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Abstract
In this paper, an iterative technique based on the use of parametric functions is pro-
posed to obtain the best preferred optimal solution of a multi-objective linear frac-
tional programming problem. The decision maker ascertains own desired tolerance 
values for the objectives as termination constants and imposes them on each itera-
tively computed objective functions in terms of termination conditions. Each frac-
tional objective is transformed into non-fractional parametric function using certain 
initial values of parameters. The parametric values are iteratively computed and �
-constraint method is used to obtain the pareto (weakly) optimal solutions in each 
step. The computations get terminated when all the termination conditions are sat-
isfied at a pareto optimal solution of an iterative step. A numerical example is dis-
cussed at the end to illustrate the proposed method and fuzzy max–min operator 
method is applied to validate the obtained results.

Keywords  Multi-objective LFPP · Pareto optimal solution · �-Constraint method · 
Parametric function · Fuzzy programming

1  Introduction

Mathematical modelling of numerous existent problems of human society engen-
ders several objectives which are conflicted as well as inter-related to each other. 
Many times, they exist in fractional or rational form of two other functions and need 
simultaneous optimization under a common set of constraints. If the numerators and 
denominators of the fractional objectives with constraints are all affine functions 
(i.e, linear plus constants), such modelled optimization problems are interpreted 
as multi-objective linear fractional programming problems. Several mathematical 
optimization problems comprise fractional objectives to be optimized which are 
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frequently encountered [21] in many real life situations like profit/cost, inventory/
sale, output/employee, risk-assets/capital, debt/equity etc. Linear Fractional pro-
gramming problem which was developed by Hungarian mathematician B.Martos in 
1960, has wide range of application in various important fields such as economics, 
finance, science, engineering, business, management, information theory, marine 
transportation, water resourses, health care, corporate planning and so forth. Multi-
objective FPP has attracted considerable research interest since recent few years and 
several methods have been proposed in this context for determination of the optimal 
solutions. Usually multi-objective optimization problem does not contain single fea-
sible solution which can optimize all the objectives absolutely and simultaneously. 
Therefore the concept of pareto optimal solution otherwise called non-inferior or 
non-dominated solution was developed by Vilfredo Pareto which improves (i.e, min-
imizes or maximizes) atleast one objective function without degrading (i.e, maxi-
mizes or minimizes) other objectives in case of multi-objective optimization (i.e, 
minimization or maximization) problems. Various methods have been developed to 
generate pareto optimal solutions from which the best preferred optimal solution is 
determined by the DM to satisfy all the objectives. Charnes and Cooper [7] devel-
oped a transformation technique in 1960 to linearize the fractional objectives with 
an additional variable. Bitran and Novaes [3] proposed a method which is widely 
used to solve FPP. Tantawy [22] used conjugate gradient method to solve LFPP. 
WOLF [25] used parametric linear programming to solve nonlinear FPP. Pal and 
Sen [20] proposed goal programming method to solve interval valued MOLFPP. 
Costa [10] derived an algorithm to solve MOLFPP which goes on dividing the non-
dominated region to search the maximum value of weighted sum of the objectives. 
Valipour et al. [24] developed a method to solve MOLFPP which is an extension of 
Dinkelbach’s parametric approach [13] to solve LFPP. Borza et al. [4] used paramet-
ric approach to solve a single objective LFPP with interval coefficients in the objec-
tive function. Almogy and Levin [1] used parametric technique to solve a problem 
with the objective defined as sum of fractional functions. Miettinen [16] illustrates 
many methods to solve muti-objective optimization problems.

Zhixia and Fengqi [26] developed a parametric algorithm to solve mixed 
integer linear and nonlinear fractional programming problems by transform-
ing it into equivalent parametric formulation. Das et  al. [12] proposed a model 
to solve fuzzy LFPP by formulating an equivalent tri-objective LFPP. Osman 
et al. [19] developed an interactive approach to solve multi-level MOLFPP with 
fuzzy parameters. Chinnadurai and Muthukumar [8] proposed a method to derive 
(�, r)-optimal solutions of a fuzzy LFPP. Chakrobarty and Gupta [5] proposed 
fuzzy approach to solve MOLFPP by formulating its equivalent linear program-
ming whereas Chang [6] proposed a goal programming approach to solve fuzzy 
MOLFPP. Liu [15] developed a method to derive fuzzy objective values of a 
geometric programming with fuzzy parameters. Ojha and Biswal [18] proposed 
�-constraint method to derive pareto optimal solutions of a multi-objective geo-
metric programming problem. Toksari [23] developed Taylor series approach to 
solve fuzzy MOLFPP by linearizing fuzzy membership functions but Dangwal 
[11] applied first order Taylor series to linearize fractional objective functions to 
solve a MOLFPP.
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In this present work we have proposed a method to solve a multi-objective lin-
ear fractional programming problem using the concept of parametric functions 
and �-constraint method together. It converts the LFPP to suitable non-fractional 
problem using certain parameters to find a set of non-inferior solutions through 
iterative computations. Termination conditions are imposed on all the objectives 
by the DM to determine the best preferred optimal solution at which a certain 
level of satisficing optimality is attained by all the objective functions.

