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Abstract In this paper we consider a quadratically constrained quadratic pro-

gramming problem with convex objective function and many constraints in which

only one of them is non-convex. This problem is transformed to a parametric

quadratic programming problem without any non-convex constraint and then by

solving the parametric problem via an iterative scheme and updating the parameter

in each iteration, the solution of the problem is achieved. The convergence of the

proposed method is investigated. Numerical examples are given to show the

applicability of the new method.

Keywords Adaptive ellipsoid based method � Quadratically constrained

quadratic programming � Non-convex constraint � Semidefinite programming

1 Introduction

In this paper, we study the quadratically constrained quadratic programming

(QCQP) problem as follows:

ðQCQPÞ
min
x2Rn

f ðxÞ
gðxÞ� 0

hjðxÞ� 0 j ¼ 1; 2; . . .;m:

ð1:1Þ

where f ðxÞ ¼ xTQxþ 2pTxþ r is a coercive function, gðxÞ ¼ xTQ0xþ 2pT0 xþ r0
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and hjðxÞ ¼ xTQjxþ 2pTj xþ rj for j ¼ 1; 2; . . .;m: Q and Qj are n 9 n real sym-

metric matrices, p and pj are real vectors in Rn and c; cj 2 R are real numbers.

QCQP appears in many areas of science and engineering such as wireless com-

munications and networking, [7], radar [17], and signal processing [10]. Some

important subclasses of QCQP problem are also the trust region problem [1], Max-

Cut problem, 0–1 quadratic programming problem and box constrained quadratic

programming problem [13]. It is well known that QCQP is NP-Hard, it means that

this problem cannot be solved in polynomial time unless P = NP [6].

If all of the matrices Q;Q0;Q1; . . .;Qm are positive semidefinite, problem (1.1)

becomes a convex programming problem which is solvable in polynomial time

(within a given precision level) using the semidefinite programming methods [13].

If at least one of them isn’t positive semidefinite then finding the global optimal

solution of QCQP is much more difficult and in general this is an open problem. In

this article we will consider the case of QCQP problem (1.1) in which one non-

convex constraint gðxÞ� 0 exists. The feasible set for this case may even be non-

convex.

Having a non-convex constraint in programming is first studied by Rosen in [18].

Rosen studied the problem of linear programs with an additional reverse convex

constraint; and Hillestad and Jacobsen in [9] gave characterizations of optimal

solutions and proposed an algorithm based on optimality properties (see also

[11, 12]).

A non-convex quadratic programming problem with two quadratic constraints is

also studied in [21] and using the semidefinite programming (SDP) approach a

family of solvable subclasses of non-convex quadratic programming problem is

identified. In [20] a non-convex quadratic programming problem is also reformu-

lated into a linear conic programming problem and based on the matrix

decomposition method and SDP techniques, some polynomial-time solvable

subclasses of QCQP are identified.

Lu et al. [14] have proposed a new method for reformulating QCQP into a

relaxation linear conic programming and solved the problem by using the SDP

approach. To find a global optimal solution, they investigated the relationship

between its Lagrangian multipliers and related linear conic programming problem.

In order to apply this method, some conditions should be imposed on QCQP

problem such as semidefinite condition. So we cannot use this method for any

QCQP problem.

The copositive representation of a quadratic programming problem is another

approach to find an approximate solution [14]. In [22] Shi and Jin presented the

optimality and copositivity conditions for determining whether or not a given KKT

solution is globally optimal and then proposed a local search based scheme to find

the global optimal solution. But the limitation of this method is that it is not also

convenient for any QCQP problems and it could find only a lower bound of optimal

value of objective function.

The main contribution of this paper is to propose a numerical procedure to find a

global optimal solution of the non-convex QCQP problem (1.1) with one non-

convex constraint and probably many convex constraints. At first, the problem (1.1)

OPSEARCH (2018) 55:320–336 321

123



is changed to an equivalent parametric problem. Then by finding the minimizer of

parametric problem and updating the parameter, an iterative method called

Parametric QCQP method (PQCQP) is proposed.

This work was intended as an attempt to motivate the use of adaptive ellipsoid

based method for solving a class of non-convex QCQP problems. One of the

advantages of this method is to determine the infeasibility of problem (1.1). The

new method is an iterative method which combines a bisection scheme, adaptive

ellipsoid based method, and SDP relaxation.

