

A, T∗
1
, T∗,P∗, �∗

)

 then set A = A
� and go 

to step 4.

	� Otherwise go to next step.
Step 7	� Set the optimal solution 

(

A∗, T∗
1
, T∗,P∗, �∗

)

=
(

A, T∗
1
, T∗,P∗, �∗

)

 . Go to 
step 18.

Step 8	� Find the optimal solution of TP2

(

T1, T ,P, �|A
)

 subject to the constraints 
in Eq. (24).

	� Then obtain the corresponding total profit TP2

(

A, T∗
1
, T∗,P∗, �∗

)

 and go to 
next step.

Step 9	� Set A� = A + 1 and repeat step 8 to get TP2

(

A�, T∗
1
, T∗,P∗, �∗

)

 and goto 
next step.

Step 10	� If TP2

(

A�, T∗
1
, T∗,P∗, �∗

)

≥ TP2

(

A, T∗
1
, T∗,P∗, �∗

)

 then set A = A
� and go 

to step 8.

	� Otherwise go to next step.
Step 11	� Set the optimal solution 

(

A∗, T∗
1
, T∗,P∗, �∗

)

=
(

A, T∗
1
, T∗,P∗, �∗

)

 and go to 
next step.

Step 12	� Set A = 1.
Step 13	� Find the optimal solution of TP3

(

T1, T ,P, �|A
)

 subject to the constraints 
in Eq. (28).

	� Then obtain the corresponding total profit TP3

(

A, T∗
1
, T∗,P∗, �∗

)

 and go to 
next step.

Step 14	� Set A� = A + 1 and repeat step 13 to get TP3

(

A�, T∗
1
, T∗,P∗, �∗

)

 and go to 
next step.

Step 15	� If TP3

(

A�, T∗
1
, T∗,P∗, �∗

)

≥ TP3

(

A, T∗
1
, T∗,P∗, �∗

)

 then set A = A
� and go 

to step 13.

	� Otherwise goto next step.
Step 16	� Set the optimal solution 

(

A∗, T∗
1
, T∗,P∗, �∗

)

=
(

A, T∗
1
, T∗,P∗, �∗

)

 and go to 
next step.
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Step 17	� If Max{ TP∗
2
, TP∗

3
} = TP∗

2
 then the solution obtained in step 11 is the 

optimal.

	� If Max{ TP∗
2
, TP∗

3
} = TP∗

3
 then the solution obtained in step 16 is the 

optimal.
Step 18	� Compute the corresponding optimal order quantity Q∗ from Eq.  (29). 

Stop.

While executing the above algorithm, for fixed A, we can obtain the optimal solu-
tion which maximizes the total profit function with constraints using software like 
MATLAB, MATHEMATICA, R, MATHCAD, etc.

For fixed value of the variable A the necessary and sufficient conditions to maxi-
mize the total profit function TPi

(

T1, T ,P, �|A
)

 are as follows:

�TPi

�T1
= 0,

�TPi

�T
= 0,

�TPi

�P
= 0,

�TPi

�T�
= 0;

Table 3   Computational results 
of Example 1

Case 1

A T1 T P � TP1

1 0.40547 0.52982 20.83804 61.15874 11,171.47
2 0.44466 0.58097 20.93221 71.35787 11,361.63
3 0.48206 0.62986 21.02127 79.67207 11,428.31
4 0.51765 0.67619 21.10711 86.58933 11,448.15
5 0.55151 0.72026 21.18769 92.60817 11,444.61

Table 4   Computational results of Example 2

Case 2

A T1 T P � TP2

1 0.40135 0.49986 20.49055 59.98374 11,434.47
2 0.44106 0.55193 20.58261 70.33576 11,625.06
3 0.47903 0.60165 20.67203 78.71668 11,690.14
4 0.51493 0.64856 20.75582 85.64372 11,707.97
5 0.54894 0.69295 20.83572 91.57059 11,702.40

Case 3

A T1 T P � TP3

1 0.27400 0.37900 20.25039 14.04226 11,359.87
2 0.27400 0.39566 20.27674 14.87656 11,500.40
3 0.27400 0.41231 20.30663 15.30414 11,509.10
4 0.27400 0.42853 20.33929 15.55682 11,466.92
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Provided that the Hessian matrix H =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�2TPi

�T2
1

�2TPi

�T1T

�2TPi

�T1P

�2TPi

�T1�

�2TPi

�TT1

�2TPi

�T2

�2TPi

�TP

�2TPi

�T�

�2TPi

�PT1

�2TPi

�PT

�2TPi

�P2

�2TPi

�P�

�2TPi

��T1

�2TPi

��T

�2TPi

��P

�2TPi

��2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

 is a negative 

definite.

