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Abstract In a transportation problem, the parameters like unit cost of transportation

of goods or services from source to destination, supplies from the sources and

demands at destinations depend on many factors which may not be deterministic in

nature. To deal with the uncertainty of the parameters, random variables and fuzzy

variables were used previously. Sometimes, in absence of sufficient sample obser-

vations, the uncertain parameters are estimated by the belief degree of the experts.

In this paper, the aim is to investigate the transportation problem where the unit cost

of transportation, supplies, demands are initially taken as rough variables based on

subjective estimation of experts. Further, these rough estimates are suitably

approximated as uncertain normal variables and the conceptual uncertain pro-

gramming model has been developed. The model is then transformed to a deter-

ministic linear programming model by minimizing the expected value of the

uncertain objective function under the constraints at certain confidence level.

Keywords Transportation problem � Rough variable � Uncertain measure �
Uncertain programming � Uncertainty theory

1 Introduction

The transportation problem involves the distribution of goods or services from a set

of sources to a set of destinations through a network. There are different routes and

different transportation costs for the routes. The aim of transportation problem is to

determine the number of units of goods or services to be transported so that all
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demands and supplies are satisfied with the minimum transportation cost. The

traditional transportation problem consists of one objective function and two

constraints, namely, source constraints with the supply and destination constraints

with the demand which was first initiated by Hitchcock [4] and later developed by

Koopmans [5]. Dantzig [2] proposed simplex method and applied to solve

transportation problem as a linear programming problem. Since then, many

researchers have developed different algorithms to solve transportation problems. In

traditional transportation problems, the parameters like unit cost of transportation,

demand at destinations, supply at sources are taken as deterministic value. Due to

various complexities in the real world, such as unpredictable weather conditions,

road conditions, traffic conditions in the road, change in sale, change in attitude of

the customers etc., it is not appropriate to regard the unit transportation cost, the

supplies and the demands as deterministic. They should be considered as variables.

Williams [16] has developed a stochastic model of transportation problem

considering the parameters as random variables. Since then many researchers have

studied stochastic models of transportation problem.

Later it was observed that the input data are often imprecise owing to incomplete

or unobtainable information. So, researchers tried to consider the parameters as

fuzzy variables. Chanas et al. [1] presented a fuzzy linear programming model to

solve transportation problem with crisp cost, fuzzy supply and fuzzy demand.

Further it is observed that, in many situations, no investigated data are available

to estimate appropriate probability distribution of the assumed random variables. In

this situation, some domain experts are invited to give their subjective estimates of

the above parameters. Pawlak [13] introduced rough set theory to deal with

uncertainty. Liu [7, 8, 11, 12] has developed uncertainty theory which has become a

powerful tool to deal with human belief degree. Using uncertain variables, some

authors have developed models for transportation problems. Guo et al. [3] has

developed a transportation model considering the supply as random variable and the

cost and the demand as uncertain variables. Yuhong Shang and Kai Yao [14, 15] has

developed the transportation model considering the cost, supply and demand as

uncertain variables.

Practically, it is very likely that the subjective estimates of the parameters by the

experts are given in certain range of values which can be characterized by rough

variables. In this paper, a transportation model is developed considering the unit

cost of transportation, the supply and the demand as rough variables.

The rest of the paper is organized as follows. In Sect. 2, some basic concepts of

rough variable and its properties are presented, In Sect. 3, a transportation model

with rough cost, demand and supply is developed. One numerical example is given

in Sect. 4 for illustration of the model. Finally the conclusion is given in Sect. 5.

2 Preliminaries

In this section some concepts and notions of uncertain variable and rough variable

are presented. The following definitions are based on Liu [7, 8].

2 OPSEARCH (2018) 55:1–13

123



2.1 Rough variable and its properties

Definition 1 Let K be a non empty set, A be r-algebra of subsets of K, D be an

element in A, and p be a non negative, real-valued, additive set function on A. The

quadruple (K, D, A, p) is called a rough space.

Definition 2 A rough variable n on the rough space (K, D, A, p) is a measurable

function from K to the set of real numbers < such that for every Borel set B of <, we
have k 2 Kjn kð Þ 2 Bf g 2 A.