The rest of this paper is arranged as follows: In Sect. 2 we provide detail of

PQCQP method and present a new algorithm. Section 3 contains convergence of the

new method and more theoretical results. The computational results on randomly

generated problem are reported in Sect. 4. Conclusions are given in Sect. 5.

The following notations are adopted in this paper. Let Sn denote the set of real

symmetric matrices of size n, and Snþ the set of positive semidefinite matrices of size

n, Snþþ the set of positive definite matrices. Given a vector x 2 Rn, xi denotes the ith

entry of x. For a matrix Y, Yij denotes the ði; jÞth entry of Y. For any two matrices

M ¼ ðMijÞ and N ¼ ðNijÞ in Sn, the inner product of these two matrices is defined by

M � N ¼
Pn

i¼1

Pn
j¼1 MijNij:

2 New method for solving QCQP

Consider problem (1.1). If all constraints and objective function are convex, then we

can solve it by using the second order cone programming efficiently [8]. If at least

one of the constraints is non-convex then solving problem (1.1) is difficult, because

feasible set may be non-convex. We consider the case of QCQP problems with one

non-convex constraint gðxÞ� 0. The epigraph form of problem (1.1) is as follows

a� ¼ min
x;a

a

f ðxÞ� a
gðxÞ� 0

hjðxÞ� 0 j ¼ 1; 2; . . .;m:

ð2:1Þ

Let KðaÞ ¼ x f ðxÞ� a; gðxÞ� 0; hjðxÞ� 0; j ¼ 1; 2; . . .;m
�
�

� �
. The following

lemma concerns the relationship between problems (1.1) and (1.2).

Lemma 1 Consider problem (1.1) and (2.1), we have:

1. Problem (1.1) is feasible if and only if KðaÞ is a nonempty set for some a 2 R:
2. Problem (1.1) is solvable if KðaÞ is a nonempty compact set for some a 2 R:

Proof

1. Let K ¼ x gðxÞ� 0; hjðxÞ� 0; j ¼ 1; 2; . . .;m
�
�

� �
: First suppose that KðaÞ is a

nonempty set for some a 2 R: Since KðaÞ � K; the proof is evident.

Conversely, assume that problem (1.1) is feasible and �x is a feasible solution of

problem (1.1). we take a ¼ f ð�xÞ. Thus KðaÞ is a nonempty set.

322 OPSEARCH (2018) 55:320–336

123



2. Take a 2 R such that KðaÞ is a nonempty compact set. Since KðaÞ is compact

set and the objective function f is continuous, so by Weierstrass theorem there

exists a minimizing point �x 2 KðaÞ for the problem minx2KðaÞ f ðxÞ: We claim

that �x is the optimal solutions of problem (1.1), thus solvability is established.

To prove this claim, we assume, on contrary, that there exists a point x̂ 2
KnKðaÞ; such that f ðx̂Þ\f ð�xÞ: Since f ð�xÞ\a; we have f ðx̂Þ\a contradicting

the assumption that x̂ 62 KðaÞ: h

Now we introduce a new function as below:

FðaÞ ¼ min
x2Rn

gðxÞ
s:t: f ðxÞ� a j ¼ 1; 2; . . .;m

ð2:2Þ

It is seen that F(a) can be computed by solving the QCQP problem in which the

objective function is non-convex and the constraints are convex.

One see that F(aÞ� 0 if and only if KðaÞ 6¼ ;. Therefore we have:

a� ¼ min
a

a

FðaÞ� 0

Let an interval ½a1; a2� including the optimal value a� be given. We call ½a1; a2�
trust interval. Here a question arises how to determine a trust interval? To answer

this question, we compute endpoints of a trust interval as follows:

Right endpoint For finding the right endpoint, we need to a feasible solution x0.

Let a2 ¼ f ðx0Þ as a right endpoint of trust interval. Since x0 is a feasible solution for

problem (1.1), so a� � a2:
To obtain a feasible solution x0; consider the following problem:

g� ¼ min
x2Rn

gðxÞ
hjðxÞ� 0 j ¼ 1; 2; . . .;m:

ð2:3Þ

For solving non-convex problem (2.3), we use AEA method which will be

discussed later. We take x0, the optimal solution of problem (2.3). In the next

theorem, we state the relationship between the problems (1.1) and (2.3).