6 � Numerical examples

In Table 2 consider the parameter values in appropriate units.
While executing the proposed algorithm, for fixed A the solution has been 

obtained using the DEoptimR package in R. This package uses the differ-
ential evolution stochastic algorithm and gives the approximate global opti-
mum solution. The computational results of each example for different val-
ues of A are given in Tables  3, 4 and 5.  In Tables  3, 4  and 5, the bold values 

Table 5   Computational results of Example 3

Case 2

A T1 T P � TP2

1 0.57540 0.63138 20.36428 96.25084 11,884.84
2 0.57540 0.64106 20.36417 97.13897 12,111.84
3 0.57540 0.65107 20.36685 97.68159 12,198.74
4 0.57540 0.66098 20.37083 98.03803 12,228.23
5 0.57540 0.67085 20.37542 98.30022 12,226.64

Case 3

A T1 T P � TP3

1 0.49264 0.57540 20.20050 82.23272 11,944.11
2 0.49292 0.57540 20.20008 83.16379 12,160.83
3 0.49312 0.57540 20.20015 83.78138 12,234.52
4 0.49634 0.57980 20.20653 84.78092 12,248.58
5 0.52522 0.61943 20.27329 90.22666 12234.73

Table 6   Results of numerical examples

Solution A∗ T∗
1

T∗ P∗ �∗ Q∗ Profit Result from

Example 1 4 0.51765 0.67619 21.10711 86.58933 795.4887 11,448.15 Case 1
Example 2 4 0.51493 0.64856 20.75582 85.64372 790.9034 11,707.97 Case 2
Example 3 4 0.49634 0.57980 20.20653 84.78092 748.8343 12,248.58 Case 3
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Fig. 5   Concavity of the total profit function TP2

(

A,T1,T ,P, �
)

 (example 2) with respect to different vari-
ables when other variables are fixed

Fig. 6   Total profit TP1
(

A, T1, T, P, ξ
)

 (example 1) with respect to a T and P , b T and ξ when other vari-
ables are fixed
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Fig. 7   Total profit TP2
(

A, T1, T, P, ξ
)

 (example 2) with respect to a T and P , b T and ξ when other vari-
ables are fixed

Fig. 8   Total profit TP3
(

A, T1, T, P, ξ
)

 (example 3) with respect to a T and P , b T and ξ when other vari-
ables are fixed

Table 7   Computational results for different values of Td and M

Td M A∗ T∗
1

T∗ P∗ �∗ Profit Remark

0 0.0822 4 0.52540 0.68804 21.13795 107.99995 11,406.13 Case 2
0.2740 4 0.52237 0.66026 20.78676 109.06544 11,662.81 Case 2
0.5754 4 0.50286 0.59084 20.23584 109.37871 12,198.00 Case 3

0.15 0.0822 4 0.51765 0.67619 21.10711 86.58933 11,448.15 Case 1
0.2740 4 0.51493 0.64856 20.75582 85.64372 11,707.97 Case 2
0.5754 4 0.49634 0.57980 20.20653 84.78092 12,248.58 Case 3

0.25 0.0822 4 0.51620 0.67213 21.09448 66.03877 11,473.96 Case 1
0.2740 4 0.51278 0.64387 20.74182 64.05000 11,735.01 Case 2
0.5754 4 0.49462 0.57541 20.19282 61.78226 12,278.63 Case 3
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Table 8   Effect of different parameters on optimal results

Parameter A∗ T∗
1

T∗ P∗ �∗ Q∗ Profit

�

 0.2 4 0.51790 0.65031 20.76223 63.05848 792.66 11,721.01
 0.3 4 0.51617 0.64930 20.75790 76.26838 791.69 11,713.38
 0.5 4 0.51399 0.64801 20.75408 92.88461 790.33 11,703.79
 0.6 4 0.51315 0.64751 20.75300 98.86090 789.77 11,700.38
a