Then the lower and upper approximation of the rough variable n are defined as

follows

�f ¼ ffðkÞ k 2 Kgj Upper approximationð Þ

f ¼ ffðkÞ k 2 Dgj Lower approximationð Þ

Definition 3 ([a, b], [c, d]) with c B a\ b B d is a rough variable, where

n(k) = k from the rough space to the set of real numbers and K = {k|c B k B d}

and D = {k|a B k B b}, A is the Borel algebra on K, p is the Lebesgue measure.

Definition 4 Let (K, D, A, p) be a rough space. Then the upper and lower trust of

event A is defined by Tr Að Þ ¼ p Af g
p Kf g and T�r Að Þ ¼ p A\Df g

p Kf g
The trust of the event A is defined as

Tr Að Þ ¼ 1

2
Tr Að Þ þ T�r Að Þð Þ

Definition 5 Let n be a rough variable. Then the expected value of n is defined by

E n½ � ¼
Zþ1

0

Tr n� rf gdr �
Z0

�1

Tr n� rf gdr

provided that at least one of the two integrals is finite.

Definition 6 The trust distribution /: [-?, ?] ? [0, 1] of a rough variable n is

defined by

UðxÞ ¼ Tr k 2 KjnðkÞ� xf g

Definition 7 The trust density function f : R ! ½0;1Þ of a rough variable n is a

function such that fðxÞ ¼
R1
�1 /ðyÞdy holds for all x 2 (-?, ?), where / is trust

distribution of n.
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Definition 8 If n¼ a,b½ �; c; d½ �ð Þ is a rough variable such that c B a\ b B d, then

the trust distribution / xð Þ ¼ Tr n� xf g is

/ðxÞ ¼

0 if x� c
x� c

2ðd � cÞ if c� x� a

½ðb� aÞ þ ðd � cÞ�xþ 2ac� ad � bc

2ðb� aÞðd � cÞ if a� x� b

xþ d � 2c

2ðd � cÞ if b� x� d

1 if x� d

8>>>>>>>>><
>>>>>>>>>:

and the trust density function is defined as

f ðxÞ ¼

1

2ðd � cÞ if c� x� a or b� x� d

1

2ðb� cÞ þ
1

2ðd � cÞ if a� x� b

0 otherwise

8>>><
>>>:

Definition 9 For a given value r and n¼ a,b½ �; c; d½ �ð Þ trust of rough events

characterized by n B r and n C r is, respectively, given by the following

expressions (Liu [6])

Tr n� rf g¼

0; if r� d;
d � r

2 d � cð Þ ; if b� r� d

1

2

d � r

d � c
þ b� r

b� a

� �
; if a� r� b

1

2

d � r

d � c
þ 1

� �
; if c� r� a

1; if r� c

8>>>>>>>>>><
>>>>>>>>>>:

and

Tr n� rf g¼

0; if r� c;
r � c

2 d � cð Þ ; if c� r� a

1

2

r � a

b� a
þ r � c

d � c

� �
; if a� r� b

1

2

r � c

d � c
þ 1

� �
; if b� r� d

1; if r� d

8>>>>>>>><
>>>>>>>>:

Definition 10 Let n be a rough variable whose trust density function f exist. If the

Lebesgue integral
R1
�1 x f ðxÞ dx is finite, then the expected value of n is defined as
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EðxÞ ¼
Z 1

�1
x f ðxÞ dx

2.2 Uncertain variable and its properties

Definition 11 Uncertain measure

Let L be a r-algebra on a nonempty set C. A set function M: L ? [0,1] is called

an uncertain measure if it satisfies the following axioms

Axiom 1: (Normality axiom) M (C) = 1 for the universal set C
Axiom 2: (Duality axiom) M Kð Þ þM(KcÞ ¼ 1 for every event K
Axiom 3: (Sub additive axiom) For every countable sequence of events

K1;K2; . . .; we have

M
[1
i¼1

Ki

( )
�

X1
i¼1

M Kið Þ

The triplet C; L;Mð Þ is called an uncertainty space.