Theorem 2 The problem (1.1) is feasible if and only if g� � 0:

Proof Suppose that the problem (1.1) is feasible. So

9�x 2 Rn : gð�xÞ� 0; hjð�xÞ� 0 for j ¼ 1; 2; . . .;m:

Therefore we have g� � gð�xÞ� 0:

Conversely, let x� be an optimal solution of problem (2.3) and g� � 0. We have

gðx�Þ � 0; hjðx�Þ� 0 for j ¼ 1; 2; . . .;m:

So the problem (1.1) is feasible. h
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Corollary 3 The problem (1.1) is infeasible if and only if g� [ 0:

Left endpoint Consider the following problem equivalent to problem (1.1):

minQ � X þ 2pTxþ r

Q0 � X þ 2pT0 xþ r0 � 0

Qj � X þ 2pTj xþ rj � 0

X ¼ xxT�0

j ¼ 1; 2; . . .;m ð2:4Þ

The last constraint i.e.X ¼ xxT is non-convex.We can directly relax it to the convex

constraint X�xxT , therefore the convex relaxation of problem (2.4) is as follows:

minQ � X þ 2pTxþ r

ðSDPRÞ

Q0 � X þ 2pT0 xþ r0 � 0

Qj � X þ 2pTj xþ rj � 0

X�xxT

X�
�
0

j ¼ 1; 2; . . .;m
ð2:5Þ

Problem (2.5) is called SDP Relaxation problem (SDPR).

Lemma 4 ([4]) Let VðQCQPÞ and VðSDPRÞ denote the optimal values of

optimization problems (1.1) and (2.5) respectively. Then we have

VðSDPRÞ�VðQCQPÞ.

Let Y� be an optimal solution of problem (2.5) then a1 ¼ H0Y
� is a left endpoint

of trust interval. According to Lemma 2, we have a1 � a�:
So we could find a trust interval ½a1; a2�: Now a question arises: how to tighten

this trust interval? For answering this question, we propose a method that turns out

to be similar to the bisection method. At each step, the method divides the interval

in two by computing the midpoint a3 ¼ ða1þa2Þ
2

of the interval and the value of the

function Fða3Þ: Therefore we have two intervals ½a1; a3� and ½a3; a2�. If Fða3Þ� 0,

we select the subinterval ½a1; a3�, otherwise we select ½a3; a2�:
According to above discussion, the proposed method is as follows:

, then stop; problem (1.1) is infeasible.
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In Step 4 for calculating Fða3Þ, we should solve problem (2.2). We use the

adaptive ellipsoid based method (AEA) [4] in which its details are given in the

following.

We recall that KðaÞ ¼ x 2 Rn f ðxÞ� a; hjðxÞ� 0
�
� ; j ¼ 1; . . .;m

� �
is a subset of

the feasible set of problem (1.1), that a is obtained from Algorithm 1. For the

remainder of this section, we will assume that the parameter a is given. For

simplicity of notation, we denote KðaÞ briefly by K. According to [16], problem

(2.2) is equivalent to the following linear conic programming problem:

ðCPÞ
minH0 � Y

Y11 ¼ 1

Y 2 D�
K

ð2:6Þ

where H0 ¼ ½0 pT ; pQ� and

D�
K ¼ cone Y 2 Snþ1 Y ¼ 1

x

� �
1

x

� �T
�
�
�
�
�

for some x 2 K

( )

:

The cone of nonnegative quadratic functions Dn over a union of ellipsoids n � Rn

and its dual cone D�
n is introduced in [4], such that Snþ1

þ � Dn � DK and D�
K �

D�
n � Snþ1

þ : A tighter lower bound could be obtained, By replacing the

untractable cone D�
K in problem (CP) with the tractable cone D�

n instead of Snþ1
þ :

Let F ¼ F 1
e ; . . .;F k

e

� �
be a collection of full-dimensional ellipsoids, where

F j
e ¼ x 2 Rn xTAjxþ 2bTj xþ cj � 0

�
�
�

n o
ð2:7Þ

where Aj 2 Snþþ; bj 2 Rn and cj 2 R, for j ¼ 1; . . .; k: Let F ¼
Sk

j¼1 F j
e. So F is an

ellipsoidal cover of K, if K � F: From [2] each cone DF j
e
has an LMI representa-

tion. The cone of nonnegative quadratic functions over F and its dual cone are

defined as follows:

DF ¼ U 2 Snþ1 1

x

� �T
U

1

x

� �

	 0 for all x 2 F

�
�
�
�
�

( )

ð2:8Þ

D�
F ¼ cone Y 2 Snþ1 Y ¼ 1

x

� �
1

x

� �T
�
�
�
�
�

for some x 2 F

( )

ð2:9Þ

Theorem 5 ([15])

1. If K � F, for some a 2 R, then DF � DK and D�
K � D�

F .

