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Abstract
The core competency of the healthcare system is to provide treatment and care to 
the patient. The prime focus has always been towards appointing specialized phy-
sicians, well-trained nurses and medical staffs, well-established infrastructure with 
advanced medical equipment, and good quality pharmacy items. But, of late, the 
focus is driven towards management side of healthcare systems which include 
proper capacity planning, optimal resource allocation, and utilization, effective and 
efficient inventory management, accurate demand forecasting, proper scheduling, 
etc. and may be dealt with a number of operations research tools and techniques. In 
this paper, a Markov decision process inventory model is developed for a hospital 
pharmacy considering the information of bed occupancy in the hospital. One of the 
major findings of this research is the significant reduction in the inventory level and 
total inventory cost of pharmacy items when the demand for the items is considered 
to be correlated with the number of beds of each type occupied by the patients in 
the healthcare system. It is observed that around 53.8% of inventory cost is reduced 
when the bed occupancy state is acute care, 63.9% when it is rehabilitative care, and 
55.4% when long-term care. This may help and support the healthcare managers in 
better functioning of the overall healthcare system.

Keywords  Healthcare systems · Inventory control · Bed occupancy · Markov 
decision process · Case study

1  Introduction

The health expenditure per capita is increasing year after year and the cause of the 
rise in health expenditure is due to the aging population growth combined with 
new and more expensive treatments and pharmacy items (World Health Statistics 
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[1]). Furthermore, the factors that may add to these inefficiencies are the limited 
resources in a healthcare system, a mismatch in demand and supply of pharmacy 
items, and inappropriate inventory control systems (Nicholson et al. [2]). Therefore, 
the healthcare sector is prone to advance in effective and efficient inventory man-
agement techniques under the stochastic nature of the demand for pharmacy items 
as best as possible. Nonetheless, due to the demand and supply uncertainties and 
variability, the healthcare inventory systems seem to be quite complex (Saedi et al. 
[3]). Adding to the complication are the heterogeneity among patients and their bed 
occupancy aspects (McClean et al. [4]).

The ultimate objective of healthcare organization is to provide maximum service 
to the patients; hence certain steps or processes may be prepared prior to the arrival 
of the patient, such as the pharmacy items are inventoried in a hospital pharmacy so 
that they are available to the patients when needed along with other hospital services 
for proper treatment and care. However, the main problem is that the healthcare sys-
tems have limited space and budget to be spent on inventory items, and a number of 
pharmacy items have a limited shelf-life. In addition, there is constant pressure on 
reduction in healthcare costs. It is observed that in a healthcare system, pharmacy 
items represent 70–80% of the supply costs (Volland et al. [5]). Hence, an effective 
and efficient inventory control systems for hospital pharmacy is desired.

In contrast to the existing studies, this study focuses on inventory control systems 
for hospitals that utilize the information of bed occupancy. The daily requirements 
of the pharmacy items in a hospital vary according to the number of different types 
of beds occupied by patients and their length-of-stay in each bed. Hence, the model 
considers the impact of bed occupancy in hospitals on total inventory costs of hospi-
tal items under various constraints and conditions. To the best of our knowledge, the 
consideration of bed occupancy on inventory management of healthcare systems is 
a novel approach.

In this paper, the inventory model considering impact of bed occupancy is formu-
lated as a Markov Decision Process (MDP), and solved by backward induction algo-
rithm. The number of beds occupied by the patients in the system of each bed type 
and the inventory level of a pharmacy item is considered as the two MDP states, and 
an optimal state- and time-dependent inventory control system is determined. In this 
model, the number of beds occupied by the patients in the system of each bed type 
is correlated with the demand for pharmacy items which is stochastic in nature. The 
proposed approach in managing inventory in hospital based on routinely collected 
large-scale actual data is essential to facilitate managing and analysis of the hospital 
inventory system. Therefore, a case study in a multispecialty hospital located in Kol-
kata, India is considered to collect real data and validate the proposed model. The 
inventory-related decisions through the proposed model will significantly help the 
hospital managers, staff, medical personnel and policy-makers to achieve a system-
atic approach of optimal usage of scarce healthcare resources.

