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Abstract
The concepts of fuzziness and parametric analysis are of importance to treat uncer-
tainty in mathematical model and may offer certain more viewpoints. The basic 
notions of the parametric study in nonlinear programming problem are presented 
by Osman (Aplikace matematiky 22(5):318–332, 1977; Aplikace matematiky 
22(5):333–348, 1977). In general, a parametric programming problem is not easy to 
be solved. In addition, sometime, solving a parametric programming problem with 
parameters in the objective is easier than solving a parametric problem with param-
eters in the constraints and vice versa. Therefore, a parametric study in duality space 
is important to facilitate solving a parametric programming problem. The fuzzy non-
linear problem is interested area for research as one of the tools for treating uncer-
tainty. The fuzzy nonlinear problem when parameters in the objective function or 
constrains or both is called the fuzzy parametric nonlinear problem. Therefore, deal-
ing with fuzziness and duality parametric space is concerned. In this paper, a nov-
elty introduction to the fuzzy basic notions of parametric programming problem are 
clarified, the relations between the concepts concerning duality in parametric spaces 
which introduced by Osman et al. (Int J Math Arch 6(12):161–165, 2016) and the 
fuzzy concepts are presented. We present and define the fuzzy parametric notions of 
the set of feasible parameters, the solvability set, and the stability sets of the first and 
second kind. These notions are not defined before. The theoretical relations and an 
illustration example are introduced.
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1  Introduction

In general, the dual problem leads to specialized algorithms for some important 
classes of programming problem. For instance, in linear programming prob-
lems, solving transportation simplex method and the network simplex method 
rely partly on duality. In addition, sometimes the dual is just easier to be solved. 
Moreover, the dual problem gives a better understanding of the solution and may 
offer certain more perspectives.

Some or all of the mathematical model inputs are subject to sources of uncer-
tainty, including errors of measurement, absence of information and poor or par-
tial understanding of the driving forces and mechanisms. In such case, one of 
the trusted techniques is to use a parametric analysis for the problem which may 
be helpful for better understanding the solution. Another technique for treating 
uncertainty is done by using the concept of fuzziness. Therefore, dealing with 
fuzziness and duality in parametric space is concerned.

When addressing real world problems, frequently the parameters are imprecise 
numerical quantities. Fuzzy quantities are very adequate for modeling these situa-
tions [10]. Bellman and Zadeh [2] introduced the concept of fuzzy quantities and 
the concept of fuzzy decision making. For making a comparison among fuzzy 
alternatives, it is useful to convert fuzzy numbers into crisp numbers. Therefore, 
the most common approach to solve a fuzzy nonlinear programming (NLP) prob-
lem is to change it into the corresponding crisp NLP problem.

1.1 � Fuzzy set

A fuzzy set Ã in X is a set of ordered pairs:

Here 𝜇Ã(x) is interpreted as the membership function and the values of 𝜇Ã(x) at 
x represent the “grade of membership” of x ∈ X in Ã . The membership function 
𝜇Ã(x) associates with each point x ∈ X a real number in the interval [0, 1].

1.2 � Fuzzy number

A fuzzy number Ã is a fuzzy set defined on ℝ (membership function 𝜇Ã(x) : 
ℝ → [0, 1]), whose membership function satisfies the following properties

(1)	 Ã is normal i.e. there exist an element x0 ∈ ℝ such that 𝜇Ã

(
x0
)
= 1.

(2)	 Ã is convex i.e. 
𝜇Ã

(
𝜆x1 + (1 − 𝜆)x2

)
≥ min

{
𝜇Ã

(
x1
)
,𝜇Ã

(
x2
)}

; x1, x2 ∈ ℝ, ∀𝜆 ∈ [0, 1].
(3)	 𝜇Ã(x) is upper continuous.
(4)	 supp ( Ã ) is bounded, where supp(Ã) = 

{
x ∈ X||𝜇Ã(x) > 0

}
.