The organization of the paper is as follows: following introduction, a brief 
explanation of multi-objective optimization problem and existence of it’s optimal 
solution are presented in Sect.  2 whereas the use of �-constraint method is dis-
cussed in Sect. 3. Fuzzy programming to solve multi-objective optimization prob-
lem using membership functions is briefly discussed in Sect. 4. Some proposed 
theorems with proofs are incorporated in Sect. 5 regarding parametric approach 
to MOLFPP. Section  6 describes the proposed solution procedure. An example 
is discussed in Sect. 6.1 for illustration of the proposed method and finally, some 
conclusions are incorporated in Sect. 7.

2 � Multi‑objective optimization problem (MOOP)

In multi-objective optimization problem, several objective functions are opti-
mized simultaneously with respect to a common set of constraints. Usually there 
does not exist single optimal solution which optimizes all the objectives together 
with their respective best satisfactory level. In such cases, a set of pareto opti-
mal solutions are generated using an appropriate method available in literature 
and the best preferred (compromise) optimal solution that satisfies all the objec-
tives with the best possibility, is determined by the decision maker (DM) com-
paring the objective values in accordance to own desire on priority basis or the 
requirement of the system. A multi-objective optimization problem [14, 16] can 
be mathematically stated as:

� is the set of constraints, considered as a non-empty compact feasible region. A 
multi-objective optimization problem is otherwise called as a multi-criterion opti-
mization or vector optimization problem whereas a pareto optimal solution is other-
wise called as non-inferior or non-dominated or efficient solution.

Definition 1  x∗ ∈ � is a pareto optimal solution of the MOOP (1) if there does not 
exist another feasible solution x̄ ∈ 𝛺 such that fi(x̄) ≤ fi(x

∗) ∀ i  and   fj(x̄) < fj(x
∗) 

for at least one j.

(1)

min f (x) = (f1(x), f2(x),… , fk(x))

subject to

x ∈ �

where x ∈ ℝ
n and fi ∶ ℝ

n
→ ℝ, i = 1, 2… , k
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Definition 2  x∗ ∈ � is a weakly pareto optimal solution of the MOOP (1) if there 
does not exist another feasible solution x̄ ∈ 𝛺 such that fi(x̄) < fi(x

∗) ∀ i.

Definition 3  Trade-off or Pareto front is a part of the objective feasible region 
which consists of the objective values evaluated at the pareto optimal solutions of 
the MOOP.

Definition 4  Ideal objective vector has the co-ordinates which are obtained by 
evaluating the values of the objectives at their respective individual minimal points.

Definition 5  Nadir objective vector has the co-ordinates which are the respective 
worst objective values when the set of solutions is restricted to the trade-off.

3 � �‑Constraint method

The �-constraint method [9, 16, 17] was proposed by Haimes et  al. for obtaining 
pareto (weakly) optimal solutions of a MOOP. It is a preference based method that 
generates the non-inferior solutions by optimizing one objective function as the best 
prioritized one and converting the remaining objective functions as the constraints 
along with their respective goals which alternate in the range of their best and worst 
values. In other words, it minimizes one objective function and simultaneously 
maintains the maximum acceptability level for other objective functions. It is appli-
cable for both convex as well as concave feasible region. The �-constraint method is 
mathematically defined as:

�
L
i
, �U

i
 are the respective best and worst values of the objective function fi(x) . Substi-

tuting different values of �i lying in the range [�L
i
, �U

i
] and solving its corresponding 

above formulated optimization problem, a set of optimal solutions can be generated 
which are considered as the pareto optimal solutions of the MOOP from which DM 
determines the best preferred optimal solution by comparing the objective values.

4 � Fuzzy programming

To tackle numerous real world problems comprising uncertainty and vagueness in 
complexity of data, Zadeh developed fuzzy set theory in 1965 that transforms impre-
cise information into precise mathematical form. The concept of Bellman and Zadeh 

(2)

min fs(x), s ∈ {1, 2,… , k}

subject to

fi(x) ≤ �i, i = 1, 2,… , s − 1, s + 1,… , k.

x ∈ �,

where �L
i
≤ �i ≤ �

U
i
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[2] was extended and implemented by Zimmermann [27] to form a mathematical mod-
elling based on fuzzy concept to solve various multi-objective optimization problems 
using max–min operator method. Each fuzzy set is associated with a membership func-
tion whose domain and range are the set of decision variables and [0,1] respectively. An 
appropriate membership function is selected to determine the optimal solution. Accord-
ing to Zimmermanns fuzzy technique, best preferred optimal solution of a MOOP can 
be obtained by using the following steps.