2. If F ¼
Sk

j¼1 F j
e, then DF ¼

Tk
j¼1 DF j

e

and D�
F ¼

Pk
j¼1 D

�
F j

e

.
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From Theorem 5, LMI representations of D�
F is as follows.

Corollary 6 ([15]) Let sets F j
e;F; DF and D�

F be defined as in (2.7)–(2.9). Then

for any matrix Y 2 Snþ1;, Y 2 D�
F if and only if

Y ¼ Y1 þ Y2 þ � � � þ Yk;
cj bTj
bj Aj

� �

� Y j � 0; Y j 2 Snþ1 for j ¼ 1; . . .; k:

Now we can relax problem (CP) to the following linear conic problem:

min H0 � Y
Y11 ¼ 1

Y 2 D�
F

ð2:10Þ

According to Corollary 6, problem (2.10) can be specifically rewritten as

ðRCPÞ

minH0 � Y
Y ¼ Y1 þ Y2 þ � � � þ Yk; Y11 ¼ 1
cj bTj
bj Aj

� �

� Y j � 0; Y j 2 Snþ1; j ¼ 1; � � � ; k:
ð2:11Þ

By applying the reformulation–linearization technique (RLT) to problem (2.11), a

tighter lower bound for problem (2.2) could be obtained. The problem (2.11) is

changed as follows:

ðRCP-RLTÞ

minH0 � Y
Y ¼ Y1 þ Y2 þ � � � þ Yk; Y11 ¼ 1
ri pTi
pi Qi

� �

� Y j � 0; i ¼ 0; 1; . . .;m; j ¼ 1; . . .; k:

cj bTj
bj Aj

� �

� Y j � 0; Y j 2 Snþ1; j ¼ 1; . . .; k:

ð2:12Þ

The next theorem shows that problem (RCP-RLT) indeed provides a lower bound

for problem (2.2) if K � F:

Theorem 7 ([4]) Let F and F j
e be defined in (2.7), if K � F, then

VðRCPÞ�VðRCP� RLTÞ�VðCPÞ ¼ VðPÞ:

Theorem 8 ([4]) Let F j
e be defined in (2.7), if the set F j

e \ K has a nonempty

interior for i ¼ 1; . . .; k, then problem (RCP-RLT) is strongly feasible.

Therefore, the ellipsoids F j
e are needed to an efficient arrangement to cover K. In

order to detect which ellipsoid F j
e in F should be refined, the concepts of ‘‘most

sensitive points’’ and ‘‘most sensitive ellipsoids’’ are introduced. In order to detect

the sensitive regions, the following theorem is needed.
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Theorem 9 ([4]) If Y� ¼ ðY1Þ� þ ðY2Þ� þ � � � þ ðYkÞ� is an optimal solution to

problem (RCP-RLT), then, for ðYiÞ� 6¼ 0 with i 2 1; . . .; kf g, we have

ðY1Þ� ¼
Xni

s¼1

ais
1

xis

� �
1

xis

� �T

for some ni 2 f1; . . .; nþ 1g, ais [ 0 and xis 2 F j
e. In this case, Y� can be

decomposed into

Y� ¼
X

i:ðYiÞ� 6¼0

Xni

s¼1

ais
1

xis

� �
1

xis

� �T

With
P

i:ðYiÞ� 6¼0

Pni
s¼1 ais ¼ 1

Definition 1 ([4]). For the decomposition

Y� ¼
X

i:ðYiÞ� 6¼0

Xni

s¼1

ais
1

xis

� �
1

xis

� �T
ð2:13Þ

x� is the most sensitive point if

x� ¼ argmin
xis:ðYiÞ� 6¼0; s¼1;2;...;nif g

ðxisÞTQ0x
is þ 2ðp0ÞTxis þ r0

� �
ð2:14Þ

The minimum objective value among all of the sensitive points is x�. Note that if
there are multiple sensitive points that having the same minimum objective value,

the sensitive point x� is selected as the one having the smallest index in i with the

smallest index in s as a tie breaker. Denote the corresponding index i by t, then the

ellipsoid F t
e contain sensitive point x� is named the most sensitive ellipsoid. The

next theorem is about connection between the sensitive point x� and optimal

solution of problem (2.2).

