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Abstract
In this paper, the problem of elective surgery scheduling is studied, and resources 
like surgeons, nurses and operating rooms (ORs) are considered. The problem is to 
assign surgeries to operating rooms in order to meet three goals: (1) maximizing the 
number of surgeries that can be done using given fixed resources, (2) minimizing the 
total fixed costs and overtime costs of the ORs, and (3) minimizing the maximum of 
completion time of operating rooms. We take into account the uncertainty with the 
stochastic parameter for the regular operating time of OR in model and fuzzy con-
straint for resources and overtime. A multi-objective model is proposed to choose 
the operations to be scheduled on the selected day, and to assign the elective surger-
ies to OR sessions. In the first phase, we formulated a fuzzy robust optimization 
model and in the second phase, the sensitivity of the model to different values for 
penalties in the objective function, is analyzed. The efficiency of the proposed solu-
tion is validated by numerical results of applying the model to the case of a public 
hospital in Iran.

Keywords  Fuzzy · Robust · Stochastic · Multi-objective · Scheduling of the surgical 
cases

1  Introduction

Recently, a great growth is occurred in healthcare systems around the world. For 
example, in the United States healthcare annual costs are more than $2.4 trillion, 
which constitutes 16.2% of the gross domestic product [21, 36]. Most of these 
expenditures escalated easily for the last handful of ages, all of which will reach 
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19.5% of the US GDP by simply 2017 [9]. In addition, operating rooms (ORs) are 
usually the most vital assets for hospitals. In some hospitals, above 40% of the 
income originates from ORs, and the ORs are liable for a large percentage of the 
total expenditures [12, 39].

In some public hospitals, OR plays a role in the greatest expenses with almost 
no income. Therefore, the administration of operating rooms has turned into a cen-
tral problem intended for hospital managers to manage surgery’s fees to be able to 
supply satisfactory excellent providers [32]. Indeed, a significant portion of hospi-
tal expenditures is surgery. Surgical cost involves fixed expenses (OR equipment, 
nurses, and surgeon cost) and variable expenses (possible overtimes, equipment 
wear and tear costs, as well as disposables) [36]. Operations research and decision 
support tools are very common approaches in the operating room scheduling litera-
ture [18, 25, 33].

The growing attention to the planning and scheduling of surgical cases results 
in a growth of problem types. One of the major difficulties which is related with 
the operating room schedules is the uncertainty in surgical services. For instance, 
Saadouli et al. [32] considered the case of a hospital in Tunisia, in which they sched-
uled the elective surgery patients under uncertainty of the capacity of resources as 
well as the surgery and recovery durations. They considered two kinds of assets: 
Operating Rooms (OR) and Recovery Beds (RB). Brandaa et al. [6] studied uncer-
tainty in the fixed interval scheduling problem, where random delays in processing 
times account for the risk. Heydari and Soudi [14] considered the predictive/reac-
tive scheduling problem with two kinds of surgery request: (1) elective or known 
request; (2) emergency or uncertain request. The emergency patients with uncertain 
surgery time arrive stochastically, and this imposes the modification of the schedule 
of elective patients on the decision maker. For solving the problem, they suggested a 
method inspired from the two-stage stochastic programming.

Moreover, researchers try to incorporate stochastic approaches into deterministic 
planning and scheduling approaches. For instance, Saremia et  al. [35] introduced 
stochastic service times for patients, and considered the presence of a variety of 
patient types as well as the compatibility and accessibility of resources. Rachuba and 
Werners [29] studied the problem of assigning the patients to rooms and days, con-
sidering stochastic surgery times. They tried to find robust schedules, and dedicated 
reserve time windows to the emergency demand that arrives in a random manner.

Some of operating room planning problems are formulated as a Mixed Inte-
ger Linear Program (MILP) and Mixed Integer Nonlinear Programming (MINLP) 
model with a Constraint Programming (CP) model. Molina-Pariente et al. [19] pro-
posed a mixed integer linear programming model for the planning and scheduling 
problem, in which one or two surgeons should be present in the surgical team, and 
their skills and experience determine the surgery durations. Wang et al. [38] stud-
ied a real-life case in order to determine which one of the mixed-integer or con-
straint programming can better solve a highly constrained operating room schedul-
ing problem.