Ã =
{(

x,𝜇Ã(x)
)|x ∈ X

}
.
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1.3 � Generalized fuzzy number

A generalized fuzzy number Ã is a fuzzy set defined on ℝ whose membership function 
satisfies the following properties

(1)	 𝜇Ã(x) is a continuous mapping from ℝ to [0, 1].
(2)	 𝜇Ã(x) = 0, −∞ < x ≤ a.
(3)	 𝜇Ã(x) is strictly increasing on [a, b].
(4)	 𝜇Ã(x) = 1, b ≤ x ≤ c.
(5)	 𝜇Ã(x) is strictly decreasing on [c, d].
(6)	 𝜇Ã(x) = 0, d ≤ x < ∞.

where a, b, c, d are real numbers.

1.4 � Trapezoidal fuzzy number

A fuzzy set Ã defined on ℝ is called trapezoidal fuzzy number (as shown in Fig. 1) and 
is denoted by Ã = (a, b, c, d) if the membership function of Ã is given by,

Note If b and c are equal, then the trapezoidal fuzzy number becomes a triangular 
fuzzy number as shown in Fig. 2 and is denoted as Ã = (a, b, d). 

𝜇Ã(x) =

⎧
⎪⎪⎨⎪⎪⎩

a−x

a−b
, a ≤ x ≤ b,

1, b ≤ x ≤ c,
d−x

d−c
, c ≤ x ≤ d,

0, otherwise

, a ≤ b ≤ c ≤ d

Fig. 1   Trapezoidal membership function
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1.5 � Defuzzification

Defuzzification is a procedure of transforming fuzzy values to crisp values. Defuzzi-
fication method provides a correspondence from the set of all fuzzy sets into the set 
of all real numbers.

1.6 � Parametric notions

Osman [4, 14, 15] introduced the notions of the set of feasible parameters, the solv-
ability set, and the stability sets of the first and second kinds and analyzed these 
concepts for parametric convex programming problems. Moreover, the new concept 
of duality in parametric space that introduced in [16], In general, represents a new 
vision of getting the dual of parametric problem by utilizing the direct and clear 
relations between different scalarization approaches that used for treating multiob-
jective nonlinear programming (MONLP) problem.

1.7 � Multiobjective optimization

Mathematically, the multiobjective optimization problem can be formulated as a 
vector optimization programming problem under certain constraints [20]. One of 
the well-known techniques for solving the multiobjective programming problem, the 
ε-constraint method is a procedure which overcomes some of the convexity prob-
lems of the weighted sum technique [1]. It involves minimizing (in case of minimi-
zation) a primary objective and expressing the other objectives as constraints. This 
method can identify all efficient solutions on a nonconvex boundary, which are not 
obtainable using the weighted sum approach [10].

When several objective functions are present, the optimal solution for an objec-
tive function may not be an optimal solution for some other objective functions. 
Therefore, one needs to use the concept of the “best compromise solution”, also 

Fig. 2   Triangle membership function
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known as “non- dominated solution”, “efficient solution”, “Pareto optimal solution”, 
“Pareto efficient solution” etc. Thus, in multiobjective programming problem, the 
notion of efficiency is introduced to replace with that of optimality. A solution is 
called efficient if none of the objective functions can be developed in value without 
demeaning the value of any other objective [6–9, 17].

Furthermore, there is no absolute and fixed best solution to the multiobjective 
optimization programming in the real world since everything is relative in nature. 
Thus, the concept of the best solution is another relative characteristic from one to 
another [3, 13, 18, 19]. Thus, studies and researches have been done by researchers 
and scholars to formulate the original basic problem in the multiobjective optimiza-
tion model. They found various methods and approaches for this purpose and opti-
mal solutions relative to them. On the other hand they looked for a Pareto solution 
(efficient solution) (see, [6–9, 11, 12, 17]).