Step 1 Determine the best and worst values i.e., the aspired (f min
i

) and acceptable 
(f max
i

) values respectively for each objective function fi(x), i = 1,… , k satisfying 
f min
i

≤ fi(x) ≤ f max
i

 , for x ∈ �.
Step 2 Define following linear fuzzy membership function �i(x) for each objective 

function fi(x) to derive the best preferred optimal solution of the MOOP as:

The geometrical interpretation of the linear fuzzy membership function for a mini-
mization problem is represented in Fig. 1.

Step 3 Construct the following crisp model to obtain the optimal solution as follows:

Step 4 The above crisp model can be transformed into an equivalent mathematical 
programming problem as follows:

(3)�i(x) =

⎧
⎪⎪⎨⎪⎪⎩

1, fi(x) ≤ f min
i

f max
i

− fi(x)

f max
i

− f min
i

, f min
i

≤ fi(x) ≤ f max
i

0, fi(x) ≥ f max
i

(4)

Max{min
1≤i≤k

�i(x)}

subject to

x ∈ �

(5)

Max�

subject to

�i(x) =
f max
i

− fi(x)

f max
i

− f min
i

≥ �, i = 1, 2,… , k

x ∈ �

Fig. 1   Membership func-
tion defined for minimization 
problem

fi(x)fmin
i

fmax
i

µfi (fi(x))

0

1
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where ‘ � ’ is an auxiliary variable assumed as the value of min1≤i≤k �i(x) . The con-
straints �i(x) ≥ � can be replaced by fi(x) + �(f max

i
− f min

i
) ≤ f max

i
, i = 1, 2,… , k for 

simplicity.
Step 5 Solve the above maximization problem to obtain the best preferred opti-

mal solution of the MOOP and evaluate the optimal objective values at this solution.

5 � Parametric approach to solve FPP

Consider the following single objective fractional programming and parametric non-
fractional programming problems respectively.

where � is a parameter and � is the non-empty compact feasible region in which 
both f and g are continuous affine functions with g(x) > 0, ∀ x ∈ 𝛺.

Theorem 1  [21]  x∗ is optimal solution of Problem-I iff minx∈�{f (x) − �
∗g(x)} = 0 

where �∗ = f (x∗)

g(x∗)
.

Consider the following multi-objective fractional programming and parametric 
linear programming problems respectively.

Assume that  gi(x) > 0,∀ x ∈ 𝛺 and �∗
i
=

fi(x
∗)

gi(x
∗)

 , where x∗ ∈ �

Remark 1  x∗ is pareto optimal solution of Problem-IV if for each x ∈ � , 
fi(x) − �

∗
i
gi(x) = 0 ∀ i or fj(x) − 𝛾

∗
j
gj(x) > 0 for at least one j ∈ {1, 2,… , k}.

Using the above Remark  1 and Theorem  1 due to Dinkelbach, the following 
results are achieved.

Theorem  2  x∗ is pareto optimal solution of Problem-III iff x∗ is pareto optimal 
solution of Problem-IV.

Proof  Consider the following notations for convenience of the proof. Gi(x) =
fi(x)

gi(x)
 

and Fi(x) = {fi(x) − �
∗
i
gi(x)} for i = 1, 2,… , k.

Let x∗ is a pareto optimal solution of the Problem-III.

(6)Problem − I ∶ min
x∈�

f (x)

g(x)

(7)Problem − II ∶ min
x∈�

{f (x) − �g(x)}

(8)Problem − III ∶ min
x∈�

fi(x)

gi(x)
, i = 1, 2,… , k

(9)Problem − IV ∶ min
x∈�

{fi(x) − �
∗
i
gi(x)}, i = 1, 2,… , k
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Suppose on contrary, x∗ is not pareto optimal for Problem-IV.
i.e, by definition ∃ x̄ ∈ 𝛺 such that, Fi(x̄) ≤ Fi(x

∗) ∀ i = 1, 2,… , k and 
Fj(x̄) < Fj(x

∗) for at least one j ∈ {1, 2,… , k}.
i.e, fi(x̄) − 𝛾

∗
i
gi(x̄) ≤ fi(x

∗) − 𝛾
∗
i
gi(x

∗) ∀ i and fj(x̄) − 𝛾
∗
j
gj(x̄) < fj(x

∗) − 𝛾
∗
j
gj(x

∗) 
for at least one j.