The organization of the paper is as follows. Section 2 reviews the relevant litera-
ture on healthcare inventory management systems. Section 3 presents a methodology 
on modelling and analysis of inventory control systems of hospital pharmacy items 
considering bed occupancy in hospitals. The proposed model is validated through a 
case study in a multispecialty hospital located in Kolkata in Sect. 4, and interesting 
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results and findings on comparing the traditional model with the proposed model are 
discussed in Sect. 5. Finally, the conclusions and possible future research avenues 
are discussed in Sect. 6.

2 � Review of literature

In recent times, there has been an increasing number of studies on healthcare inven-
tory management systems. The problem aspects considered in the existing litera-
ture are variability in demand and supply of items, replenishment policies, limited 
shelf life, and finite/infinite planning horizon. It is observed that although the nature 
of demand and supply in the healthcare setting is stochastic, a limited number of 
papers consider this aspect (Nicholson et al. [2], Saedi et al. [3], Vila-Parrish et al. 
[6]). Apart from that, the common replenishment policies considered are continuous 
review policy with parameters: order quantity and reorder point (Roni et al. [7]), and 
periodic review policy with parameters: review period and maximum inventory level 
(Gebicki et al. [8]). Furthermore, the different types of healthcare inventory models 
are classified based on the objective functions, decision variables, and constraints 
and it is observed that most of the literature considered cost model i.e. minimizing 
inventory-related cost with service level constraints (Nicholson et al. [2], Guerrero 
et al. [9]; Uthayakumar and Priyan [10]), and a few papers focus on service model 
(Bijvank and Vis [11], Little and Coughlan [12]).

Operations research (OR) models may very well explain the healthcare inven-
tory systems by formulating the model with the objective function to identify the 
optimal inventory parameters under certain constraints (Kelle et  al. [13], Uthaya-
kumar and Priyan [10]). Roni et al. [7] applied an optimization model by formulat-
ing a mixed integer programming in a non-linear environment with the objective of 
minimizing cost under various constraints. To represent the stochastic and complex 
nature in a healthcare setting, advanced OR models like Markov decision process 
(MDP) model is highly encouraged (Bijvank and Vis [11], Saedi et  al. [3], Vila-
Parrish et al. [6]). A semi-MDP model is developed by Rosales et al. [14] to ana-
lyze the continuous review two-bin inventory system. Haijema [15] considered the 
single type of patient but used an infinite horizon MDP model to find the optimal 
ordering, issuing and disposal policy that is solved by the value iteration method. 
Apart from that network flow analysis is suggested by Hovav and Tsadikovich [16] 
which considers a constrained cost minimization problem from the perspective of 
the healthcare organization. Since, the healthcare organization is assumed to con-
sist of several distribution centers and a service provider, a network flow model is 
used to represent the problem. To model the performance of the inventory system 
in a hospital in case of inventory pooling, the whole process from drug demand to 
supply involved by patients, hospitals, distributors, and manufacturers in the tradi-
tional inventory mode and inventory pooling mode (Wu et al. [17]). Wang et al. [18] 
implemented the dynamic drum-buffer-rope (DDBR) replenishment model using a 
system dynamics approach. The limitations of mathematical programming are that 
they are not so well in predicting the operational performance under the pressure of 
real-world day-to-day variability, such as demand, transportation delays, production 



1182	 OPSEARCH (2019) 56:1179–1198

1 3

lead times, etc. Hence, simulation is used to test the inventory strategy chosen by the 
optimization model to test it further. Event-driven simulation allows the necessary 
flexibility in modeling (Gebicki et al. [8]), to evaluate the performance of different 
inventory systems based on the total cost and number of stockouts. Attanayake et al. 
[19] also tested their stochastic demand and lead time distributions inventory model 
by simulation. The outputs generated by simulation may be further used for statisti-
cal analysis. Apart from that, the greedy algorithm heuristics is also applied to solve 
the healthcare multi-echelon inventory problem by Nicholson et al. [2] for finding 
optimal par levels.

Hence, from the extensive review of the literature, it is observed that there is a 
lack of studies on inventory control systems at the hospital-level and focusing more 
at the patient level. There is a need to use improved information to understand the 
link between the number of beds of different types occupied by the patients with 
the demand for hospital inventory items. The development of real-time demand 
forecasting and inventory management systems that consider patient and bed occu-
pancy information as an input is an opportunity for research. The development of 
advanced OR models that integrate these factors may be helpful for hospitals to 
understand and control their inventory-related costs, improve patient care and effi-
ciently use limited hospital resources. In this paper, an optimal inventory control 
system is developed that incorporates the impact of patient bed occupancy on the 
daily demand of pharmacy items. The aim is to determine optimal state-dependent 
inventory control policy that minimizes expected total inventory-related cost subject 
to a number of constraints, such as inventory balance, space, and service level. The 
proposed model is further validated using the data from a multispecialty hospital 
located in Kolkata, India.