Beliën and Demeulemeester [5], Ogulata and Erol [24], Jebali et  al. [15], and 
Adan et al. [1] all present some exact solving methods, most often using the com-
mercial softwares such as CPLEX. Several papers developed to solve the problem 
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by heuristic algorithms. Wang et al. [37] used a method inspired by a resource-con-
strained machine scheduling problem with machine eligibility constraint to solve the 
operating room scheduling problem with the makespan criterion. Nasiri and Rah-
var [21] introduced nurse preferences and consecutive shifts to the nurse scheduling 
problem. For finding the optimal solution of the new problem, they proposed a two-
step multi-objective mathematical model.

The solution methods of ORs scheduling problems can be divided into four dif-
ferent Solution methods of surgery scheduling problems can be divided into three 
major classes: queuing models (for determining the start times of a set of surgeries 
in single OR scheduling problems), simulation methods (preparing for an evaluation 
different scheduling heuristics under uncertain parameters such as surgery duration, 
recovery time, arrival process, and resource availability, in during surgery schedul-
ing), and optimization methods (for developing deterministic/stochastic integer pro-
gramming/mixed integer programming models base on fuzzy, robust and stochastic 
nature of these problems) [2, 22, 30].

Dexter et al. [10] studied the problem of scheduling operating rooms with fuzzy 
constraints. For maximization of the room usage rate, they use bin-packing based 
approaches. Saremi et al. [34] addressed the problem of assigning surgical services 
to outpatients with stochastic service times. Razmi et al. [31] studied uncertainty in 
the problem of the unique equipment planning of operating room using a stochas-
tic model. Gerami and Saidi-Mehrabad [11] considered the case that non-elective 
patients (emergency or urgent) arrives at uncertain times and selected the reactive 
scheduling approach to schedule the operating rooms assuming the stochastic times 
for all durations. Lahijanian et al. [16] investigated the operating room scheduling 
problem with elective patients considering the operation lengths as fuzzy numbers. 
They proposed a mixed-integer programming model with the total weighted start 
times criterion. Hamid et al. [12] suggested considering the decision-making styles 
of the surgical team members to enhance the quality of a surgery.

The characteristics of the recent papers considered uncertainty in operating room 
planning and scheduling are shown in Table 1. In this paper, we study the schedul-
ing of elective patients on a daily basis in the surgery division of an Iranian hospital. 
We have extended Vijayakumar et al. [36] work on assumptions and constraints, and 
solved a new problem under uncertainty. The primary contribution of this study is 
to consider overtime, cost and the number of surgeries as objective functions at the 
same time. So the aims of this model are (1) to maximize the number of surgeries 
that could be performed given fixed resources, (2) to minimize the fixed costs and 
overtime costs of the ORs, and (3) to minimize the maximum completion time of 
operating rooms. In addition, for the first time, we developed fuzzy robust stochastic 
multi objective models to solve the surgery scheduling problems in multiple ORs.

Due to the uncertainty of surgery times, tools such as stochastic programming 
are commonly used, as they allow the OR manager to account for the random nature 
of surgery times [17]. So, we assume that the regular operating time of OR ( ko ) is a 
fuzzy-stochastic parameter.

In addition, the number of nurses, and the maximum operating time of each room 
can vary with the importance of the surgery. Thus, in this paper, we considered them 
as fuzzy constraints.
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The remainder of this paper is organized as follows. Section 2 presents the prob-
lem of surgery scheduling of elective patients considering the overtimes, and intro-
duces the base model. Section 3 describes the fuzzy robust stochastic programming 
methodology, and proposes the reformulation of the base model. Section 4 presents 
the computational results, and finally, Sect. 5 concludes the paper.

2 � Problem definition and notations

This section proposes a Mixed Integer Nonlinear Programming (MINLP) model for 
solving the elective surgery scheduling problem under multi-resource, multi-period, 
priority-based conditions. Our model is developed based on these assumptions:

•	 Time is divided into 30-min intervals, such that a 8-h shift includes 16 time-
periods.

•	 Depending on the length of time the OR is planned, some overtime may occur at 
the end of the day (defining the length of overtime of each OR).