Since �∗
i
=

fi(x
∗)

gi(x
∗)

 , we have fi(x∗) − �
∗
i
gi(x

∗) = 0.
i.e, fi(x̄) − 𝛾

∗
i
gi(x̄) ≤ 0 and fj(x̄) − 𝛾

∗
j
gj(x̄) < 0 for at least one j.

i.e, fi(x̄)
gi(x̄)

≤
fi(x

∗)

gi(x
∗)

∀ i and fj(x̄)
gj(x̄)

<

fj(x
∗)

gj(x
∗)

 for at least one j.
It contradicts the pareto optimality of x∗ for the Problem-III. Thus, x∗ is pareto 

optimal solution for Problem-IV.
Conversely, let x∗ is pareto optimal for Problem-IV.
Suppose on contrary, x∗ is not pareto optimal for Problem-III.
i.e, ∃ x̄ ∈ 𝛺 such that,

On simplifying we get,

i.e, Fi(x̄) ≤ 0 ∀ i and Fj(x̄) < 0 for at least one j.
But,

So,

It contradicts the pareto optimality of x∗ for Problem-IV. Thus, x∗ is pareto optimal 
solution of Problem-III. 	�  □

Theorem 3  The pareto optimal solutions of Problem-IV are also pareto optimal of 
Problem-III if x∗ is pareto optimal of Problem-IV.

Proof  Let x̄ be a pareto optimal solution of Problem-IV.
i.e, by definition ∃  no x ∈ � such that,
fi(x) − 𝛾

∗
i
gi(x) ≤ fi(x̄) − 𝛾

∗
i
gi(x̄) ∀ i and fj(x) − 𝛾

∗
j
gj(x) < fj(x̄) − 𝛾

∗
j
gj(x̄) for at least 

one j.
In other words for each x ∈ �,

i.e, for x = x∗ we have,

Gi(x̄) ≤ Gi(x
∗) ∀ i and Gj(x̄) < Gj(x

∗) for at least one j.

fi(x̄) − 𝛾
∗
i
gi(x̄) ≤ 0 and fj(x̄) − 𝛾

∗
j
gj(x̄) < 0 for at least one j.

Fi(x
∗) = fi(x

∗) − �
∗
i
gi(x

∗) = 0 as �∗
i
=

fi(x
∗)

gi(x
∗)

Fi(x̄) ≤ Fi(x
∗) ∀ i andFj(x̄) < Fj(x

∗) for at least one j.

fi(x) − 𝛾
∗
i
gi(x) = fi(x̄) − 𝛾

∗
i
gi(x̄) ∀ i or fj(x) − 𝛾

∗
j
gj(x) > fj(x̄) − 𝛾

∗
j
gj(x̄) for at least one j.

fi(x
∗) − 𝛾

∗
i
gi(x

∗) = fi(x̄) − 𝛾
∗
i
gi(x̄) ∀ i or fj(x

∗) − 𝛾
∗
j
gj(x

∗) > fj(x̄) − 𝛾
∗
j
gj(x̄) for at least one j.
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Since �∗
i
=

fi(x
∗)

gi(x
∗)

,

By Theorem  2, x∗ is pareto optimal for Problem-III as it is pareto optimal for 
Problem-IV.

i.e, for each x ∈ �

Combining (10) and (11),   for each x ∈ � fi(x̄)
gi(x̄)

=
fi(x)

gi(x)
∀ i or fj(x̄

gj(x̄)
<

fj(x)

gj(x)
 for at least 

one j.
So x̄ is pareto optimal of Problem-III.    	�  □

6 � Proposed method to solve MOLFPP

General form of a multi-objective LFPP is defined as:

In order to solve the above MOLFPP, we consider the following procedure using 
both parametric approach and �-constraint method.

Assume that, fi(x) =
∑n

j=1
cijxj+�i∑n

j=1
dijxj+�i

= �
(t)

i
,  i = 1, 2,… , k where ‘t’ denotes the iteration 

or step number of the proposed iterative method and � (t) = (�
(t)

1
, �

(t)

2
,… , �

(t)

k
) denotes 

the vector of parameters assigned to the vector of objective functions 
f (x) = (f1(x), f2(x),… , fk(x)).

(10)

fi(x̄) − 𝛾
∗
i
gi(x̄) =0 ∀ i or fj(x̄) − 𝛾

∗
j
gj(x̄) < 0 for at least one j.

i.e,
fi(x̄)

gi(x̄)
=
fi(x

∗)

gi(x
∗)

∀ i or
fj(x̄)

gj(x̄)
<

fj(x
∗)

gj(x
∗)

for at least one j

(11)
fi(x

∗)

gi(x
∗)

=
fi(x)

gi(x)
∀ i or

fj(x
∗)

gj(x
∗)

<

fj(x)

gj(x)
for at least one j.