Axiom 4: (Product measure) Let Ck; Lk;Mkð Þ be uncertainty spaces for

k = 1, 2,…. The product uncertain measure is an uncertain measure satisfying

M
Y1
k¼1

Kk

( )
¼

\1
k¼1

M Kkð Þ

where, Kk an arbitrary chosen events for Lk for k = 1, 2,…, respectively.

Definition 12 Uncertain variable

An uncertain variable n is essentially a measurable function from an uncertainty

space to the set of real numbers. Let n be an uncertain variable. Then the uncertainty
distribution of n is defined as / xð Þ ¼ M n� xf g for any real number x.

An uncertain variable n is called normal if it has a normal uncertainty distribution

/ðxÞ ¼ 1þ exp
pðe� xÞffiffiffi

3
p

r

� �� ��1

for x 2 R

Normal uncertainty distribution is denoted by N(e, r), where e and r are real

numbers with r[ 0.

An uncertain distribution / is said to be regular if its inverse function /-1(a)
exists and is unique for each a 2 (0, 1).

The normal uncertainty distribution N(e, r) is also regular and its inverse

uncertainty distribution is

/ðxÞ ¼ eþ r
ffiffiffi
3

p

p
ln

a
1� a
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3 Problem description

In the transportation problem there are three parameters to be considered: unit cost

of transportation of goods or services from the sources to the destinations, supplies

available at sources and demands at destinations. The transportation problem has

been earlier solved by considering the parameters as deterministic. But many a

times, it is found that the parameters are uncertain due to various factors.

Previously, the parameters are taken as random variables or fuzzy variables to deal

with uncertainty. In this paper, a new approach has been presented by considering

the parameter as rough variables. The appropriate probability distribution of random

variable can be taken if sufficient sample observations are available. In absence of

sample observations which is practically happening in many situations, estimation

of parameters are made by the degree of belief of subject experts, where

consideration of parameters as random variables are not ideal. Further, it is very

likely that the experts give their estimations in range of values instead of a definite

value which can be characterized by rough variables. Further, rough variables do not

possess any membership function like fuzzy variables which gives an advantage by

considering the parameter as rough variable. Based on this, an uncertain model has

been developed.

3.1 Deterministic transportation model

Suppose that there are m sources and n destinations in a transportation problem. Let

cij denote the cost of transporting one unit from source i to destination j, and xij
denote the amount transported from source i to destination j, i = 1, 2,…, m,

j = 1, 2,…, n. Then the objective of the problem is to make a transportation

planning so that the total transportation cost is minimized. Let ai denote the

availability of source i, and bj denote the requirement at destination j. Then the

transportation problem can be described as

Minimize
Pm
i¼1

Pn
j¼1

cijxij

Subject toPn
j¼1

xij � ai; i ¼ 1; 2; . . .;m

Pm
i¼1

xij � bj; j ¼ 1; 2; . . .; n

xij � 0; i ¼ 1; 2; . . .;m and j ¼ 1; 2; . . .; n

8>>>>>>>>>><
>>>>>>>>>>:

ð1Þ

The above model is deterministic model if the quantities cij, ai, bj are all assumed

to be crisp numbers. There are many standard techniques to solve the model.

3.2 Uncertain transportation model

In reality, the transportation planning is made in advance sometimes. Due to many

uncertain factors like weather conditions, road conditions, changes in sales due to
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attitude of customers, the supply, demand and cost of transportation may not fixed

rather uncertain. To deal with these uncertainties, the quantities cij, ai, bj are all

assumed to be rough variables which are characterized by the subjective judgment

of domain experts. Then the model (1) becomes

Minimize
Pm
i¼1

Pn
j¼1

~cijxij

Subject toPn
j¼1

xij � ni; i ¼ 1; 2; . . .;m:

Pm
i¼1

xij � gj; j ¼ 1; 2; . . .; n:

xij � 0; i ¼ 1; 2; . . .;m, j ¼ 1; 2; . . .; n:

8>>>>>>>>>><
>>>>>>>>>>:

ð2Þ

where ~cij ¼ c1ij; c
2
ij

h i
c3ij; c

4
ij

h i� �
; c3ij � c1ij\c2ij � c4ij

ni ¼ ai; bi½ � ci; di½ �ð Þ; ci � ai\bi � di

gj ¼ a
0

j; b
0

j

h i
c
0

j; d
0

j

h i� �
; c

0

j � a
0

j\b
0

j � d
0

j

These rough variables can be approximated by uncertain normal variables by

taking the mean and standard deviation of the rough variables as the mean and

standard deviation of the corresponding uncertain normal variables by using the

following theorem.

Theorem 1 If n¼ a,b½ �; c; d½ �ð Þ be a rough variable with c B a\ b B d, then the

expected value and variance of n are E nð Þ ¼ aþbþcþd
4

and Var n½ � ¼
a2þb2þc2þd2þabþcd�6e2

6
, where e ¼ E n½ �

Proof : E n½ � ¼
Z1

�1

xf ðxÞdx

¼
Za

c

x

2 d � cð Þ dxþ
Zb

a

1

2 b� að Þ þ
1

2 d � cð Þ

� �
xdxþ

Zd

b

x

2 d � cð Þ dx

¼ 1

4
aþ bþ cþ dð Þ

Var n½ � ¼ E n� E nð Þð Þ2

¼
Za

c

x� eð Þ2

2 d � cð Þ dxþ
Zb

a

1

2 b� að Þ þ
1

2 d � cð Þ

� �
x� eð Þ2dxþ

Zd

b

x� eð Þ2

2 d � cð Þ dx

¼ a2 þ b2 þ c2 þ d2 þ abþ cd � 6e2

6
; where e ¼ E n½ �
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Let dij, ci, fj be the normal uncertain variables approximating the rough variables

~cij; ni; gj with mean and SD as eij; rij
	 


; ei; rið Þ and e
0
j; r

0
j

� �
respectively.

Considering the above theorem, the mean and SD can be obtained for these

variables.

Then we obtain the equivalent form of the model (2) as

Minimize
Pm
i¼1

Pn
j¼1

dijxij

subject toPn
j¼1

xij � ci; i ¼ 1; 2; . . .;m:

Pm
i¼1

xij � fj; j ¼ 1; 2; . . .; n:

xij � 0; i ¼ 1; 2; . . .;m, j ¼ 1; 2; . . .; n:

8>>>>>>>>>><
>>>>>>>>>>:

ð3Þ

The model (3) becomes conceptual as in absence of natural order of uncertain

variables, the objective function defined in (3) becomes invalid. Thus, the expected

value criterion ([9, 10], ch. 7) for the objective function and confidence level on the

constraint functions are taken. Then we obtain the equivalent form of the model (3)

as

Minimize E
Pm
i¼1

Pn
j¼1

dijxij

" #

Subject to

M
Pn
j¼1

xij � ci

" #
� ai; i ¼ 1; 2; . . .;m:

M
Pm
i¼1

xij � fj

� �
� bj; j ¼ 1; 2; . . .; n:

xij � 0; i ¼ 1; 2; . . .;m, j ¼ 1; 2; . . .; n:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4Þ

where ai, bj are some predetermined uncertainty confidence levels for i = 1, 2,…,

m, j = 1, 2,…, n.

The model (4) can be solved once it is converted to its crisp equivalent form. For

the conversion to crisp equivalent form, the following theorems are stated.

Theorem 2 (Measure Inversion Theorem [8]) Let n be an uncertain variable with

continuous uncertainty distribution /. Then for any real number x, we have

M n� xf g ¼ / xð Þ; M n� xf g ¼ 1� / xð Þ.

Theorem 3 (Liu [8]) Let n1; n2; . . .; nn be independent uncertain variable s with

regular uncertainty distributions /1;/2; . . .;/n, respectively. If the function

f n1; n2; . . .; nnð Þ is strictly increasing with respect to n1; n2; . . .; nm and strictly

decreasing with respect to nmþ1; nmþ2; . . .; nn, then M f n1; n2; . . .; nnð Þ� 0f g� a if

and only if f(/1
-1(a),…,/m

-1(a), /m?1
-1 (1 - a),…,/n

-1(1 - a)) B 0.