•	 The pre-emption is not permitted, i.e., Once an operation initiates, it is continued 
until its termination.

•	 Only one surgeon performs a surgical case, but more than one operation can be 
performed by one surgeon.

2.1 � Notations

Before formulating the problem, some notations should be defined.
Parameters:

p Index for patients requiring a surgery p = 1, 2,… , P

o Index for operating rooms o = 1, 2,… , O

s Index for surgeons s = 1, 2,… , S

t Index for slots during day t = 1, 2,… , T

Ip Priority of patient p where Ip ∈ I+

Tp Total time that is necessary for the most experienced surgeon to perform the 
surgery of patient p

Rs A coefficient which is determined due to the experience of the surgeon and affects 
the surgery time (for the most experienced surgeon Rs = 1)

�st 1, if surgeon s is available at time t  ; 0, otherwise
AN
t

Total number of nurses available at a time t
�p Number of nurses required for patient p
Fo The fixed costs of opening room o per day
uo The overtime costs of room o per unit time
ko The regular operating time of OR o , i.e., the length of time that room o is planned 

to be available (stochastic variable)
mo The maximum operating time of room o

Variables:
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xpost 1, if patient p is scheduled in OR o with surgeon s at time t, 0, otherwise
ypo 1, if patient p is assigned to OR o , 0, otherwise
�s
p

Start-time of surgery for patient p
�e
p

End-time of surgery for patient p
zps 1, if patient p is scheduled for a surgery by surgeon s , 0, otherwise
qo 1, if OR o is open, 0, otherwise
vo length of time that OR o is over-operated

2.2 � Model formulation

Here, a MINLP model is proposed for the problem of the paper.

(1)max
∑

po

ypoIP

(2)min
∑

o

qo(Fo + uovo)

(3)minw

(4)
Subject to

∑

p

ypo(�
e
p
− �s

p
) ≤ w ∀o

(5)
∑

os

xpost ≤ 1 ∀p,t

(6)
∑

ps

xpost ≤ 1 ∀o, t

(7)
∑

po

xpost ≤ 1 ∀s, t

(8)
∑

o

ypo ≤ 1 ∀p

(9)
∑

st

xpost ≤ Typo ∀p, o

(10)
∑

o

ypo ≤
∑

s

zps ∀p

(11)
∑

ot

xpost = (TpRs)zps ∀p, s
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Maximizing the total number of scheduled patients is stated in the first objec-
tive. The second objective of the model is to minimize overtime costs and the fixed 
costs of the operating rooms, and the third objective of the model is to minimize the 
maximum of completion time operating rooms. Constraints (5) show that, assigning 
a patient to at most one OR and surgeon is possible at a given time. Likewise, Con-
straints (6) describe that at any time in an OR, it is impossible to schedule more than 
one surgery. Constraints (7) guarantee that at any given time, at most one surgery 
can be performed by each surgeon. Constraints (8) explain that assigning a patient 
to more than one OR is not legitimate. Constraints (9) and (10) help in obtaining 
the variables ypo and zps , which are utilized in the objective function and the con-
straints of operating time, respectively. Constraints (11) confirm that, the total dura-
tion of operation for that patient is equal to the total number of periods to which 
a patient is scheduled for operation. Constraints (12) investigate if the surgeon is 
available during that period of time or not. Constraints (13) and (14) ensure proper 
choice of start and finish times for the patient-surgery. Constraints (15) show that 
the difference between the scheduled finish- and start-time should equal the number 
of periods needed for the surgery of the patient. Flexible constraints (16) investigate 

(12)
∑

o

xpost ≤�stzps ∀p, s,t

(13)�s
p
≤ t

∑

os

xpost + T(1 −
∑

os

xpost) ∀p, t

(14)�e
p
≤ (t + 1)