(12)

�������-� ∶ min f (x) = (f1(x), f2(x),… , fk(x))

subject to

� = {x ∈ ℝ
n
⏐ Ax(≤,=,≥)b, x ≥ 0}

where, fi(x) =

∑n

j=1
cijxj + �i∑n

j=1
dijxj + �i

, i = 1, 2,… , k

cij, dij, �i, �i ∈ ℝ, b ∈ ℝ
m, A ∈ ℝ

m×n



182	 OPSEARCH (2019) 56:174–190

1 3

Let, Fi(�
(t)) = (

∑n

j=1
cijxj + �i) − �

(t)

i
(
∑n

j=1
dijxj + �i) . Consider the following multi-

objective parametric non-fractional programming problem as:

Using �-constraint method, Problem-P1 is transformed into the following single 
objective optimization problem as:

This Problem-P1 can be formulated in more generalized form as:

Construct the following pay-off Table  1 to obtain the best values �L
i
 and relative 

worst values �U
i

 of the objectives Fi(�
(t)).

From the Table 1, evaluate �L
i
 and �U

i
 as : �L

i
= min{Fi(X

∗
l
)|l = 1, 2,… , k} = Fi(X

∗
i
) 

and �U
i
= max{Fi(X

∗
l
)|l = 1, 2,… , k}, i = 1, 2,… , k , where X∗

l
 (l = 1, 2,… , k) are 

the individual optimal solution of the objectives Fl(�
(t)) obtained by minimizing 

them individually over the set of constraints � . (�L
1
, �L

2
,… , �L

k
) and (�U

1
, �U

2
,… , �U

k
) 

are the ideal and nadir objective vectors of Problem-P1 respectively. Following 
assumptions are undertaken to obtain the pareto optimal solutions of Problem-P.

(13)
�������−�

�
∶ minFi(�

(t)) =

n∑
j=1

(cij − �
(t)

i
dij)xj + (�i − �

(t)

i
�i)

subject to

x ∈ �

(14)
min Fs(�

(t))

subject to

Fi(�
(t)) ≤ �i, i = 1, 2,… , s − 1, s + 1,… , k, x ∈ �

(15)

�������−�
�
∶ min

n∑
j=1

(csj − �
(t)
s
dsj)xj + (�s − �

(t)
s
�s)

subject to

n∑
j=1

(cij − �
(t)

i
dij)xj + (�i − �

(t)

i
�i) ≤ �i ∈ [�L

i
, �U

i
], i = 1, 2,… , s − 1, s + 1,… , k

Ax(≤,=,≥)b, x ≥ 0

Table 1   Pay-off table for 
objective functions of 
Problem-P

1

X
∗
l

F
1
(X∗

l
) F

2
(X∗

l
) ... F

k
(X∗

l
)

X
∗
1

F
1
(X∗

1
) F

2
(X∗

1
) … F

k
(X∗

1
)

X
∗
2

F
1
(X∗

2
) F

2
(X∗

2
) … F

k
(X∗

2
)

⋮ ⋮ ⋮ ⋮

X
∗
k

F
1
(X∗

k
) F

2
(X∗

k
) ... F

k
(X∗

k
)
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Assumptions

•	 Initialize the vector of parameters as � (1) = (�
(1)

1
, �

(1)

2
,… , �

(1)

k
) which is equated 

to the vector of objective functions f(x) of Problem-P. where � (1)
i

=

∑n

j=1
cijx

(0)

j
+�i∑n

j=1
dijx

(0)

j
+�i

,   

X(0) =
∑k

i=1
wiXi = (x

(0)

j
�j = 1, 2,… , n) ,  

∑k

i=1
wi = 1, wi > 0 and Xi are the indi-

vidual minimal solutions of the objectives fi(x) of Problem-P which can be 
obtained by using Charns and Cooper variable transformation technique [7]. 
Almost equal weights ‘ wi ’ are used to obtain X(0) as the initial feasible solution.

•	 Define termination conditions of the proposed iterative procedure which 
are imposed on each objective functions of Problem-P1 at the iterative 
steps where � (t) changes from one to another step. Termination conditions : 
|Fi(�

(t))| ≤ Ti, i = 1, 2… k where, Ti > 0 are the termination constants and con-
sidered as tolerance values acceptable by the objectives ‘ fi(x) ’ to obtain the 
best compromise/preferred solution. The values of ‘ Ti ’ are predefined by the 
decision maker (DM) for each objective functions and usually their values are 
taken closer to zero.

The following steps are executed from the initial step (t = 1) till reaching the 
desired optimal solution at which termination conditions are satisfied.

Step-t Let � (t) be the vector of parameters at t-th step.

•	 Substitute the values of the parameters � (t)
i

 in Problem-P1.
•	 The objective function Fi(�

(t)) of Problem-P1 which has least value of termina-
tion constant ‘ Ti ’ i.e., tolerance, is considered as the objective function Fs(�

(t))

.
•	 Formulate Problem-P2 and substitute different values of �i ∈ [�L

i
, �U

i
] such that 

either one of the following two cases occurs.