Thus, in this paper, we are interested in introducing a powerful tool that is capa-
ble for representing most of real life situations (problems). Therefore, novelty basic 
fuzzy parametric notions are introduced in a duality in the fuzzy-parametric space 
for fuzzy-parametric NLP problem. This paper is organized as follows: In Sect. 2, 
the problem definition is introduced. In Sect.  3, Theoretical relations between the 
two problems (primal and the dual one) are illustrated. Section  4, an illustrative 
example is introduced. Section 5, conclusion is presented.

2 � Problem definition

Consider the following two fuzzy-parametric nonlinear programming problems 
where the first one ( ̃P1

(
𝜆, Ã

)
 ) with parameters ( � ) in the objective function and 

the second ( ̃P2(𝜖, Ã) ) with parameters ( � ) in the constraints which are formulated as 
follows:

where:
•	
•	 Ã =

(
ãi, b̃r

)
 is a vector of fuzzy numbers and 𝜇Ã represents the membership 

functions.

When using the same defuzzification method, problems P̃1

(
𝜆, Ã

)
 and P̃2

(
𝜖, Ã

)
 

are said to be fuzzy parametrically dual. For example, Dutta et  al. [5] shown that 

P̃1

�
𝜆, Ã

�
∶ P̃2

�
𝜖, Ã

�
∶

Min
k+1∑
i = 1

𝜆 i fi
�
x, ãi

�
Min f1

�
x, ã1

�
,

Subject to subject to

M̃ =

⎧⎪⎨⎪⎩
x ∈ Rn

��������

gr
�
x, b̃r

�
≤ 0, r = 1, 2,… , m,

k+1∑
i=1

𝜆 i = 1, 𝜆i ≥ 0

⎫
⎪⎬⎪⎭

Ñ =

⎧⎪⎨⎪⎩
x ∈ Rn

������
fi
�
x, ãi

�
≤ 𝜖i , i = 2, … , (k + 1),

gr
�
x, b̃r

�
≤ 0, r = 1, 2,… , m

⎫
⎪⎬⎪⎭

�i, �i ∈ R,∀ i.
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α-cut method is a method general enough to deal with all kinds of fuzzy arithmetic 
including nth root, exponentiation and taking log. Thus, for instance, α-cut approach 
will be used for defuzzification problems P̃1

(
𝜆, Ã

)
 and P̃2

(
𝜖, Ã

)
 for transformed 

them into the following crisp forms respectively.

where X = (x, ai, br) ∈ � = Rn × Rk+1 × Rm . Problems P1(�) and P2(�) are said to 
be parametrically dual. For illustration, at the next section, some definitions and the-
orems are presented.

2.1 � Basic notions

Let O1, O2 denote the sets of optimal solutions for problems P1(�), P2(�) respec-
tively. In addition, let X̄ ∈ O1 and X∗ ∈ O2 . Then, for problem P1(�) , the following 
basic notions are defined:

(1)	 The solvability set B1:

(2)	 The fuzzy stability set of the first kind S1
(
X̄
)
:

(3)	 The fuzzy stability set of the second kind Q1(�(I)):

where �(I) is defined as:

For problem P2(�) , the following basic notions are defined:

(1)	 The set of feasible parameters F:

(2)	 The solvability set B2:

P1(𝜆) ∶ P2(𝜖) ∶

Min
k+1∑
i=1

𝜆i fi
�
x, ai

�
Min f1

�
x, a1

�
,

Subject to subject to

M =

⎧
⎪⎪⎨⎪⎪⎩

X ∈ 𝛺

����������

gr
�
x, br

�
≤ 0, r = 1, 2,… ,m,

𝜇Ã ≥ 𝛼, 0 ≤ 𝛼 ≤ 1,

k+1∑
i=1

𝜆i = 1

𝜆i ≥ 0

⎫
⎪⎪⎬⎪⎪⎭

N =

⎧⎪⎨⎪⎩
X ∈ 𝛺

��������

fi
�
x, ai

�
≤ 𝜖i, i = 2,… , (k + 1),

gr
�
x, br

�
≤ 0, r = 1, 2,… ,m

𝜇Ã ≥ 𝛼, 0 < 𝛼 ≤ 1

⎫⎪⎬⎪⎭

B1 =
{
� ∈ Rk+1||O1 ≠ �

}

S1
(
X̄
)
=
{
𝜆 ∈ B1

||X̄ ∈ O1

}

Q1(�(I)) =
{
� ∈ B1

||∃X ∈ O1 ∩ �(I)
}
∶

𝜎(I) =
{
X ∈ M

|||g𝛾
(
x, b𝛾

)
= 0, 𝛾 ⊂ {1, 2,⋯ ,m}

}
.

F =
{
� ∈ Rk|N ≠ �

}
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(3)	 The fuzzy stability set of the first kind S2
(
X̄
)
:

(4)	 The fuzzy stability set of the second kind Q2(�(I)):

The sets B1, S1, Q1 are said to be parametrically dual to the sets B2, S2, Q2 
respectively under the convexity conditions of the set M and the function 
fi
(
x, ai

)
, ∀ i . Otherwise (in the nonconvex case), they are said to be partially par-

ametrically dual.

3 � Theoretical relations

Let us consider the following fuzzy multiobjective nonlinear programming prob-
lem ( ̃P0 ) and its corresponding crisp nonlinear programming problem ( P0 ), by 
using ∝-cut approach.

It is well known that the efficient solution of problem P0 could be generated by 
using either one of the following scalarization problems P1(�) and P2(�) . Where 
P1(�) represents the weighted problem that associated with the weighted method 
and P2(�) represents the epsilon-constraint problem that associated with the epsi-
lon-constraint method. The relations between the efficient solutions of problem 
P0 and the optimal solutions of problems P1(�) and P2(�) are given through the 
following theorems. But first, an illustration of the relations between the solution 
given by the weighted method and the epsilon-constraint method are introduced.

The solution of the weighting method is always Pareto optimal if the weight-
ing coefficients are all positive or if the solution is unique, without any further 
assumptions. The weakness of the weighting method is that not all of the Pareto 
optimal solutions can be found unless the problem is convex. Therefore, Any 
Pareto optimal solution of a convex multiobjective optimization problem can be 
found by the weighting method. On the other hand, it is possible to find every 
Pareto optimal solution of any multiobjective optimization problem by the epsi-
lon-constraint method (regardless of the convexity of the problem) [12].

Therefore, a Pareto optimal solution of a convex multiobjective can be found 
by one of the two methods (weighted or epsilon-constraint) and the solution will 

B2 =
{
� ∈ F||O2 ≠ �

}

S2
(
X̄
)
=
{
𝜖 ∈ B2

||X̄ ∈ O2

}

Q2(�(I)) =
{
� ∈ B2

||∃X ∈ O2 ∩ �(I)
}

P̃0 ∶ P0 ∶

Min fi
(
x, ãi

)
, i = 1, 2,… , k + 1 Min fi

(
x, ai

)
, i = 1, 2,… , k + 1

Subject to Subject to

M̃0 =

{
x ∈ Rn|||gr

(
x, b̃r

)
≤ 0, r = 1, 2,… ,m,

}
Mo =

{
X ∈ Ω

||||||
gr
(
x, br

)
≤ 0, r = 1, 2,… , m,

𝜇Ã ≥ 𝛼, 0 ≤ 𝛼 ≤ 1

}
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be optimal for the two problems that associated with each method. While under 
non-convexity the epsilon-constraint has the ability to get all Pareto solutions. 
Thus, under convexity of multiobjective problem, an optimal solution of the 
weighted problem at certain � can be defined by the epsilon-constraint problem 
at a corresponding �.

Theorem 1  If for 𝜆̄ ∈ B1, an optimal solution of P1

(
𝜆̄
)
 is found to be X̄ ∈ M. Then 

X̄ is an efficient solution of P0 if, either 𝜆̄ > 0 or X̄ is the corresponding unique opti-
mal solution.