∑

os

xpost ∀p, t Ip ∈ I+

(15)
∑

o

xpost ≤�
e
p
− �s

p
∀p

(16)
∑

pos

�pxpost ≤f A
N
t

∀t

(17)ypo ≤ qo ∀p, o

(18)
∑

p

ypo(�
e
p
− �s

p
) − ko ≤ vo ∀o

(19)vo ≥ 0 ∀o

(20)vo + ko ≤f mo ∀o

(21)zps, ypo, xpost, qo ∈ {0, 1}

(22)�e
p
,�s

p
, vo ∈ {0, I+}
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if the nurses are available to schedule a surgery at specific time-slots during a day. 
Constraints (17) show that the surgeries must be scheduled to the opened ORs, i.e., 
if the OR o is closed, then the variables ypo are forced to be 0. Constraints (18) and 
(19) for each OR calculate the length of overtime. If OR o is performed completely 
on the regular time, vo is forced to be 0, and if it used the overtime, then vo is forced 
to be equal to the length of overtime, regarding to the second objective. Flexible 
constraints (20) emphasize on the operating time cannot exceed the predefined value 
for each OR. Constraints (21) and (22) are bounding constraints.

The uncertainty of the parameters and constraints are added to the model using a 
fuzzy robust stochastic approach in the next section.

3 � Fuzzy stochastic and robust multi objective model in operating 
room

This part is divided into four sections. In the first section, we considered the regular operat-
ing time of OR ( ko ) is fuzzy-stochastic parameter. ko as a random parameter represented by 
normal distribution and the rate of deterioration is essentially vague and denoted by a trap-
ezoidal fuzzy number. The Sect. 3.1 shows how this parameter becomes a crisp parameter. 
The Sect. 3.2 shows how these flexible constraints [constraints (16) and (20)] are applied to 
the model by assigning penalties to the cost function. In the Sect. 3.3, the model has been 
reformulated. The Sect. 3.4 describes Dauer and Krueger optimization algorithm to find a 
Pareto-optimal solution for the multi-objective goal programming problem.

3.1 � Fuzzy stochastic model

Now, assume that the coefficients have both the properties of fuzzy and stochastic. To 
address the mentioned circumstances, Nazemi et al. [23] proposed Fuzzy Stochastic Pro-
gramming (FSP). The subsequent definitions should be given before explaining the model.

Definition 3.1  Make the assumption that the variable ‘ a ’ has stochastic property, 
but adequate data does not exist. ‘ a ’ is also fuzzy. Then it is entitled a “fuzzy-sto-
chastic” variable.

Definition 3.2  The objective function of an LP problem is assumed to be crisp. If coeffi-
cients of the constraint are “fuzzy stochastic” variables, then we have a fuzzy stochastic pro-
gramming problem. The subsequent steps should be done to obtain the FSP formulation,

1.	 With regard to each coefficient of constraint aij , obtain an estimation for mean �ij 
and variance �ij using existing data.

2.	 Make the assumption that each coefficient of the constraints aij is an independ-
ent random number and have a suitable probability distribution. Then, using the 
estimated mean and variance, the set of random values Sij is given as below: 
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 where xk is k th produced random value. N is selected sufficiently large to gener-
ate a set with adequate number of random values to denote nearly all conditions 
of the coefficient.

The coefficient of the constraint is a the fuzzy number T , Ã =
(
A−, A0, A+

)
 as in 

[3], where T denotes the triangular membership function, and

A0 =

N∑
i=1

xi

N
	� A0 : is the most reliable value, which is allocated a membership 

value of 1, and is obtained as the average of the produced random 
set Sij.

A− = inf (Xi)
i=1,…,N

	� A− : takes membership value 0, and is obtained as minimum value of 

produced random set Sij . It is anticipated that the actual parameter 
value almost definitely exceeds A−.

A+ = sup(Xi)
i=1,…,N

	� A+ : is obtained as the maximum value of produced random set Sij . 

The actual parameter value is expected to be exceeded by A+.