1.	 �i ∈ [−Ti, Ti] for satisfying the termination conditions |Fi(�
(t))| ≤ Ti   as 

Fi(�
(t)) ≈ �i occurs oftenly for i = 1, 2,… , s − 1, s + 1,… , k.

2.	 If [−Ti, Ti] and [�L
i
, �U

i
] are disjoint, choose �i ∈ [�L

i
, �U

i
] only.

•	 Solve Problem-P2 for different �i to generate a set of pareto optimal solutions.
•	 Test the aforesaid termination conditions |Fi(�

(t))| ≤ Ti, i = 1, 2… k at each 
pareto optimal solution for each objective function Fi(�

(t)) of Problem-P1.
•	 If the pareto optimal solution X(t∗) = (x

(t∗)

1
, x

(t∗)

2
… .x(t

∗)
n

) obtained above satisfies 
all the termination conditions then stop the procedure and this solution is consid-
ered as the required best preferred optimal solution.

•	 Otherwise at each pareto optimal solution, find 
∑

i{�Fi(�
(t))� − Ti} for those 

values of i ∈ {1, 2,… k} at which termination condition is violated i.e., 
|Fi(𝛾

(t))| − Ti > 0 . Determine the pareto optimal solution X(t) = (x
(t)

1
, x

(t)

2
… x(t)

n
) 

as the compromise solution of t-th step at which the total violation in satisfying 
the termination conditions i.e., 

∑
i{�Fi(�

(t))� − Ti} has minimum value then go to 
the next step-(t+1).
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Step-(t+1)

•	 Compute � (t+1)
i

=

∑n

j=1
cijx

(t)

j
+�i∑n

j=1
dijx

(t)

j
+�i

   for i=1,2...k, where X(t) = (x
(t)

j
) = (x

(t)

1
, x

(t)

2
… x(t)

n
) 

is obtained in the previous step-t as the compromise solution.
•	 Solve Problem-P2 as in Step-t by substituting � (t+1) = (�

(t+1)

i
∶ i = 1, 2… k) in place 

of � (t) = (�
(t)

i
∶ i = 1, 2… k) and different values of ‘ �i ’ to generate another set of 

pareto optimal solutions of Problem-P2 and check the termination conditions again.

Repeat the procedure until unless a pareto optimal solution is obtained satisfying all 
the termination conditions imposed on the objectives by the DM. Otherwise redefine 
the values of termination constants ‘ Ti ’. By Theorem 3, the pareto optimal solutions of 
Problem-P2 are also pareto optimal of Problem-P as X(t) (using which � (t) is computed) 
is pareto optimal for Problem-P2 . The solution so obtained is considered as the best 
preferred optimal solution of Problem-P.

6.1 � Convergence analysis

The following dicussions are incorporated regarding the convergency of the above inter-
preted method which seeks a best compromise solution starting from an initial solu-
tion and moving to another compromise solution in the feasible region of Problem-P2 . 
The feasible region in each step changes with the change of ‘ �i ’ in the constraints. It 
is clear that the possibility of satisfying the termination conditions in step-(t + 1) is 
more than that of due to the preceeding step-t beacuse of the selection procedure fol-
lowed to determine the compromise solution in each step. Since a minimization prob-
lem is considered here, the objective values evaluated at the compromise solution of 
step-t are usually greater than that of due to step-(t + 1) i.e., fi(X(t)) ≥ fi(X

(t+1)) which 
ensures convergency of the method as � (t)

i
= fi(X

(t−1)) are decreasing functions and also 
bounded due to �L

i
≤ fi(x) ≤ �

U
i

.
Fuzzy programming as discussed in Sect. 4 is also applied to solve the MOLFPP for 

ensuring the feasibility of the proposed method by comparing the obtained results.

7 � Numerical example

Consider the following multi-objective linear fractional programming problem.

min

�
f1(x) =

−x1 + 3x2 + 2

x1 + 2x2 + 1
, f2(x) =

5x1 + 2x2 + 2

2x1 + 3x2 + 1

�

subject to

� =

⎧⎪⎪⎨⎪⎪⎩

2x1 + x2 ≤ 4

3x1 − 2x2 ≤ 5

x1 + 2x2 ≤ 3

x1 + 3x2 ≥ 2

x1, x2 ≥ 0
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Solution due to proposed method Using Charnes and Cooper variable transforma-
tion technique, it is obtained that X1 = (1.7272, 0.0910) and X2 = (0, 1.5) are the indi-
vidual optimal solutions of the objectives f1(x) and f2(x) respectively. The range of best 
and worst values of the objectives are determined using pay-off Table 1 as:

Assigning equal weights i.e, w1 = w2 = 0.5 , the initial solution of the proposed iter-
ative method is obtained as X(0) = w1X1 + w2X2 = (0.8636, 0.7955) . So the initial 
vector of parameters is obtained as:

The fractional objectives can be parametrically linearized as:

Termination constants for the two objectives are defined as (T1, T2) = (0.02, 0.03).