8 OPSEARCH (2018) 55:1–13
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Theorem 4 (Liu [8]) Let n be an uncertain variable with regular uncertainty

distribution /.

Then E n½ � ¼
Z1

0

/�1 að Þda

Theorem 5 Let dij are uncertain normal uncertain variable with regular

uncertainty distribution /ij, then

E
Xm
i¼1

Xn
j¼1

dijxij

" #
¼

Xm
i¼1

Xn
j¼1

eijxij

Proof It follows from the linearity of expected value operator is

E
Xm
i¼1

Xn
j¼1

dijxij

" #
¼

Xm
i¼1

Xn
j¼1

xijE dij
� �

For independent uncertain normal uncertain variables dij, i = 1, 2,…,m,

j = 1, 2,…,n.

E dij
� �

¼
Z1

0

/�1
ij að Þda

¼
Z1

0

eij þ
rij

ffiffiffi
3

p

p
ln

a
1� a

� �
da

¼
Z1

0

eijdaþ
rij

ffiffiffi
3

p

p

Z1

0

ln a� ln 1� að Þð Þda ¼ eij

Using Theorems (2) and (3)

M
Pn

j¼1 xij � ci
h i

� ai is equivalent to
Pn

j¼1 xij �w�1
i 1� aið Þ; i¼1; 2; . . .;m: and

M
Pm

i¼1 xij � fj
� �

� bj is equivalent to
Pm

i¼1 xij �u�1
j bj
	 


; j ¼ 1; 2; . . .; n:

Then the model (4) has an equivalent crisp mathematical model
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Minimize
Pm
i¼1

Pn
j¼1

eijxij

" #

Subject toPn
j¼1

xij �w�1
i 1� aið Þ; i ¼ 1; 2; . . .;m:

Pm
i¼1

xij �u�1
j bj
	 


; j ¼ 1; 2; . . .; n:

xij � 0; i ¼ 1; 2; . . .;m , j ¼ 1; 2; . . .; n:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð5Þ

Using the inverse normal uncertainty distribution, the model (5) has the

equivalent linear programming problem

Minimize
Pm
i¼1

Pn
j¼1

xijeij

" #

Subject to
Pn
j¼1

xij � eiþ
ri

ffiffiffi
3

p

p
ln
1� ai
ai

; i ¼ 1; 2; . . .;m:

Pm
i¼1

xij � e1jþ
r1j

ffiffiffi
3

p

p
ln

bj
1� bj

; j ¼ 1; 2; . . .; n:

xij � 0; i ¼ 1; 2; . . .;m, j ¼ 1; 2; . . .; n:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð6Þ

4 Numerical example

Consider a problem with three sources Ai(i = 1, 2, 3, 4) and three destinations

Xj(j = 1, 2, 3, 4, 5). The unit transportation cost, the supply at each source,

demands of each destination assume rough variables are given in Table 1.

Rough supply (ni) and rough demands (gj) are given as

n1 ¼ ð½20; 22�½19; 23�Þ; n2 ¼ ð½17; 18�½16; 19�Þ;
n3 ¼ ð½24; 25�½23; 27�Þ; n4 ¼ ð½32; 34�½30; 36�Þ
g1 ¼ ð½11; 13�½10; 14�Þ; g2 ¼ ð½24; 26�½23; 27�Þ; g3 ¼ ð½19; 20�½18; 21�Þ;
g4 ¼ ð½10; 12�½8; 14�Þ; g5 ¼ ð½12; 15�½10; 18�Þ;

Table 1 Unit rough cost of transportation

X1 X2 X3 X4 X5

A1 ([9,12][5,15]) ([22,25][18,28]) ([33,35][28,40]) ([14,16][12,18]) ([20,23][18,24])

A2 ([28,32][25,35]) ([28,32][25,35]) ([12,15][9,16]) ([8,10][7,12]) ([16,17][15,20])

A3 ([38,42][35,45]) ([22,25][18,28]) ([33,35][28,40]) ([22,24][20,26]) ([12,15][10,18])

A4 ([32,34][30,35]) ([18,20][16,24]) ([20,22][18,24]) ([7,9][6,12]) ([12,14][10,15])

10 OPSEARCH (2018) 55:1–13
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The mean and SD of equivalent normal uncertain variable of rough costs,

supplies and demands are calculated are given in Table 2.