The above process is completed for all coefficients of constraints. Consequently, the 
standard membership functions represent the uncertainty in all constraint coefficients. 
The standard model can be simply adjusted by modifying crisp value A with [ ̃aij ] trian-
gular membership function and can be solved with

3.2 � Robust fuzzy programming approach

Flexible constraints are defined lingually and they can be gratified at different levels 
[20]. The basic flexible programming (BFP) model is characterized here:

As claimed by the work of Pishvaee et  al. [28], variable activity costs and fixed 
opening costs of facilities are denoted by vectors c and f, respectively. The parameters 
of the constraints are denoted by the matrices A, B, S, T and N , where N indicates the 

Sij =
{
xk| xk ∈ assumed distribution; k = 1,… , N

}

(23)

maxCTX

Subject to
4A0+A−+A+

6
X ≤ b

X ≥ 0

(24)

min E = cx + fy

Subject to

Ax ≥f d

Bx = 0

Sx ≤f Ny

Ty ≤ 1

y ∈ {0, 1}, x ≥ 0.
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capacity of facilities. Vector d is a symbol for the demand of customers. Lastly, vec-
tors x represents continuous variables and vector y denotes binary variables. For more 
information, Pishvaee et al. [28] can be referred.

In addition, the fuzzy version of ≥ is denoted by symbol ≥f which states that the con-
straint’s left hand side is greater than or similar to the value of the right hand side. Two fuzzy 
numbers t̃ and r̃ are used by Cadenas and Verdegay [7] and Peidro et al. [26] to demonstrate 
how the soft constraints can be violated. Accordingly, model (24) is reformulated as:

Parameters � and � are indicators of the minimum gratification level of flexible con-
straints. In addition, assume t̃ and r̃ to be triangular fuzzy numbers. We represent them 
by their three prominent points (i.e., t̃ = (tp, tm, to) and r̃ = (rp, rm, ro) ). By using one 
of the methods for ranking of fuzzy numbers, they can be get out from fuzzy form.

In the basic flexible programming (BFP) model, the decision maker (DM) should sub-
jectively assign the minimum gratification level of flexible constraints (0 ≤ � , � ≤ 1) . 
Indeed, the initially determined values of gratification levels should repetitively alter 
using a reactive process and achieve the ultimate appropriate values for these significant 
parameters. At each stage, the model’s outcome can be used to asses the desirability of 
the choices. There are two important faults with regard to the explained method.

First, there is no guarantee that the identified final value of gratification levels are 
optimal. Second, the process of enhancing flexible constraints to find the gratification 
levels needs time-consuming tests. The robust flexible programming (RFP) model is 
used here to avoid these weaknesses.

3.2.1 � Robust flexible programming model

The RFP model is:

(25)

min E = cx + fy

Subject to

Ax ≥ d − t̃(1 − 𝛼)

Bx = 0

Sx ≤ Ny + [r̃(1 − 𝛽)]y

Ty ≤ 1

y ∈ {0, 1}, x ≥ 0.

(26)

min E = cx + fy + 𝜃 [t(1 − 𝛼)] + 𝜆 [r(1 − 𝛽)] y

Subject to

Ax ≥ d − t̃(1 − 𝛼)

Bx = 0

Sx ≤ Ny + [r̃(1 − 𝛽)]y

Ty ≤ 1

y ∈ {0, 1}, x ≥ 0.
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In the objective function, the total variable processing and fixed opening costs are 
stated at the first two terms. Consequently, the feasibility robustness of the first and 
third constraints is investigated using the two remaining terms. Indeed, the violation of 
soft constraints (which is measured by the satisfaction level variables � and � ) is penal-
ized by unit penalty cost parameters � and � [27].

3.3 � Robust and fuzzy reformulation

We applied robust flexible programming model for scheduling the surgical cases. Given 
the robust fuzzy programming approach described in the previous Sect. 3.2, two fuzzy 
numbers t̃ and r̃ are added to constraints (16) and (20). Then, we calculated the total 
penalty cost of potential soft constraint violation by adding the two control terms to 
cost objective function. The second objective could be converted into:

min
∑
o

qo(Fo + uovo) (2) is converted into min
∑
o

qo(Fo + uovo)+� [t(1 − �)] + � [r(1 − �)] (2-a)

Flexible constraints (16) and (20) could be converted into:

∑
pos

�pxpost ≤f A
N
t

(16) is converted into ∑
pos

�pxpost ≤ AN
t
+ [t(1 − �)] (16-a)

vo + ko ≤f mo (20) is converted into vo + ko ≤ mo + [r(1 − �)] (20-a)