3 � Methodology

The patients arriving and staying in a healthcare facility may be at various stages of 
care and treatment, such as acute care, rehabilitative care, and long-term care. Acute 
care patients occupy the hospital bed for a shorter period of time. Rehabilitative care 
patients occupy the hospital bed for a moderate period of time, while long-term care 
patients occupy the bed for a longer period of time (for example, geriatric patients). 
Thus, based on the length-of-stay of an individual patient, a bed is changed from 
one type to another. Furthermore, it is considered that there exists a correlation 
between the number of beds of each type occupied by patients (bed occupancy) and 
the demand for pharmacy items which changes stochastically. Considering the bed 
occupancy-dependent demand model, the inventory control system of the pharmacy 
items is modeled using the MDP approach and compared with the traditional inven-
tory control approach in the hospitals. The objective of the study is to minimize total 
inventory costs in the system. The pharmacist in a hospital system is engaged with 
the problem of balancing among different inventor-related costs, such as ordering 
costs, holding costs, shortage costs, and expiration costs. Ordering costs includes 
the costs required for the processing of an order. The holding cost is incurred on 
the inventory on-hand at each time period. In case of stock-outs, shortage cost is 
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incurred. Finally, each unit of medicine expired in the hospital pharmacy incurs an 
expiration cost.

The proposed model is based on the following assumptions and notations 
(Table 1).

Assumption 1  The inventory system under consideration includes inpatient phar-
macy items. The outpatient pharmacy department is separate and is not considered.

Assumption 2  The pharmaceutical supplier is considered to be of infinite capacity 
and have a constant lead time.

Assumption 3  The planning horizon is finite as the pharmaceutical items expired 
or outdated after a fixed time period.

Assumption 4  Shortages are fulfilled by emergency order (other hospitals or sup-
pliers) ensuring 100% service level.

Assumption 5  The quantity ordered arrives before any demand is realized.

Assumption 6  States of the system at the next decision epoch is not known in 
advance (since demand is random).

3.1 � Traditional approach (Model‑1)

The traditional inventory control approach is to determine the reorder level and 
order-up-to level (Gebicki et al. [8]). The reorder level is based on the demand dur-
ing the lead time following a normal distribution and is expressed in Eq. 1.

where Si is the type of bed occupied, L is the constant lead time, �Si
 is the average 

daily demand of item in state Si , �Si is the daily demand standard deviation of an 
item in state Si , and zSi is the z-value of a standard normal distribution with respect 
to the service level assigned to each state, Si. The term zSi�Si

√
L is the safety stock 

considered to deal with the variability in demand. The order-up-to level is calculated 
as the sum of reorder level and economic order quantity, uSi which is calculated as 
Eq. 2 (Hillier and Lieberman [20]).

where ASi
 is the fixed ordering cost, hSi is the percentage used for holding cost, h′

Si
 is 

the shortage cost per unit, and cSi is the purchase cost per unit.

(1)RSi
= �Si

L + zSi�Si

√
L

(2)uSi =

√
2mSi

ASi

hSicSi
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3.2 � MDP approach (Model‑2)

The MDP model consists of five basic components, viz. the decision epochs, states, 
actions, transition probabilities, and cost functions and is described below.

3.2.1 � Decision epochs

The time at which the decision is made is the decision epoch. Since the hospital 
inventory is checked every day, the decisions whether to place an order or not is 
taken once a day with finite planning horizon denoted by T  periods. Thus, a hospital 
inventory system makes ordering decisions at the beginning of every period over a 
finite time horizon.

3.2.2 � States

The MDP model is described with two states: (i) the number of beds of each type 
occupied by patients (bed occupancy) and (ii) inventory level of a pharmacy item. 
The state of bed occupancy, Si is correlated with the pharmacy item demand pro-
cess, mt and is modelled as a Markovian demand process. The inventory level is xt at 
the time period t.