Theorem 10 ([4]) Assume Y� is the optimal solution to problem (RCP-RLT) with

the most sensitive point x�, then

1

x�

� �
1

x�

� �T
�H0 �VðPÞ ð2:15Þ

Moreover, if x� 2 K, then the matrix
1

x�

� �
1

x�

� �T
is optimal to problem (CP) and x�

is optimal to problem (2.2).

According to Theorem 8, if x� 2 K, then x� is an optimal solution of problem

(2.2). Otherwise x� is a lower bound of problem (2.2). In this case, to get a better

lower bound we have to refine the ellipsoid cover F. But it does not need to refine F

everywhere. A question that arises is how to determine which ones need to refine?

To answer this question we use fewer ellipsoids involved in problem (RCP-RLT).
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Since the most sensitive point x� in the most sensitive ellipsoid F t
e in F has the

lowest objective value, therefore only this ellipsoid is need to refine.

The lower bound of problem (2.2) is improved by refining ellipsoids around the

region of x�.The following definition is to easily manage the ellipsoids in the set F.

Definition 2 ([4]) For a given rectangle set T ¼ ½u; v� ¼ x 2 Rn ui � xi � vijf g,
define the corresponding ellipsoid F T

e generated by T as

F T
e ¼ x 2 Rn

Xn

i¼1

ð2xi � vi � uiÞ2

ðvi � uiÞ2
� n

�
�
�
�
�

( )

ð2:16Þ

It is easy to verify that T � F T
e .

Let T ¼
Sk

i¼1 fTig and T be the union of the rectangle sets in T. Suppose T be a

rectangle cover of K that

K � T ¼
[k

i¼1
Ti:

Then the set F ¼
Sk

j¼1 F j
e, whose member F j

e is a full-dimensional ellipsoid gen-

erated by the rectangle set Ti, respectively, is an ellipsoid cover of K. In order to

make this method converge quickly, a good initial rectangle set cover is necessary.

In order to fulfill this purpose, consider the following problems:

Iimin
� �

min
x2Rn

xi

f ðxÞ� a
hjðxÞ� 0 j ¼ 1; 2; . . .;m

ð2:17Þ

and

Iimax
� �

max
x2Rn

xi

f ðxÞ� a
hjðxÞ� 0 j ¼ 1; 2; . . .;m

ð2:18Þ

For i ¼ 1; 2; . . .; n problems (2.17) and (2.18) are convex programming, hence

they can be solved efficiently. Since the feasible region K is closed and bounded,

therefore problems (2.17) and (2.18) have finite optimal solutions. Denote the

optimal solutions of problems (2.17) and (2.18) to be u1i and v1i respectively. The

rectangle set T1 ¼ ½u1; v1� is chosen as the initial rectangle set covering the feasible

region K and the ellipsoid F 1
e generated from T1 is the initial ellipsoid cover F of K.

The most sensitive point x�, the most sensitive ellipsoid F t
e and the rectangle set Tt

generating the most sensitive ellipsoid F t
e is also detected. Then, this rectangle set is

split by half. Let id ¼ arg max
i¼1;...;nf g

fvti � utig, then Tt is split into Tt1 ¼ ½ut1; vt1� and

Tt2 ¼ ½ut2; vt2�, where ut1 ¼ ut, vt2 ¼ vt, vt1i ¼ vti,u
t2
i ¼ uti, for i 6¼ id, and

vt1id ¼ ut2id ¼
ut
id
þvt

id

2
. Two ellipsoids F t1

e and F t2
e are generated from Tt1 and Tt2

according to
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F t1
e ¼ x 2 Rn

Xn

i¼1

2xi � vt1i � ut1i
� �2

vt1i � ut1ið Þ2
� n

�
�
�
�
�

( )

ð2:19Þ

and

F t2
e ¼ x 2 Rn

Xn

i¼1

2xi � vt2i � ut2i
� �2

vt2i � ut2ið Þ2
� n

�
�
�
�
�

( )

: ð2:20Þ

Let Int(Ti \ KÞ 6¼ ; for any rectangle set Ti in T, then one of the following

occurs:

1. Int Tt1 \ Kð Þ 6¼ ;; Int Tt2 \ Kð Þ ¼ ;

2. Int Tt2 \ Kð Þ 6¼ ;; Int Tt1 \ Kð Þ ¼ ;

3. Int Tt1 \ Kð Þ 6¼ ;; Int Tt2 \ Kð Þ 6¼ ;.

In the case 1 because Tt2 \ K don’t have common interior, thus the rectangle set

Tt2 should be eliminated from the rectangle set cover T for further consideration.