If cj and fi are the uncertain normal variables approximating ni and gj

respectively, then

c1 �N 21; 0:91ð Þ; c2 �N 17:5; 0:65ð Þ; c3 �N 24:75; 0:88ð Þ; c4 �N 33; 1:67ð Þ

f1 �N 12; 0:91ð Þ; f2 �N 25; 0:91ð Þ; f3 �N 19:5; 0:65ð Þ;
f4 �N 11; 1:67ð Þ; f5 �N 13:75; 3:104ð Þ

Then model (6) becomes

Minimize
P4
i¼1

P5
j¼1

xijeij

" #

Subject to
P5
j¼1

xij � eiþ
ri

ffiffiffi
3

p

p
ln
1� ai
ai

P4
i¼1

xij � e1jþ
r1j

ffiffiffi
3

p

p
ln

bj
1� bj

xij � 0; i ¼ 1; 2; 3; 4 j ¼ 1; 2; 3; 4; 5:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð7Þ

Assume the confidence levels are ai = 0.9, bj = 0.9, i = 1, 2, 3, 4 and

j = 1, 2, 3, 4, 5.

The above model becomes

Table 2 Unit uncertain cost of transportation in terms of mean and SD

X1 X2 X3 X4 X5

A1 (10.25,2.15) (23.25,2.15) (34,2.48) (15,1.67) (21.25,1.94)

A2 (30,2.2) (30,2.2) (13,2.67) (9.25,1.27) (17,1.33)

A3 (40,2.2) (23.25,2.15) (34,2.48) (23,1.67) (13.75,3.10)

A4 (32.75,1.27) (19.5,3.08) (21,1.67) (8.5,1.92) (12.75,1.27)

OPSEARCH (2018) 55:1–13 11
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Minimize Z ¼ 10:25x11 þ 23:25x12 þ 34x13 þ 15x14 þ 21:25x15 þ 30x21 þ 30x22 þ 13x23
þ 9:25x24 þ 17x25 þ 40x31 þ 23:25x32 þ 34x33 þ 23x34 þ 13:75x35
þ 32:75x41 þ 19:5x42 þ 21x43 þ 8:5x44 þ 12:75x45

Subject to

x11 þ x12 þ x13 þ x14 þ x15 � 19:89415
x21 þ x22 þ x23 þ x24 þ x25 � 16:71805
x31 þ x32 þ x33 þ x34 þ x35 � 23:68643
x41 þ x42 þ x43 þ x44 þ x45 � 30:98101
x11 þ x21 þ x31 þ x41 � 13:10585
x12 þ x22 þ x32 þ x42 � 26:10585
x13 þ x23 þ x33 þ x43 � 20:28195
x14 þ x24 þ x34 þ x44 � 13:01899
x15 þ x25 þ x35 þ x45 � 17:51038
and xij � 0; i ¼ 1; 2; 3; 4; j ¼ 1; 2; 3; 4; 5:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

:

The optimal solution is x11 ¼ 13:10585; x12 ¼ 5:53168; x23 ¼ 16:71805;

x32 ¼ 6:17605; x35 ¼ 17:51038; x42 ¼ 14:39812; x43 ¼ 3:5639; x44 ¼ 13:01899 and

theminimum transportation cost is 1330:909:

5 Conclusions

This paper mainly investigates a transportation problem in rough environment

basing on the subjective estimation of the parameters. The rough estimates are

converted to normal uncertain values to get a new transportation model based on

uncertain theory. It was then transformed into crisp mathematical model by taking

expected value on objective function with certain confidence level of the constraint

functions. One numerical example is given to illustrate the model.
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