Theorem  2  Under convexity assumptions (M is convex and 
fi
(
x, ai

)
, i = 1, 2,… , k + 1 are convex on M), if X̄ is an efficient solution of problem 

P0, then there exists 𝜆̄ ≥ 0 such that X̄ solves problem P1

(
𝜆̄
)
.

Theorem  3  If for � =
(
�1, �2,… , �k

)
∈ F, either X̄ ∈ M solves problem P2

(
�
)
 

uniquely or X̄ ∈ M solves all the problems P2

(
�
)
 for feasible �, then X̄ is an efficient 

solution of problem P0.

Theorem 4  If X̄ is an efficient solution of problem P0, then there exists � ∈ F such 
that X̄ solves problem P2(�).

Utilizing the previous theorems, the following propositions relating the basic 
notions of problems P1(�) and P2(�) to each other are stated and their proofs 
could be easily deduced.

Proposition 1  From the definition of the sets O1 and O2, we have O1 = O2 under the 
convexity assumptions. Moreover, if the convexity assumptions are not satisfied, we 
get that O1 ⊂ O2.

Proposition 2  Under convexity assumptions, If � ∈ B1, then there exists a corre-
sponding � ∈ B2. Also, if � ∈ B2 then there exists a corresponding � ∈ B1.

Proposition 3  If 𝜆̄ ∈ S1, either 𝜆̄ > 0 or X̄ solves problem P1

(
𝜆̄
)
 uniquely, then 

there exist a corresponding � ∈ S2, and if � ∈ S2 and X̄ solves uniquely problem 
P2

(
�
)
 then there exists a corresponding 𝜆̄ ∈ S1 if the convexity assumptions are 

satisfied.

Proposition 4  If 𝜆̄ ∈ Q1, then there exists a corresponding � ∈ Q2 and if � ∈ Q2, 
then there exists a corresponding 𝜆̄ ∈ Q1 if the convexity assumptions are satisfied.

3.1 � Reduction of the dimensionality space of problem P
1(�)

Utilizing the condition 
∑k

i=1
�i = 1 , problem P1(�) could be formulated in the follow-

ing equivalent form:
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In this case, the dual parametric notions will be in spaces of the dimension k . It is 
clear that by using other scalarization methods, several dual parametric problems could 
be easily derived.

The idea behind presenting the concept of dual fuzzy-parametric problems is to clar-
ify the fruitful relations between the two problems and to discuss the possibility that by 
solving one of them then the second problem is clearly solved.

3.2 � Determining the stability set of the first kind

Consider the problem P1(�) , Kuhn–Tucker stationary conditions can be defined as 
follows:

By fixing x to the optimal x̄ , and suppose that system (1) has � equations and � 
multipliers ( uj, j = 1, 2, … , � ), system (1) is clearly a linear system of equations 
which can be written in the following form

P̂1(𝜆)∶

Min

�
f1
�
x, a1

�
+

k+1�
i=1

𝜆i
�
fi
�
x, ai

�
− f1

�
x, a1

���
,

Subject to

M̂ =

⎧⎪⎨⎪⎩
X

�������

gr
�
x, br

�
≤ 0, r = 1, 2,… ,m,

𝜇Ã ≥ 𝛼, 0 < 𝛼 ≤ 1,
k∑

i=1

𝜆i ≤ 1, 𝜆i ≥ 0

⎫⎪⎬⎪⎭

(1)∇X

(∑
i

𝜆i fi
(
x, ai

)
+

m∑
j=1

ujgj
(
x, bj

)
+

𝜔∑
j=(m+1)

uj
(
𝛼 − 𝜇Ã

))
= 0,

(2)ujgj
(
x, bj

)
= 0, j = 1, 2,… ,m

(3)ul
(
𝛼 − 𝜇Ã

)
= 0, l = (m + 1), (m + 2),… ,𝜔

(4)gj
(
x, bj

)
≤ 0, j = 1, 2,… ,m

(5)𝛼 − 𝜇Ã ≤ 0,

(6)uj ≥ 0, ∀j

Q�=1

(
�i,A� , u1, u2,… , u�

)
= 0, � = 1, 2,… , �, A� =

(
ai, bj

)
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While systems (2) and (3) can be written in the following form:

In addition, systems (4) and (5) can be written in the following form:

Thus, at the optimal, Kuhn–Tucker stationary conditions can be written in the fol-
lowing form:

Then, to satisfy conditions (9) and (10), we have one of the following two cases 
assuming that system (7) is linearly independent.

Case 1: � ≥ �

Thus, without loss of generality, system (7) can be written in the form:

Let us define the following sets

Then the stability set of the first find S(X̄) of problem P1(�) can be defined in the fol-
lowing form:

Case 2 𝜃 < 𝜔

Thus, without loss of generality, system (7) can be written in the form:

Let us define the following sets

H�

(
A� , u�

)
= 0, � = 1, 2,… ,�

G�

(
A�

)
≤ 0, � = 1, 2,… ,�

(7)Q�=1

(
�i,A� , u1, u2,… , u�

)
= 0, � = 1, 2,… , �

(8)H�

(
A� , u�

)
= 0, � = 1, 2,… ,�

(9)G�

(
A�

)
≤ 0, � = 1, 2,… ,�

(10)uj ≥ 0, ∀j

uj = �j
(
�i, A�

)
, j = 1, 2,… ,�

Q�

(
�i,A� , �1, �2,… , ��

)
= 0, � = (� + 1), (� + 2),… , �

𝜓1 𝜂 =

{
𝜆i
|||𝛾𝜂 ≥ 0, G𝜂

(
A𝛼

)
≤ 0

}
, 𝜂 = 1, 2,… ,𝜔,

𝜓2 𝜂 =

{
𝜆i
|||𝛾𝜂 > 0, G𝜂

(
A𝛼

)
< 0

}
, 𝜂 = 1, 2,… ,𝜔,

𝜓3 𝛽 =

{
𝜆i
|||Q𝛽

(
𝜆i,A𝛼 , 𝛾1, 𝛾2,… , 𝛾𝜔

)
= 0

}
, 𝛽 = (𝜔 + 1), (𝜔 + 2),… , 𝜃

S(X) =

(
�⋂

�=1

�1 � −

�⋃
�=1

�2 �

)
∩

(
�⋂

�=(�+1)

�3 �

)

u� = ��

(
�i, A� , u�+1, u�+2,… , u�

)
, � = 1, 2,… , �
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Then the stability set of the first find S(X̄) of problem P1(�) can be defined in the fol-
lowing form:

By the same method, the stability set of the first find S(X̄) of problem P2 j(�) can be 
defined.

4 � An illustrative example

For the following dual fuzzy-parametric problems, the fuzzy-parametric space accord-
ing to the stability sets of the first kind can be illustrated as follows:

where all membership functions of the fuzzy numbers ( ̃ai j, b̃i j ∀ i, j ) are repre-
sented by triangle shape whose vertices are 

(
t1 j, 0

)
 , 
(
t2 j, 1

)
 , and 

(
t3 j, 0

)
 . Thus, they 

will have the following form:

Thus, by using α-cut method for defuzzification, we get that:

𝜏1 𝜂 =

{
𝜆i
|||u𝛽 ≥ 0, G𝛽

(
A𝛼

)
≤ 0

}
, 𝛽 = 1, 2,… , 𝜃,

𝜏2 𝜂 =

{
𝜆i
|||u𝛽 ≥ 0, G𝛽

(
A𝛼

)
≤ 0

}
, 𝛽 = (𝜃 + 1), (𝜃 + 2),… ,𝜔

𝜏3 𝜂 =

{
𝜆i
|||u𝛽 > 0, G𝛽

(
A𝛼

)
< 0

}
, 𝛽 = 1, 2,… , 𝜃,

𝜏4 𝜂 =

{
𝜆i
|||u𝛽 > 0, G𝛽

(
A𝛼

)
< 0

}
, 𝛽 = (𝜃 + 1), (𝜃 + 2),… ,𝜔

S(X) =

(
�⋂

�=1

�1 � ∩

�⋂
�=�+1

�2 �

)
−

(
�⋃

�=1

�3 � ∪

�⋃
�=�+1

�3 �

)

P̃1

(
𝜆, ãi, b̃r

)
∶ P̃2

(
𝜖, ãi, b̃r

)
Min

(
−(1 − 𝜆)

(
ã1 1x1

)
− 𝜆

(
ã2 2x2

))
, Min ( − ã1 1x1),

Subject to Subject to

x2
1
+ x2

2
≤
(
b̃11

)2
, −ã2 2x2 ≤ 𝜖2,

0 ≤ 𝜆 ≤ 1, x2
1
+ x2

2
≤
(
b̃11

)2
,

x1, x2 ≥ 0, x1, x2 ≥ 0

𝜇ãi j
=

⎧⎪⎨⎪⎩

1

t2 j−t1 j

�
ai j − t1 j

�
, t1 j ≤ ai j ≤ t2 j

1

t2 j−t3 j

�
ai j − t3

�
, t2 j ≤ ai j ≤ t3 j

t1 j + 𝛼
(
t2 j − t1 j

)
≤ ai j ≤ t3 j + 𝛼

(
t2 j − t3 j

)
, 0 < 𝛼 ≤ 1
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Supposing that the following table represents the required data for all membership 
functions

t1 j t2 j t3 j

a1 1 4 5 6
a2 2 2 3 6
b1 1 0 1 2

Then by using α-cut approach, we get problems P1(�) and P2(�) as follows:

It will be easily noted that:

Then by using Kuhn–Tucker stationary conditions, the set of optimal solutions of 
problem P1(�) and P2(�) are defined as follows:

where L = R2 × R2 × R . In addition, from Proposition 1, we get that O1 = O2 . There-
fore, we get that:

P1(�) ∶ P2(�) ∶

Min
(
−a1 1x1 (1 − �) − a2 2x2�

)
, Min

(
−a1 1x1

)
Subject to Subject to

x2
1
+ x2

2
≤
(
b11

)2
, −a2 2x2 ≤ �2,

� + 4 ≤ a1 1 ≤ 6 − �, x2
1
+ x2

2
≤
(
b11

)2
,

� + 2 ≤ a2 2 ≤ 6 − 3�, � + 4 ≤ a1 1 ≤ 6 − �,

� ≤ b1 1 ≤ 3 − 2�, � + 2 ≤ a2 2 ≤ 6 − 3�,

0 ≤ � ≤ 1, 0 ≤ � ≤ 1, � ≤ b1 1 ≤ 3 − 2�,

x1, x2 ≥ 0 0 ≤ � ≤ 1,

x1, x2 ≥ 0

F =
{
𝜖2 ∈ R ||𝜖2 ≥ −a2 2 b1 1 , 𝛼 + 2 ≤ a2 2 ≤ 6 − 3𝛼, 𝛼 ≤ b1 1 ≤ 3 − 2𝛼, 0 < 𝛼 ≤ 1