When the case 1 is occur the rectangle set Tt2 should be eliminated. In order to

determine which rectangle set should be eliminated, consider the following

problems:

Iidmin
� �

min
x2Rn

xid

f ðxÞ� a
hjðxÞ� 0 j ¼ 1; 2; . . .;m

ð2:21Þ

and

Iidmax
� �

max
x2Rn

xid

f ðxÞ� a
hjðxÞ� 0 j ¼ 1; 2; . . .;m

ð2:22Þ

Problems (2.21) and (2.22) are also convex programming, Therefore they can be

solved efficiently. Denote the optimal value of Problems (2.21) and (2.22) to be u
and w, respectively. The rectangle sets in T is changed as the following way.

T ¼ TnfTtg [ fTt2g; if u	 utid þ vtid
2

ð2:23Þ

T ¼ TnfTtg [ fTt1g; if w� utid þ vtid
2

ð2:24Þ

T ¼ TnfTtg [ fTt1g [ fTt2g; otherwise ð2:25Þ

Theorem 11 ([3]) The set Ti \ K has a nonempty interior for each rectangle set

Ti in T if the rectangle sets are added into T according to (2.23)–(2.25).
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Since each Ti has a common interior with K, each ellipsoid F i
e, generated from

Ti, also has a common interior with K. Consider the following corollary:

Corollary 12 ([3]) The set F i
e \ K has a nonempty interior for each F i

e generated

by the rectangle set Ti in T.

Consider the following problem Ic
� �

:

ðIcÞ
min
x2Rn

x� x�k k1
f ðxÞ� a
hjðxÞ� 0 j ¼ 1; 2; . . .;m

ð2:26Þ

The optimal value of problem ðIcÞ indicates the distance of the current sensitive

point x� to the feasible region K. It is clearly that problem ðIcÞ is a convex

programming problem. We denote the optimal solution of ðIcÞ by �x1:

3 Convergence of PQCQP method

In this section we will prove that the PQCQP method is convergent to an optimal

solution. At first we investigate some properties of function FðaÞ.
Let us rewrite FðaÞ as follows:
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FðaÞ ¼ min gðxÞ x 2 KðaÞ \
\m

j¼1

Tj

 !�
�
�
�
�

( )

ð3:1Þ

where KðaÞ ¼ x f ðxÞ� ajf g and Tj ¼ x hjðxÞ� 0
�
�

� �
for j ¼ 1; 2; . . .;m:

Lemma 13 FðaÞ is a decreasing function of a:

Proof If an � anþ1 then KðanÞ � Kðanþ1Þ, so Fðanþ1Þ�FðanÞ: h

Some properties of KðaÞ are established in the following lemma.

Lemma 14 For any a 2 R, we have:

1. KðaÞ is a convex set.

2. KðaÞ is a compact set.

Proof

1. Suppose x1; x2 2 KðaÞ and k 2 1; 0½ � be an arbitrary constant. So we have

f x1ð Þ� a; f x2ð Þ� a:

Since the function f ðxÞ is convex, we have

f ðkx1 þ ð1� kÞx2Þ� kf ðx1Þ þ ð1� kÞf ðx2Þ� a

Thus x1 þ ð1� kÞx2 2 KðaÞ:
2. We notice that the continuity of f implies the closedness of the set KðaÞ. Thus,

it remains only to show that the set KðaÞ is bounded. We prove this by

contradiction. Suppose that there is an a 2 R such that the set KðaÞ is

unbounded. Then there must exist a sequence fxpg 
 KðaÞ with xpk k ! 1.

But then by the coercivity of f , we must also have f ðxpÞ ! 1. This contradicts

the fact that f ðxpÞ� a for all ¼ 1; 2; . . .. Therefore the set KðaÞ must be

bounded. h

Theorem 15 Let KðaÞ be a nonempty set. Then FðaÞ is well-defined.

Proof According to Lemma 14, KðaÞ is a compact set. It is sufficient to prove that

T ¼
Tm

j¼1 Tj is closed. It is equivalent to show that every Tj (j ¼ 1; 2; . . .;m) is

closed. We remember that Tj ¼ x hjðxÞ� 0
�
�

� �
. Since hjðxÞ 2 ð�1; 0� and hjðxÞ is a

continuous function, thus Tj is closed set. Therefore K að Þ \
Tm

j¼1 Tj

	 

is a compact

set.

gðxÞ is continuous function, so we conclude that min gðxÞ on K að Þ \
Tm

j¼1 Tj

	 


always exists. Therefore FðaÞ is well-defined.