3.2.3 � Actions

At the beginning of period t , the order of quantity, ut ≥ 0 is placed with the knowl-
edge that the current states are 

(
Si, xt

)
 and demand is mt . The order quantity ut will 

be delivered at the end of period t . In case the demand is more than the on-hand 
inventory after the order is received (i.e.xt + ut < mt ), an emergency order is placed 
to meet the demand, and the next period starts with zero on-hand inventory.

3.2.4 � Transition probabilities

The probability that the type of bed changes from being occupied by a patient in a 
state Si to a patient in a state Si+1 (see Fig. 1) is denoted by the transition probability 
matrix, P

(
Si,t+1

||Si,t
)
 (McClean et  al. [4]). In addition, there is an absorbing state, 

Sn+1 representing the discharge or death of the patient. If the patient is discharged 
or die from bed Si then the bed changes from being occupied by a patient in state Si 

S1 S2 S3 Sn

1-p1 1-p2-q2
1-p3-q3

p1 p2 

q3q2

qn

1-qn

Fig. 1   A Markov chain showing changes in types of bed occupied by patients
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to being occupied by a patient in state S1 i.e. the initial state. It is assumed that all 
patients are initially admitted to state S1 , (for example, acute care state).

For i = 1, 2,… , n , pi = P
{
patient in state Si+1 at time t + 1|patient in state Si at time t

}
 

and qi = P
{
patient in state Sn+1 at time t + 1|patient in state Si at time t

}
 . Let bSi,t 

be the number of beds occupied in state, Si at time, t.
Furthermore, the transition probability of the inventory level depends on the new 

demand and the action taken. The next inventory level state is defined in Eq. 3.

The demand process, mt =
{
Dt;t ≥ 1

}
 is modulated by the state, Si and defined as 

p
(
mt = Dt|Si

)
 i.e. the probability that demand is a discrete value, m for state, Si . 

Thus, the transition probability matrix of the inventory level state is denoted in 
Eq. 4.

Thus, the probability of reaching the next inventory level state depends only on the 
current inventory level state,xt the current bed occupancy modulated demand pro-
cess, mt and the current action, ut and not on the history of past states and actions 
(following Markovian property).

3.2.5 � Cost functions

Cost is incurred while taking action in a given state. For instance, depending on the 
state, Si , and the number of beds occupied by patients in each state, bSi,t , the total 
inventory cost function is developed considering the purchase cost of a pharmaceuti-
cal item 

(
cSi

)
 , the ordering cost per unit ordered 

(
ASi

)
 , the percentage used for hold-

ing cost per unit per period 
(
hSi

)
 , and the shortage cost per unit per period 

(
shSi

)
 for 

each unsatisfied demand. Both holding and shortage costs are incurred at the end of 
the period. The unsatisfied demand is immediately met by emergency order which is 
included in the shortage cost. An expiration or outdating cost 

(
exT

)
 is incurred for at 

the end of the planning horizon, T  . Thus, the cost function depending on the action 
and states is given in Eqs. 5 and 6.

P
�
Si,t+1

��Si,t
�
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − p1 p1 0 0 ⋅ ⋅ 0

q2 1 − p2 − q2 p2 0 ⋅ ⋅ 0

q3 0 1 − p2 − q3 p3 ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

qk 0 0 0 ⋅ ⋅ 1 − qn

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)xt+1 = xt + ut − bSi,tmt

(4)P
(
xt+1

||xt , ut
)
=

{
p
(
mt = Dt|Si

)
, if xt+1 = xt + ut − bSi,tmt

0, otherwise
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Since, the demand for the item is random, stochastic and depends on the changing 
number of beds occupied of each type, the decisions are based on the expected cost 
which is given in Eq. 7.

Subject to

The constraint in Eq. 8 is the inventory balance equation, Constraint in Eq. 9 is 
the limited space capacity equation where CAP denotes the limited number of inven-
tory items that can be stocked. Constraint in Eq. 10 is the service level constraint 
where, the probability that the demand is met by the available on-hand inventory 
after the order is received is limited, and 0 < 𝛽 < 1 . Constraint in Eq. 11 is the posi-
tivity constraint of the order quantity, and Constraint in Eq. 12 is the finite planning 
horizon constraint.

3.2.6 � Optimal decision policy

The optimal decision policy is defined by the set of decision rules at every decision 
epochs that decides what action to take for any given state and any given decision 
epoch. Hence, the policy is determined by the order quantity that gives the minimum 
expected total inventory cost over the length of the planning horizon. The total cost 
of a policy over a finite planning horizon of length, T  and starting at state 

(
Si,t, xt

)
 is 

given in Eq. 13.