}

O1 =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

X̄ ∈ L

����������������

x1 =
a1 1 b1 1(1−𝜆)√

a2
1 1

(1−𝜆)2+a2
2 2

𝜆2
,

x2 =
a2 2 b1 1𝜆√

a2
1 1

(1−𝜆)2+a2
2 2

𝜆2

𝛼 + 4 ≤ a1 1 ≤ 6 − 𝛼,

𝛼 + 2 ≤ a2 2 ≤ 6 − 3𝛼,

𝛼 ≤ b1 1 ≤ 3 − 2𝛼,

0 < 𝛼 ≤ 1, 0 ≤ 𝜆 ≤ 1

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

, O2 =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

X∗ ∈ L

����������������

x1 =

�
b2
1 1

−
𝜖2
2

a2
2 2

,

x2 =
− 𝜖2

a2 2

,

𝛼 + 4 ≤ a1 1 ≤ 6 − 𝛼,

𝛼 + 2 ≤ a2 2 ≤ 6 − 3𝛼,

𝛼 ≤ b1 1 ≤ 3 − 2𝛼,

0 < 𝛼 ≤ 1,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

�2 =
− a2

2 2
b1 1 �√

a2
1 1

(1 − �)2 + a2
2 2

�2
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Moreover, consider for the following multiobjective nonlinear programming 
problem:

Then by using α-cut approach, we get that:

The problem Objective space

P0 ∶

Min
(
−a1 1x1,−a2 2x2

)

Subject to

x
2
1
+ x

2
2
≤
(
b11

)2
,

x1, x2 ≥ 0,

𝛼 + 4 ≤ a1 1 ≤ 6 − 𝛼,

𝛼 + 2 ≤ a2 2 ≤ 6 − 3𝛼,

𝛼 ≤ b1 1 ≤ 3 − 2𝛼,

0 < 𝛼 ≤ 1

As illustrated, x̄ =
�√

2

2
b1 1,

√
2

2
b1 1

�
 is an efficient solution for P0 . Thus, from The-

orems 2 and 4, x̄ is an optimal solution for problem P1

(
𝜆̄
)
 and P2

(
�
)
 . Thus, 

X̄ =

�√
2

2
b1 1,

√
2

2
b1 1, a1 1, a2 2, b1 1

�
∈ O1 ∩ O2 and for X̄ we get that:

Then for the optimal solution X̄ of the two problems P1(�) and P2(�) , we get that: 
� =

a1 1

a1 1+a2 2

 and �2 =
−
√
2

2
a2 2 b1 1 are dual parameters. Thus, for the fuzzy optimal 

solution ̄̃X =

�√
2

2
b̃1 1,

√
2

2
b̃1 1, ã1 1, ã2 2, b̃1 1

�
 of problems P̃1

(
𝜆, Ã

)
 and P̃2

(
𝜖, Ã

)
 , 

𝜆̃ =
ã1 1

ã1 1+ã2 2

 and �𝜖2 =
−
√
2

2
ã2 2 b̃1 1 are fuzzy dual parameters.

P̃0 ∶

Min
(
−ã1 1x1,−ã2 2x2

)
,

Subject to

x2
1
+ x2

2
≤
(
b̃11

)2
,

x1, x2 ≥ 0

S1

�
X̄
�
=

�
0 ≤ 𝜆 ≤ 1

����𝜆 =
a1 1

a1 1 + a2 2

, X̄ ∈ O1

�
,

S2

�
X̄
�
=

�
𝜖2 ∈ R

������
𝜖2 =

−
√
2

2
a2 2 b1 1, X̄ ∈ O2

�
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5 � Conclusion

In this paper, we define the dual fuzzy nonlinear programming problem of a pri-
mal fuzzy nonlinear programming problem. In addition, a parametric analysis of 
the two problems is introduced by defining the fuzzy stability sets. Moreover, a 
theoretical background is introduced through necessary definitions and different 
theorems and propositions. The idea behind presenting the concept of fuzzy dual 
parametric problems is to clarify the fruitful relation between the two problems 
and to discuss the possibility that by solving one of them, the second problem is 
clearly solved. Using other scalarization methods will lead to several dual fuzzy 
parametric problems could be easily derived. So, we will try to apply these con-
cepts and definitions in real applications in the future work. Also, we are inter-
esting to study the properties and definitions of fuzzy-parametric multiobjective 
linear/nonlinear programming problems.
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