Step 1 Using the proposed method, find x = (x1, x2) to minimize,

It is observed that minx∈� F1(�
(1)) and minx∈� F2(�

(1)) occur at (1.8571, 0.2857) and 
(0, 1.5) respectively.

Using pay-off Table 1, [�L
2
, �U

2
] is computed as [-3.5063, 3.2403]. As T1 < T2 , 

using �-constraint method the above problem is formulated as:

Since [−T2, T2] ⊆ [𝜖L
2
, 𝜖U

2
] , the problem is stated as:

0.1875 ≤ f1(x) ≤ 1.6250

0.9091 ≤ f2(x) ≤ 2.2884

�
(1) = (�

(1)

1
, �

(1)

2
) =

(
f1(X

(0)), f2(X
(0))

)
= (1.0198, 1.5466).

F1(�
(t)) =(−x1 + 3x2 + 2) − �

(t)

1
(x1 + 2x2 + 1)

F2(�
(t)) =(5x1 + 2x2 + 2) − �

(t)

2
(2x1 + 3x2 + 1)

F1(�
(1)) = − 2.0198x1 + 0.9604x2 + 0.9802

F2(�
(1)) = 1.9068x1 − 2.6398x2 + 0.4534

subject to x ∈ �

min F1(�
(1))

subject to

F2(�
(1)) ≤ �2

x ∈ �

minF1(�
(1)) = −2.0198x1 + 0.9604x2 + 0.9802

subject to

F2(�
(1)) = 1.9068x1 − 2.6398x2 + 0.4534 ≤ �2

x ∈ �,

where �2 ∈ [−T2, T2] = [−0.03, 0.03]
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Substituting different values of �2 , the following set of pareto optimal solutions are 
generated in Table 2.

It is observed that at each pareto optimal solution obtained in the above 
table, F2(�

(1)) ≈ �2   and   |F2(�
(1))| ≤ T2 but |F1(𝛾

(1))| > T1 . As termination con-
dition is only violated by F1(�

(1)) , according to the proposed method, min ∑
i∈{1,2}{�Fi(�

(1))� − Ti}=min { |F1(�
(1))| − T1 } and it occurs at the pareto optimal 

solution X(1) = (1.0774, 0.9613) . Thus, X(1) is considered as the compromise solu-
tion of step-1.

Step 2 The new vector of parameters is computed as 
�
(2) = (�

(2)

1
, �

(2)

2
) = (0.9516, 1.5417) . The problem to be solved is formulated as:

Find x = (x1, x2) so as to minimize,

It is observed that minx∈� F1(�
(2)) and minx∈� F2(�

(2)) occur at (1.8571,  0.2857) 
and (0,  1.5) respectively. Using pay-off Table 1, [�L

2
, �U

2
] is computed as [-3.4794, 

3.2676]. Since [−T2, T2] ⊆ [𝜖L
2
, 𝜖U

2
] , using �-constraint method the above problem is 

formulated as:

Substituting different values of �2 , the following set of pareto optimal solutions are 
generated in Table 3.

F1(�
(2)) = (−x1 + 3x2 + 2) − �

(2)

1
(x1 + 2x2 + 1) = − 1.9516x1 + 1.0968x2 + 1.0484

F2(�
(2)) = (5x1 + 2x2 + 2) − �

(2)

2
(2x1 + 3x2 + 1) = 1.9166x1 − 2.6251x2 + 0.4583

subject to x ∈ �

minF1(�
(2)) = − 1.9516x1 + 1.0968x2 + 1.0484

subject to

F2(�
(2)) = 1.9166x1 − 2.6251x2 + 0.4583 ≤ �2andx ∈ �

where, �2 ∈ [−T2, T2] = [−0.03, 0.03]

Table 2   Pareto optimal 
solutions of step-1

�
2

x
1

x
2 F

1
(� (1)) |F

1
(� (1))| − T

1

− 0.0300 1.0774 0.9613 − 0.2726 0.2526
− 0.0233 1.0794 0.9603 − 0.2778 0.2578
− 0.0167 1.0815 0.9593 − 0.2829 0.2629
− 0.0100 1.0836 0.9582 − 0.2881 0.2681
− 0.0033 1.0856 0.9572 − 0.2933 0.2733
0.0033 1.0877 0.9562 − 0.2984 0.2784
0.0100 1.0898 0.9551 − 0.3036 0.2836
0.0167 1.0918 0.9541 − 0.3088 0.2889
0.0233 1.0939 0.9531 − 0.3139 0.2939
0.0300 1.0959 0.9520 − 0.3191 0.2991
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It is observed that at each solution obtained in Table  3, F2(�
(2)) ≈ �2 and 