Lemma 16 Let fang1n¼1 be a sequence generated by the PQCQP method, then

KðanÞ is a nonempty set for any n 2 N.
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Proof According to Algorithm 1, the proof is obvious.

Theorem 17 Let fang1n¼1 be a sequence generated by the PQCQP method then we

have:

1. fFðanÞg1n¼1 is convergent.

2. fang1n¼1 is convergent.

3. If z� is the optimal value of problem (1.1) then an ! z�:

Proof

1. In Theorems 15 and 16 we have shown that FðaÞ always exists and is well-

defined. Now it is sufficient to prove that the new method is convergent.

According to Lemma 11, the sequence fFðanÞg1n¼1 is decreasing. Because

FðanÞ is bounded from below to Fða2Þ, thus fFðanÞg1n¼1 is convergent.

2. Suppose l[ 0 and anþ1 ¼ ðan þ an�1Þ=2. If a2 � a1j j\l then anþ1 � anj j\ l
2n
.

So an�1 � anj j ! 0 as n ! 1:
3. Since z� 2 ½an�1; an�. So

an�1 � z� � an: ð3:2Þ

According to Step 2 of Algorithm 1, we have anþ1 ¼ ðan þ an�1Þ=2.Therefore

an�1 � anþ1 � an ð3:3Þ

From (3.2), (3.3) and the proof of part 2, we conclude

jan � z�j � jan � an�1j\
l

2n�1
:

Hence jan � z�j ! 0 as n ! 1: h

4 Computational results

In this section, we report some computational results of the PQCQP method. The

new method was implemented using MATLAB R2013a on a PC with Intel Core i7

CPU and 16G memory. In the Algorithm 1 and AEA, CVX [8] is used to solve all

convex programming problems. The test problems are considered as follows [23]:

min
xrRn

xTQmþ1xþ 2pmþ1T xþ rmþ1

xTQ0xþ 2p0
T

xþ r0 � 0

xTQ jxþ 2pj
T

xþ r j � 0 j ¼ 1; 2; . . .;m

ð4:1Þ
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where the matrices Qj ¼ OjD jðOjÞT for some orthogonal matrices Oj and diagonal

matrices Dj 2 Snþþ(j ¼ 1; 2; . . .;m). The parameters in the test problems are ran-

domly generated as follows.

The matrix Oj ¼ P
j
1P

j
2P

j
3, in which P

j
i ¼ I � 2

xixT
i

x2k k, i = 1, 2, 3. The components

of vector xi 2 Rn are random numbers in [- 1, 1] and I is the n-dimensional

identity matrix. The matrices Dj are considered in the following way:

D0 ¼ Diag D0
1; . . .;D

0
n

� �
with D0

i 2 � 50; 0½ � for i ¼ 1; . . .; n
2

� �
and D0

i 2 0; 50½ �
for i ¼ n

2

� �
þ 1; . . .; n:

Dj ¼ Diag D
j
1; . . .;D

j
n

� �
with D

j
i 2 0; 50½ � for j ¼ 1; . . .;mþ 1.

Also, we set p0 ¼ p01; . . .; p
0
n

� �
with p0i 2 �10; 10½ �, p j ¼ p

j
1; . . .; p

j
n

� �
with

p
j
i 2 �50; 0½ �, and r j 2 � 5; 0½ � for j ¼ 1; � � � ;mþ 1, and r0 2 � 5; 0½ �.
In order to demonstrate the validity of the PQCQP method, we use the global

optimization package BARON [19] to obtain the optimal value.

The termination condition was chosen as a2 � a1j j\e with e ¼ 10�5. Since

academic version BARON could solve only problems with at most m = n=10, so

for m = n=10, 40 random test problems were generated and the results are listed in

Table 1, including the optimal value of SDP relaxation problem corresponding to

problem (1.1) (to see how good is optimal solution) and the optimal values (labeled

by ‘‘OPT’’) and the CPU time (in seconds) required for solving problems by

BARON and PQCQP-AEA.