Finally, the robust flexible programming model is as follows:

max
∑
po

ypoIp (1)

min
∑
o

qo(Fo + uovo)+� [t(1 − �)] + � [r(1 − �)] (2-a)

minw (3)
Subject (1) to (15), (17) to (19), and (21) to (22)
∑
pos

�pxpost ≤ AN
t
+ [t(1 − �)] ∀t (16-a)

vo + ko ≤ mo + [r(1 − �)] ∀o (20-a)

3.4 � Multi objective goal programming

The algorithm of Dauer and Krueger [8], for finding Pareto-optimal solutions, consid-
ers k goals (objective functions) and a set of constraints , as a classical nonlinear goal 
programming model:

(27)

(NLGP) ∶ f1(x) ≤ b1
f2(x) ≤ b2
…

fk(x) ≤ bk
subject to M = {x ∈ Rn| gr(x) ≤ 0, r = 1,… ,m, X ≥ 0}
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where X = (x1, x2,… , xn) includes decision variables and bi, i = 1,… , k stands for 
aspiration levels for objectives fi(x), i = 1,… , k . Then, objectives are ranked by 
their level of priority, that is, if i ≤ j then objective , fi(x) ≤ bi has a greater level 
of priority than objective , fj(x) ≤ bj . It is well known that the basic assumption of 
goal programming is that objective is needed to be found regardless of the reach-
ability of the objectives with less priority level. This idea was used by Dauer and 
Krueger to present an algorithm for solving linear, nonlinear, and integer goal pro-
gramming problems. The algorithm sequentially find solution for single-objective 
problems. The initial and final problems are:

Finding a solution for the problem which corresponds to objective 1, P1 is:

where d
1
 is the positive deviance for objective f1(x) from its objective value b1 , and 

the solution of this problem is d∗
1
.

Finding a solution for the problem which corresponds to objective k, Pk is:

Vector x̄ = (x̄1, x̄2,… , x̄k) stands for the optimal solution of the above model (GP 
problem).

In the next section, the fuzzy robust stochastic approach described above is imple-
mented on a numerical instance to investigate the model performance.

4 � Experimental results

By using collected data during 2 months in the surgical department, we have esti-
mated the problem parameters. These parameters consist of the number of nurses 
and available facilities, fixed and variable costs of operating rooms, time of using 
operating rooms, access to surgeons and patients’ priority in accordance to the 
necessity of surgery. Here, the performance of the presented models are examined 
by utilizing the data of the surgical department. In the model, the goal value of the 
second objective and some of the constraints are assumed to be flexible. In addition, 
the potential violation of the second objective and flexible constraints are denoted 
as new parameters (Sects.  3.2, 3.3). Moreover, the maximum potential violation 
of objective (i.e., � and � ) is assumed to be 80% over the defined aspiration level. 
Likewise, 30 percent of the related right hand sides (i.e., the number of nurse and 

(28)

p1 ∶ Minimize d1
Subject to f1(x) − d1 ≤ b1

gr(x) ≤ 0, r = 1,… , m

d1 ≥ 0, x ≥ 0,

(29)

pk ∶ Minimize dk
Subject to fi(x) − di ≤ bi

di = d∗
i
, 1 ≤ i ≤ k − 1

gr(x) ≤ 0, r = 1,… , m

dk ≥ 0, x ≥ 0,
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maximum operating time of each room) is considered as the maximum permissible 
(i.e., t̃ and r̃ ) flexibility of soft constraints.

The present condition for scheduling the operating room is as follows:
Scheduling is based on 15 operating rooms and 15 surgeons. As mentioned ear-

lier, time is discretized into 30-min intervals. Indeed, the regular time (an 8-h shift) 
includes 16 intervals, while the overtime consists of 4 intervals. The cost of over-
time for the operating rooms is considered to be equal.

The objective is to build schedules that minimize (in expectation) the patient 
waiting time due to, patient preparation time after anesthesia, operating room clean-
ing time, and operating room preparation time. So we consider the regular operating 
time of OR ( ko ) as a fuzzy-stochastic parameter. The shortage of sufficient data is 
the first reason, and the interactions between the parameters that may not be obvious 
is the second. Also, due to monthly data (2 months) normal distribution is regarded 
as a suitable probability distribution and we calculate ko as indicated in Eq.  (23) 
(Sect. 3.1), so:

As discussed at the end of Sect.  1, the fuzzy constraints include the number 
of nurses and the maximum operating time of each room; some nurses works in 
overtime.