Fi(𝛾
(2)) > 0 for at least one i ∈ {1, 2} , so all these are pareto optimal for Problem-P 

by Theorem 3 . However, the termination conditions |Fi(�
(2))| ≤ Ti , i = (1, 2)  are not 

satisfied at (1.0682, 0.9659) and (1.0868, 0.9566). As the rest pareto optimal solu-
tions satisfy all the termination conditions, the decision maker (DM) chooses one of 
them as the best preferred optimal solution. The set of objective values evaluated at 
the solutions of Table 3 satisfying termination conditions, are:

Solution due to fuzzy programming The aspired and acceptable values i.e., the 
obtained best and worst values of the objectives are:

Thus constructing the membership functions as discussed in Sect. 4, the crisp model 
is formulated as follows:

{
(
f
1
(x), f

2
(x)

)
} = {(0.9561, 1.5378), (0.9558, 1.5387), (0.9535, 1.5401),

(0.9522, 1.5412), (0.9509, 1.5423), (0.9496, 1.5434),

(0.9483, 1.5445), (0.9471, 1.5455)}.

f min
1

=0.1875 ≤ f1(x) ≤ 1.6250 = f max
1

f min
2

=0.9091 ≤ f2(x) ≤ 2.2884 = f max
2

max �

subject to

2.625x1 + 0.25x2 − 1.4375�(x1 + 2x2 + 1) ≥ 0.375

0.4232x1 − 4.8652x2 + 1.3793�(2x1 + 3x2 + 1) ≤ 0.2884

2x1 + x2 ≤ 4, 3x1 − 2x2 ≤ 5

x1 + 2x2 ≤ 3, x1 + 3x2 ≥ 2x1, x2 ≥ 0

Table 3   Pareto optimal 
solutions of step-2

�
2

x
1

x
2 F

1
(� (2))

− 0.0300 1.0682 0.9659 0.0231
− 0.0233 1.0703 0.9649 0.0179
− 0.0167 1.0723 0.9638 0.0128
− 0.0100 1.0744 0.9628 0.0076
− 0.0033 1.0765 0.9618 0.0025
0.0033 1.0785 0.9607 − 0.0027
0.0100 1.0806 0.9597 − 0.0078
0.0167 1.0827 0.9587 − 0.0130
0.0233 1.0847 0.9577 − 0.0181
0.0300 1.0868 0.9566 − 0.0233
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The best preferred optimal solution is obtained as x = (1.1664, 0.9168) by solving 
the above problem due to fuzzy programming and the corresponding optimal objec-
tive values are (f1(x), f2(x)) = (0.8960, 1.5889).

Remark 2  The optimal objective values of 
(
f1(x), f2(x)

)
 obtained due to the proposed 

method are:

whereas (f1(x), f2(x)) = (0.8960, 1.5889) is obtained using fuzzy method.

The following Fig. 2 is drawn as a comparative study using some objective val-
ues obtained due to proposed method(P.M.) and the fuzzy method(F.M.), where 
P.M.i (i = 1, 2, 3, 4, 5) represents the objective values, (0.9471, 1.5455), (0.9483, 
1.5445), (0.9496, 1.5434), (0.9509, 1.5423), (0.9522, 1.5412) respectively and F.M. 
represents the objective value (0.8960, 1.5889).

It is observed that the optimal objective values 
(
f1(x), f2(x)

)
 obtained due to the 

proposed method are considerably closer and comparable to that of due to fuzzy 
method and lie within the predetermined range of best and worst values i.e., 
[f min
i

, f max
i

] which justifies the feasibility of the proposed method.

8 � Conclusion

In this paper, parametric approach transforms fractional objectives into non-frac-
tional form using a vector of parameters. The values of the parameters are changed 
from one to another step in order to generate a new set of pareto optimal solutions 
using �-constraint method which converts multi-objective into single objective opti-
mization problem. Until, unless the termination conditions defined by the DM are 
satisfied at a pareto optimal solution, the iterative procedure continues. The solution 

{
(
f
1
(x), f

2
(x)

)
} = {(0.9561, 1.5378), (0.9558, 1.5387), (0.9535, 1.5401),

(0.9522, 1.5412), (0.9509, 1.5423), (0.9496, 1.5434),

(0.9483, 1.5445), (0.9471, 1.5455)}

Fig. 2   Comparative study on the objective values
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obtained due to the proposed method is compared with the existing fuzzy program-
ming method which verifies the effectiveness of its performance. The computational 
works in the numerical example are carried out using the softwares LINGO and 
MATLAB.
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