 250,000 3 0.67607 0.87466 21.17994 84.93050 504.67 5455.00
 375,000 3 0.55340 0.70356 20.86018 81.94273 629.27 8549.42
 625,000 5 0.49005 0.61310 20.68966 88.91187 949.48 14,908.81
 750,000 6 0.47242 0.58816 20.64307 91.88617 1106.4 18,142.06
m

 0.02 2 0.44417 0.55620 20.59090 70.53449 661.88 11,453.08
 0.03 3 0.48176 0.60534 20.67796 78.85866 727.62 11,552.16
 0.05 6 0.57595 0.72792 20.89890 96.51408 905.07 11,915.11
 0.06 8 0.62832 0.79570 21.02130 104.9526 1012.04 12,170.46
Ch

 0.75 5 0.65400 0.77681 20.65993 107.00374 966.72 11,929.48
 1.125 5 0.59544 0.72950 20.75430 98.88853 898.42 11,808.78
 1.875 4 0.47917 0.62128 20.82310 78.77847 751.80 11,618.78

2.25 4 0.44894 0.59868 20.88266 72.43956 719.43 11,538.32
CO

 150 3 0.39846 0.49552 20.48280 60.68171 614.60 11,963.73
 225 4 0.47883 0.60124 20.67111 79.03436 739.66 11,828.01
 375 5 0.58131 0.73531 20.91277 96.47637 890.23 11,597.36
 450 5 0.61231 0.77575 20.98555 100.80439 932.22 11,498.08
C

 5 5 0.30949 0.38881 10.35216 68.21520 1927.28 24,047.64
 7.5 5 0.43665 0.54992 15.57850 84.86723 1201.93 15,805.03
 12.5 4 0.60908 0.76943 26.01698 89.41070 596.57 9259.72
 15 4 0.69472 0.88014 31.30487 91.59664 470.91 7632.69
Ca

 40 9 0.52473 0.66094 20.77808 88.41013 830.67 12,065.72
 60 6 0.52905 0.66686 20.78864 88.59798 823.72 11,854.81
 100 3 0.50841 0.64019 20.74150 84.10810 772.91 11,593.50
 120 3 0.53651 0.67701 20.80780 88.88356 811.78 11,502.40
Cs

 4 4 0.50116 0.66773 20.66845 83.40869 818.35 11748.60
 6 4 0.50878 0.65704 20.71847 84.59645 802.96 11,726.19
 10 4 0.51990 0.64159 20.78439 86.46362 781.12 11,692.86
 12 4 0.52424 0.63600 20.80809 87.15592 773.21 11,680.10
Cd

 5 4 0.51622 0.64939 20.75854 76.25896 791.96 11,713.38
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indicate  optimal  values  for that particular  case.  The final results are shown in 
Table 6.    

7 � Concavity and optimality

For example 2 of the above section, the total profit is plotted against each vari-
able fixing other variables in Fig. 5. From Fig. 5, it is obvious that the total profit 
function TP2 is concave with respect to each variable. Figures  6, 7 and 8 also 
reveals that the total profit functions TP1, TP2 and TP3 are concave functions.

Fixing A = 4 in example 2, at the solution 
(T∗

1
, T∗,P∗, ξ∗) = (0.51493, 0.64856, 20.75582, 85.64372) the gradient is 

(−0.205, 0.125, 0.006, 0.000) , which is close to zero.

Table 8   (continued)

Parameter A∗ T∗
1

T∗ P∗ �∗ Q∗ Profit

 7.5 4 0.51556 0.64896 20.75715 81.23853 791.40 11,710.48
 12.5 4 0.51436 0.64824 20.75481 89.43995 790.50 11,705.76
 15 4 0.51395 0.64799 20.75335 92.88081 790.24 11,703.79
k

 0.015 4 0.48714 0.62433 20.72722 114.79927 763.51 11,669.26
 0.0225 4 0.50513 0.64014 20.74521 99.04411 781.44 11,693.12
 0.0375 4 0.52119 0.65388 20.76329 75.37330 796.82 11,718.12
 0.045 4 0.52545 0.65744 20.76798 67.32116 800.80 11,725.52

Fig. 9   Effect of 
�,Ch,Co,Ca,Cs,Cd and k on 
total profit
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The eigenvalues of H are −0.0153,−55.6244,−270.7990,−3641.7120 . There-
fore, the Hessian matrix is negative definite, and hence the solution is global 
maximum.