(5)

TC
(
Si,t, xt, ut

)
= ASi

�
(
ut
)
+ utcSi +

xt

∫
0

hSi ⋅ cSi

(
xt + ut − bSi,tmt

)
f (m)dm

+

∞

∫
xt

h�
Si

(
bSi,tmt − xt − ut

)
f (m)dm

(6)TCT

(
Si,T , xT

)
= exT ⋅ xT

(7)TC
(
Si,t, xt, ut

)
=

n∑
i=1

P
(
Si,t+1

||Si,t
) ∞

∫
0

P
(
xt+1

||xt , ut
)
TC

(
Si,t, xt, ut

)
f (m)dm

(8)xt+1 = xt + ut − bSi,tmt

(9)ut ≤ CAP − xt

(10)Prob
(
xt + ut ≤ mt

) ≤ �

(11)ut ≥ 0

(12)0 ≤ t ≤ T − 1
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The optimization problem is solved by backward induction i.e. it starts with the 
last time period where the decisions need to be taken (in this case, T − 1 ), and moves 
to time period t = 1 . Thus, the total cost incurred from period t onward is defined by 
Bellman’s optimality equations (Puterman [21]) in Eq. 14.

The optimal decision at any decision epoch and for any given state is the action i.e. 
the order quantity, ut as given in Eq. 15.

Thus, the cost function C∗
t

(
Si,t, xt, ut

)
 is the minimum expected total inventory cost 

over the planning horizon given that the system starts in states 
(
Si,t, xt

)
 . The optimal 

order quantity is u∗
t
 for each state and each decision epoch.

To validate the proposed model, a case study is considered and is described in the 
next section.

4 � Case study

The data is collected from a multispecialty hospital in Kolkata, India. The hospital 
has 15 departments, 24 types of care units with a total of 226 functional beds, more 
than 10,000 patients in a year, 500 physicians and approximately 7000 pharmacy 
items stored in a hospital pharmacy. The purchasing department makes inventory-
related decisions with the consultation of pharmacists. The pharmacy items main-
tained are based on the physician preference and as such no standardization of items 
is maintained in the hospital. The pharmacy meets the demand of individual patient 
as per the prescription or medication order. The pharmacy places order to the phar-
maceutical supplier according to the replenishment decisions. The current inventory 
control system in the hospital under study follows a traditional approach for all phar-
macy items with the control parameters (reorder level and order-up-to level) decided 
purely on the basis of historical data on annual consumption. The lead time of items 
distribution from the suppliers is generally constant.

To validate the proposed model, the following data are collected from the hos-
pital information system: patient ID and name, patient arrival and discharge dates, 

(13)
CT

(
Si,t, xt, ut

)
= E

(
T−1∑
t=1

TCt

(
Si,t, xt, ut

)
+ TCT

(
Si,T , xT

))

(14)

C∗

t

�
Si,t, xt, ut

�

= min
0≤ut≤CAP

⎛
⎜⎜⎝
TCt

�
Si,t, xt, ut
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pharmacy item code, and name, the quantity of pharmacy items issued to patients, 
and unit price of these items. Around 11,772 data of patients admitted in the hospi-
tal and consuming more than 5000 types of pharmaceutical items during the year 
2015–2016 were collected. The format in which the inventory data is stored in the 
hospital database is shown in Table 2.

The variability in bed occupancy and demand of pharmacy items is shown 
in Fig. 2. It is interesting to find that the correlation between the number of beds 
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occupied by the patients in the hospital and demand for pharmacy items is very high 
(84%). Hence, the stochastic demand function captures the patient information in the 
form of bed occupancy.

Furthermore, the length-of-stay in days (LOS) is calculated by subtracting the 
arrival and discharged dates. It is observed that the beds occupied in a year for a 
short time (0 ≤ LOS ≤ 7 days) are more compared to the number of beds occupied 
for higher LOS (8 ≤ LOS ≤ 20 and LOS > 20 days) (Fig. 3). These three different 
groups of LOS are termed as acute, rehabilitative and long-term and are the Markov 
states (see Fig. 4) as they follow the Markovian property (see Appendix).