We consider t̃ = (0, 2, 4) and r̃ = (0, 2, 4) and calculate t and r as indicated in 
Eq (23), so:

According to Pishvaee and Fazli Khalaf [27] (Sects.  3.2, 3.3), the parameters 
� and � denote the quantity that flexible constraints are violated. Accordingly, the 
fixed and variable costs of the main model as well as the penalty costs originated 
from violation of the constraints, are minimized by the second objective func-
tion of the model. Since the problem has to be solved for every � ∈ [0, 1] and 
� ∈ [0, 1] , the function samples � in [0, 1] and � in [0, 1] according to a user-spec-
ified step, and is solved for each � and � . Also, this matter applies to the variable 
� ∈ {10, 20, 30, 40, 50} and � ∈ {10, 20, 30, 40, 50} . We use the optimization algo-
rithm of Dauer and Krueger [8] to solve the multi-objective goal programming prob-
lem (Sect. 3.4).

For examining the effectiveness of the proposed model when compared with 
the base model, we solve the fuzzy robust stochastic model (FRS model) with a 

(30)

ko = (k−
o
, kO

o
, k+

o
)

� = 16, � = 0.2

ko = (15.6, 16, 16.4)

ko =
(4(16) + 15.6 + 16.4)

6
= 16

(31)
t =

(4(2) + 0 + 4)

6
= 2

r =
(4(2) + 0 + 4)

6
= 2
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diverse set of fines. Moreover, the optimization of the base model is implemented 
using different levels of satisfaction (i.e., 0.2, 0.5, 0.75 and 0.9). Subsequently, 
we choose the best solution from the provided solution by comparing saving with 
the basic solution (Table 2). So, we solve the base model and then to show the 
quality of the solutions achieved from different � , � , � , and � values in Figs. 1, 2, 
3, 4, 5 and 6, the objective function values of the model is used:

Table 2   Select best solution by savings compared to the baseline solution

a Solution that has positive saving

First objective Second objec-
tive

Third objective Savings compared 
to the base solu-
tion

Base solution 910 330 9 0
 � = � = 0

  � = � = 10 910 370 8 − 0.0101
  � = � = 20 910 390 8 − 0.07071
  � = � = 30 910 480 8 − 0.34343
  � = � = 40 910 490 7 − 0.26263
  � = � = 50 910 570 7 − 0.50505

 � = � = 0.25

  � = � = 10 910 360 8 0.020202a

  � = � = 20 910 430 8 − 0.19192
  � = � = 30 910 410 8 − 0.13131
  � = � = 40 910 450 8 − 0.25253
  � = � = 50 910 500 7 − 0.29293

 � = � = 0.5

  � = � = 10 910 330 9 0
  � = � = 20 910 370 8 − 0.0101
  � = � = 30 910 410 8 − 0.13131
  � = � = 40 910 390 8 − 0.07071
  � = � = 50 910 430 8 − 0.19192

 � = � = 0.75

  � = � = 10 910 310 9 0.060606a

  � = � = 20 910 310 9 0.060606a

  � = � = 30 910 360 8 0.020202a

  � = � = 40 910 370 8 − 0.0101
  � = � = 50 910 380 8 − 0.0404

 � = � = 0.9

  � = � = 10 910 300 10 − 0.0202
  � = � = 20 910 300 9 0.090909a

  � = � = 30 910 320 9 0.030303a

  � = � = 40 910 340 9 − 0.0303
  � = � = 50 910 320 9 0.030303a
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The quantity of violation of flexible constraints is calculated by 
[t(1 − �)] and [r(1 − �)] . Therefore, the objective function of model (2-a) minimizes 
the penalty costs originated from the violation of constraints along with the fixed 
and variable costs of the original model. The objective function value of model (2-a) 
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is used to show the performance of the solutions achieved by FRS and basic model. 
Indeed, the solution of extended models are obtained by software GAMS and their 
related results are displayed in Fig. 1.