We summarize results of Table 1 in Fig. 1, by method that proposed by Dolan

and More in [5]. Figure 1 plots the function

psðsÞ ¼
1

jPj jfp 2 P : rp;s � sgj:

where P denotes the set of problems used for a given numerical experiment and rp;s
denotes the ratio the amount of CPU time needed to solving problem p with method

s and the least amount of CPU time needed for solving problem p.

The value of psð1Þ is probability that the method s will win over test problems. In

Fig. 1, we see that PQCQP-AEA method is successful in about 85% of problems

and the CPU time for solving problem by PQCQP-AEA is less than CPU time for

solving problem by BARON. The Table 1 indicates that PQCQP-AEA could obtain

comparable accurate solutions with BARON in an efficient manner.

We report numerical results for some different m and n with the PQCQP-AEA in

Table 2.

Table 2 summarizes the average number of iterations and the average CPU time

for 50 test problems for cases n = 15 and m = 10, n = m=15, n = 30 and m = 20,

n = 50 and m = 10, n = 50 and m = 30 and n = m=50. From Tables 1 and 2, we

conclude that the PQCQP-AEA can be successfully applied to problem (1.1).
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Table 1 Numerical results for 40 test problems

Instance SDP relaxation OPT BARON PQCQP-AEA

OPT CPU time (s) OPT CPU time (s)

1 - 24.5124 - 6.0289 252 - 6.0289 128

2 - 36.7411 - 21.1969 251 - 21.1969 142

3 - 41.2014 - 9.4298 251 - 9.4298 117

4 22.1991 - 18.7130 251 - 18.7130 124

5 - 16.2410 - 10.4258 251 - 10.4258 196

6 - 88.1540 - 10.9253 252 - 10.6132 878

7 - 50.1490 - 20.0025 251 - 20.0025 134

8 - 18.3027 - 15.9799 251 - 15.9799 130

9 - 15.9801 - 15.6225 251 - 15.6225 131

10 - 18.6233 - 18.1946 250 - 18.1946 128

11 - 150.2804 - 10.0157 252 - 9.7245 870

12 - 10.0024 - 9.6108 251 - 9.6108 116

13 - 22.3114 - 16.2552 253 - 16.2552 138

14 - 29.4570 - 12.2657 253 - 12.2657 144

15 - 27.1153 - 16.0992 253 - 16.0992 142

16 - 8.0152 - 7.7217 251 - 7.7217 121

17 - 105.2177 - 23.9440 250 - 23.9440 281

18 - 61.3008 - 21.0915 250 - 21.0915 142

19 - 32.1041 - 19.5248 251 - 19.5248 130

20 - 11.2962 - 8.3339 252 - 8.3339 122

21 - 45.5142 - 14.8133 265 - 14.8133 154

22 - 8.0019 - 6.6665 253 - 6.6665 122

23 - 33.0145 - 18.5253 251 - 18.5253 131

24 - 19.7680 - 10.9821 251 - 10.9821 130

25 - 26.3456 - 17.1209 251 - 17.1209 130

26 - 13.9993 - 9.7844 251 - 9.7844 189

27 - 85.2431 - 11.3432 252 - 11.3432 334

28 - 29.1777 - 18.0511 251 - 18.0511 133

29 - 20.8457 - 16.9599 251 - 16.9599 132

30 - 13.6844 - 11.8552 252 - 11.8552 139

31 - 25.1623 - 10.6704 254 - 10.6704 138

32 - 321.5770 - 10.6902 255 - 10.6004 891

33 - 12.2016 - 9.8198 253 - 9.8198 118

34 - 31.2257 - 13.6658 257 - 13.6658 143

35 - 51.2026 - 12.1915 252 - 12.1915 202

36 - 73.2999 - 29.2332 252 - 29.2332 150

37 - 77.5614 - 8.3456 252 - 8.3456 253

38 - 46.1844 - 27.0819 252 - 27.0819 142

39 - 47.8110 - 18.1924 251 - 18.1924 134

40 - 16.3708 - 9.7463 251 - 9.7463 124
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5 Conclusion

In this paper, we have proposed a numerical procedure to find a global optimal

solution of the non-convex QCQP problem (1.1) with one non-convex constraint.

For solving this problem, we change the problem (1.1) to an equivalent parametric

problem (PQCQP) that all of constraints in PQCQP problem (2.2) are convex. The

convergence of PQCQP method is investigated. Computational results show that

PQCQP-AEA can be successfully applied to problems (1.1).

As for future work, PQCQP method would be extended for the cases of problem

(1.1) which objective function and constraints are non-convex.
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