It is assumed that all patients are initially admitted as an acute patient. The tran-
sition probability matrix describes the probability with which one state changes to 
another with time and is computed from the LOS data. The transition probabilities of 
the bed occupancy states are derived from the real data and are presented in Table 3. 
Since it is unlikely that the bed occupied by patients in acute care bed (State-1) will 
be in the long-term care bed (State-3) in the next day, therefore, P

(
S3,t+1

||S1,t
)
= 0 . 

Similarly, it is very unlikely that bed occupied by patients in long-term care bed 
(State-3) will be occupied by rehabilitative care patients (State-2) in the next day (
i.e.P

(
S2,t+1

||S3,t
)
= 0

)
 . However, it is highly likely for the bed occupied by patients 

in an acute care bed (State-1) and long-term care bed (State-3) to be in the same 
state in the next day 

(
i.e.P

(
S1,t+1

||S1,t
)
= 0.941 and P

(
S3,t+1

||S3,t
)
= 0.968

)
 . Further-

more, beds occupied by patients in rehabilitative care (State-2) may change to long-
term care bed (State-3) in the next day with probability 0.035 if the patients are not 
discharged, and may change to acute care bed with probability 0.225 if the patients 
are discharged.

Table 3   Transition probability 
matrix, P

(
Si,t+1

||Si,t
) States, Si 1 2 3

1 0.941 0.059 0
2 0.225 0.740 0.035
3 0.032 0 0.968

Table 4   Summary of state-
dependent demand for the 
selected pharmacy item

Descriptive statistics Daily demand (number of items)

State-1 State-2 State-3

Mean 
(
�Si

)
16.01 32.07 8.98

Standard deviation 
(
�Si

)
8.6 17.0 6.5

Coefficient of variation (COV) 0.5 0.5 0.7
Median 15 30 7
Mode 15 36 4
Minimum 1 5 1
Maximum 52 113 29
Standard error 0.45 0.89 0.80
Confidence level (95.0%) 0.9 1.7 1.6
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Apart from that, each patient’s requirement for pharmacy items varies daily 
according to their states, hence the amount required of each item depends on the 
number of beds occupied in each state. A particular pharmacy item named Intra-
venous Cannula (Venflon) is considered for the study. The descriptive statistics 
summary of the state-dependent demand for the selected pharmacy item is given in 
Table 4. The demand distribution of this item for three different states follows nor-
mal distribution and is shown in Fig. 5.

Furthermore, variation between the number of beds occupied by patients in a 
hospital and demand for the pharmacy items exists and is shown in Fig. 6 for a sam-
ple of data.

As per the recommendations from the hospital administration, the following val-
ues of the input parameters are considered. The purchase cost of the item, 
cSi = Rs110 , ordering cost per unit ordered, ASi

= Rs10 , the percentage used for 
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holding cost per unit per period, hSi = 0.11 , the shortage cost per unit per period, 
h�
Si
= Rs100 , and expiration or outdating cost, exT = Rs200 . The limited capacity, 

CAP = 100 items, service levels (�) are 99.9%, 99% and 97.5%, and the lead time (L) 
is 1 day.

5 � Results and discussions

The optimal values of the reorder point and order-up-to level are obtained for the 
selected pharmacy item and are illustrated in Table 5 for both the models (traditional 
and MDP). It is observed that the inventory policy obtained by the traditional 
approach can be characterized as min–max policy i.e. 

(
s′
Si
, S′

Si

)
 policy, whereas, the 

inventory policy obtained by the MDP approach is characterized as state-dependent 

Table 5   State-dependent optimal inventory control parameters (reorder level and order-up-to level)

States Service level (%) Reorder level (number of 
items)

Order-up-to level (number 
of items)

Model-1 Model-2 Model-1 Model-2

Acute 99.90 42.86 42 48.00 43
99.00 36.25 36 41.39 37
97.50 33.04 33 38.18 34

Rehabilitative 99.90 84.62 84 91.90 85
99.00 71.69 71 78.97 72
97.50 65.4 65 72.68 66

Long term 99.90 29.335 29 33.18 30
99.00 24.33 24 28.18 25
97.50 21.893 21 25.74 22
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base stock policy, i.e. 
(
s�
Si
− 1, S�

Si

)
 policy. The 

(
s′
Si
, S′

Si

)
 policy denotes that as the 

inventory level of the item at state, Si is at or below the reorder level, s′
Si
 , an order is 

placed to update the inventory level to order-up-to level, s′
Si
 . The 

(
s�
Si
− 1, S�

Si

)
 policy 

denotes that as the inventory level is at or below the reorder level, s�
Si
− 1 , an order is 

placed to update the inventory level to order-up-to level, s′
Si
.