8 � Sensitivity analysis

Table 7 reveals that when the supplier allows more credit period (M) , the retailer 
earns more profit. The model assumes non-instantaneous deterioration, but it is also 
applicable for instantaneous deterioration case by taking Td = 0 . That is, the instan-
taneous deterioration case is a particular case of Non-instantaneous deterioration 
case. Table 7 shows that instantaneous deteriorating items need more PT investment.

Table 8 shows the computational results obtained by increasing each parameter of 
example 2 by − 50%, − 25%, + 25% and + 50%. Figures 9 and 10 shows how sensi-
tive the total profit with respect to different parameters. 

Observations and managerial insights:

•	 The total profit is less sensitive with the change in parameters �,Cd, and Cs . An 
increment in α increase the deterioration rate and increment in Cd increase the total 
deterioration cost but, PT investment reduce the deterioration rate (number of dete-
riorating units) significantly, and hence profit is ineffective with the change in α 
and Cd . Hence, retailers are suggested to invest in PT to reduce losses incurring due 
to deterioration. As the shortage cost Cs increases, our model decreases the short-
age period ( T∗ − T∗

1
 ) (see Table 8), which reduce lost sales and hence, profit is less 

effective with the change in Cs.

Hessianmatrix isH =

⎡

⎢

⎢

⎢

⎣

− 22528.8597 16592.7893 109.5509 3.0548

16592.7893 − 16592.86 29.8043 − 0.00006

109.5509 29.8043 − 59.01698 − 0.0542

3.0548 0.00006 − 0.0542 − 0.01688

⎤

⎥

⎥

⎥

⎦

;

Fig. 10   Effect of a,m, and C on 
total profit
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•	 Increment in different cost parameters Ch,Co, and Ca results in a decrement in 
total profit. In Table 8, increment in holding cost 

(

Ch

)

 decreases the optimal order 
cycle T∗ while increment in ordering cost (Co) increases the optimal order cycle 
(T∗) . Hence, when the holding cost raises, the retailer is suggested to decrease the 
order cycle, and when the ordering cost rises, the retailer is suggested to increase 
the order cycle. As the advertisement cost (Ca) increase, the frequency of advertise-
ment and total profit decreases. To increase the total profit, the retailer is suggested 
to increase the frequency of advertisement (A) when the advertisement cost (Ca) is 
less.

•	 As the value of k increase, the total profit increases. Since the reduced deteriora-
tion rate is (1 − m(�)) = e−k×� , an increment in k will reduce the deterioration rate 
greatly, which results in a less PT investment and more profit. The retailer need to 
invest more in PT for smaller value of k.

•	 The total profit is very sensitive with the change in parameters a and C . Increased 
value of the scale parameter (a) of the demand function will increase the demand, 
and hence increase the total profit. As purchase cost (C) increase, the optimal value 
of selling price (P∗) drastically increases. But, increased selling price (P∗) decrease 
the demand, and hence the total profit is decreasing drastically as C increases. As 
the shape parameter of demand (m) increase the total profit increases. In Fig. 10, it 
seems that the profit is less sensitive with the change in the parameter (m) this is due 
to assigning a smaller value to m (m = 0.04) . The profit will drastically increase for 
the assignment of higher value to m.

9 � Conclusion

In today’s competitive market environment, every business organization wants to 
optimize all possible strategies to get maximum revenue. Our proposed model 
is beneficial to the retailers to maximize the total profit by optimizing the pric-
ing, marketing, preservation, and inventory ordering policies. The PT investment 
reduces faster deteriorations, which is beneficial to businesses based on agri-
cultural products, bakery products, dairy products, and meat and fish products. 
The retailer earns more profit through credit period. Instantaneous deteriorating 
items need more PT investment and the profit for the non-instantaneous deterio-
rating items is more than the profit for instantaneous deteriorating items. When 
the advertisement cost is less, the retailer can earn more profit through increas-
ing advertisement frequency. This model can be extended to the production order 
quantity model. Can be further extended for two warehouse problem wherein 
preservation technology applied in either of the warehouses.
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