In Figs. 2 and 3, with an increase of constraint violation penalties ( � and � ) at 
the ( � = � = 0, 0.25 ) level, there will be an increase in the cost objective function, 
while the time function will be decreased. It is obvious that when a larger space 
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is considered for constraints, scheduling use the most of the condition and more 
surgeries will be done and penalties will be given to the second objective func-
tion (cost). So, by increasing the cost, the time can be reduced. Because the first 
objective function (number of surgeries) is the most important one, in the optimal 
solution, the maximum value of it is observed in Figs. 2, 3, 4, 5 and 6.

In Figs.  4, 5 and 6, with an increase of distinct satisfaction levels the 
( � = � = 0.5, 0.75, 0.9 ), there will be decrease in the cost objective functions 
compared to other levels ( � = � = 0, 0.25 ) because smaller penalties has been 
assigned to ( � = � = 0.5, 0.75, 0.9 ) and the completion time function will be 
increased compared to other levels ( � = � = 0, 0.25).
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The interesting point in results is the trade-offs between two functions (cost and 
completion time functions) which can be seen in Figs.  2, 3, 4, 5 and 6. With an 
increase in the cost objective function, the time function will be decrease. It is clear 
that when a larger space is considered for constraints, scheduling use the most of the 
condition and more surgeries will be done and penalties will be given to the second 
objective function (cost). So, by increasing the cost, the time can be reduced.

However, in order to choose the best solution from the provided solution, we need 
a selection criterion. According to an article by Baril et al. [4], we consider the best 
solution as saving in relation to basic solution (deterministic). The results are pro-
vided in Table 2.

As can be seen in Table  2, among 25 solutions at different levels of �, �, � 
and � only seven of solutions have positive savings. Solution of � = � = 20 at 
( � = � = 0.9 ) in comparison with the solution of basic problem has the highest rate 
of savings and can be selected as the best solution for operating room scheduling 
problem. As shown in the Fig. 1, the performance of FRS model at ( � = � = 0.9 ) 
is the best performance among other levels for cost function. We solve basic model 
(first row of Table 2) and then we calculate other satisfaction levels (i.e., 0, 0.2, 0.5, 
0.75 and 0.9) solutions. Finally, we investigate 25 solutions and then select best 
solution by high saving compared to the base solution.

5 � Conclusion

In this paper, we introduced a multi objective mixed-integer programming model 
of surgical cases scheduling with three functions include a multi-resource, patient-
priority-based surgical case scheduling problem and minimizes cost and completion 
time. We formulated this problem as a fuzzy robust stochastic problem.

We applied the fuzzy robust model by applying penalty on objective function and 
giving more solution space in maximum operating time of each room and the num-
ber of nurses at different levels. Three objective functions are considered for this 
problem including the objective function of max, min and min–max. Then, a solu-
tion for the goal programming problem with several objectives is obtained using a 
standard algorithm. To investigate the performance of proposed model and compare 
the results with the base model, the fuzzy robust stochastic model (FRS model) is 
solved considering various penalty sets. Moreover, optimization of the base model is 
implemented using diverse gratification levels (i.e., 0.2, 0.5, 0.75 and 0.9). Finally, 
using the best solution as saving in relation to basic solution (definite without fuzzy 
robust), one of these solutions was selected as the best solution. Results showed the 
trade-offs between two functions (cost and completion time functions). With a rise 
in the cost objective function, the time function would be decreased. It is clear that 
when a larger space is considered for constraints, scheduling use the most of the 
condition and more surgeries will be done and penalties will be given to the second 
objective function (cost). So, by increasing the cost, the time can be reduced.

Also, results indicated that by considering penalty on objective function because 
of fuzzy constraints, we can achieve a better solution than the definite state. 
The remarkable result in this study is that considering fuzzy constraints due to 
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uncertainties on number of resources and surgical team that are closer to the reality 
of operating room scheduling problems did not result in worse solutions compared 
to traditional operating room scheduling problems, even as the result of this article 
indicates, they may lead to a better solutions.

For the future, several other avenues are considered: (1) considering other con-
straints, i.e. number of bed and so on, (2) replacing the robust method by other 
robust technique such as the worst-case analysis, and (3) considering the fuzzy 
parameters in the model.
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