Furthermore, it is observed that there is a significant reduction in order-up-
to levels obtained from the MDP approach (Model-2) compared to the traditional 
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approach (Model-1) (Fig. 7). Apart from that, it may be observed from Fig. 7 that 
the values of reorder level and order-up-to level decreases with a decrease in service 
level for each state.

The results in Fig. 8 indicates that the expected total inventory cost decreases 
as the time period tends to move towards the end of the planning horizon (in this 
case, T = 12 days). In addition, the cost varies with the current inventory level. 
It decreases till a certain inventory level, and then increases, thus the optimal 
expected total inventory cost is achieved (see Fig. 9).

The total inventory cost obtained from Model-1 and Model-2 is compared 
(Fig. 10) by varying the current bed occupancy states. The results show signifi-
cant cost reduction in the case of Model-2 compared to Model-1 for each state 
(53.8% when the current state is acute care, 63.9% when the current state is reha-
bilitative care, and 55.4% when long-term care).

6 � Concluding remarks and future scope of research

In this paper, an effective and efficient inventory control system for hospital phar-
macy is developed considering the correlation between the daily requirements 
of the pharmacy items in a hospital and the number of different types of beds 
occupied by patients in a hospital. The objective is to minimize the total inven-
tory costs under space and service level constraints and obtain the optimal con-
trol parameters (reorder level and order-up-to level). The number of beds occu-
pied by the patients in the system of each bed type and the inventory level of a 
pharmacy item is considered as the two Markov states and an optimal state- and 
time-dependent inventory control system is determined. A case study in a multi-
specialty hospital located in Kolkata, India is considered to collect real data and 
validate the proposed model. It is observed that modeling the correlation between 
the demand of pharmacy items in a hospital and the number of different types of 
beds occupied by patients in a hospital as Markovian demand process has sig-
nificantly reduced the order-up-to level and expected total inventory cost. Hence, 
the proposed inventory control systems will help the hospital managers, staff, 
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medical personnel and policymakers to achieve a systematic approach of opti-
mal usage of scarce healthcare resources. The future scope of the research may 
define the states to indicate patient information, such as medical condition, clini-
cal diagnosis, and treatment stages. Moreover, in the present study, the probabil-
ity distribution of lead time demand is obtained from the historical data; however, 
in many cases due to lack of information, knowledge of probability distribution 
of random variables are not known. In such cases, distribution-free approaches 
can be explored (Malik et al. [23]; Sarkar and Mahapatra [24]). Additionally, the 
return of excess inventories from the point-of-use locations to the hospital phar-
macy may be considered (Cheikhrouhou et al. [25]), along with a multi-echelon 
inventory system (Pal et  al. [26]). Since, many healthcare inventory items like 
injections and medicines are perishables and their quality may also deteriorate 
with time (Pal et al. [27]). Such situations may be considered in future healthcare 
inventory models. Overall, the focus should be to build a sustainable inventory 
model with affordable healthcare services (Dey et al. [28]; Sarkar et al. [29]).
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Appendix

Testing markovian property

To prove that the states hold the Markov assumption, a higher-order Markov model 
is designed (Chen and Hong [22]). It is because if the Markov assumption holds 
then building memory into the model via higher order models should have no effect 
on the transition probabilities.

Hypotheses of interest and test statistics

Suppose bed states, 
{
St
}
 is a strictly stationary time series process. It follows a 

Markov process if the conditional probability distribution of St+1 given the informa-
tion set Zt =

{
St, St−1,…

}
 is the same as the conditional probability distribution of 

St+1 given St only.
This can be expressed by the null hypothesis,

for all i and for all t ≥ 1 . Under H0 , the past information set Zt−1 is redundant i.e. 
the current state variable or vector St will contain all information about the future 
behaviour of the process that is in the current information set Zt.

The alternative hypothesis is when

H0 ∶ P(St+1 ≤ i|Zt) = P(St+1 ≤ i|St)
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for some t ≥ 1 , then St is not a Markov process. The Chapman–Kolmogorov equa-
tion is able to detect Markovian property.
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