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Abstract The concept of neutrosophic sets can be utilized as a mathematical tool to

deal with imprecise and unspecified information. It is more convenient to apply

single-valued neutrosophic sets rather than neutrosophic sets. In this paper, we

discuss the concepts of intuitionistic single-valued neutrosophic hypergraphs and

dual intuitionistic single-valued neutrosophic hypergraphs. We discuss the notion of

ðg;/;wÞ-level hypergraphs, tempered intuitionistic single-valued neutrosophic

hypergraphs and transversal of intuitionistic single-valued neutrosophic hyper-

graphs. We also describe an application of intuitionistic single-valued neutrosophic

hypergraphs in clustering problem.

Keywords Neutrosophic sets � Intuitionistic single-valued neutrosophic

hypergraphs � Transversal of intuitionistic single-valued neutrosophic hypergraphs

Mathematics Subject Classification 03E72 � 68R10 � 68R05

1 Background

As a generalization of the classical set theory, fuzzy set theory was introduced by

Zadeh [36] in 1965 to solve problems with uncertainties. At present, in modeling

and controlling unsure systems in industry, society and nature, fuzzy sets and fuzzy

logic are playing a vital role. In decision making, they can be used as powerful

mathematical tools which facilitate for approximate reasoning. They play a
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significant role in complex phenomena which is not easily described by classical

mathematics. In 1986, Atanassov [7] illustrated the extension of fuzzy sets by

adding a new component, called, intuitionistic fuzzy sets. The intuitionistic fuzzy

sets have essentially higher describing possibilities than fuzzy sets. The idea of

intuitionistic fuzzy set is more meaningful as well as inventive due to the presence

of degree of truth, degree of false and the hesitation margin. The hesitation margin

of intuitionistic fuzzy set is its indeterminacy value by default. In 1998,

Smarandache [24] submitted the idea of neutrosophic set (NS) by combining the

non-standard analysis, a tricomponent logic/set/probability theory and philosophy.

‘‘It is a branch of philosophy which studies the origin, nature and scope of

neutralities as well as their interactions with different ideational spectra’’ [25]. A NS

has three components: truth membership, indeterminacy membership and falsity

membership, in which each membership value is a real standard or non-standard

subset of the nonstandard unit interval �0�; 1þ ½ ([23, 24]). To apply NSs in real-

life problems more conveniently, the single-valued neutrosophic set (SVNS) was

introduced for the first time by Smarandache in 1998 in his book: F. Smarandache,

Neutrosophy/Neutrosophic probability, set and logic. A SVNS is a generalization of

intuitionistic fuzzy sets [7]. In SVNS three components are not dependent and their

values are contained in the standard unit interval [0, 1]. SVNSs have been a new hot

research topic and many researchers have addressed this issue. Majumdar and

Samanta [18] studied similarity and entropy of SVNSs. Ye [29, 31] proposed

correlation coefficients of SVNSs, and applied it to single-valued neutrosophic

decision-making problems. To simplify neutrosophic sets, Ye [32] proposed a

multicriteria decision-making method using aggregation operators. Being motivated

from the idea of NSs, Bhowmik and Pal [10, 11] defined the notion of intuitionistic

neutrosophic set in 2009.

Fuzzy graphs were narrated by Rosenfeld [22] in 1975. After that in 1987, some

remarks on fuzzy graphs were represented by Bhattacharya [9]. He showed that all

the concepts of crisp graph theory do not have similarities in fuzzy graph theory.

Kaufmann [15] introduced the notion of fuzzy hypergraphs and Chen [13] defined

the interval-valued fuzzy hypergraphs. Generalization and redefinition of fuzzy

hypergraphs were discussed by Lee-Kwang and Keon-Myung [16]. They also

described some applications to show that the decomposition of data in clustering

problem can be done by using the strength of an edge. Parvathi et al. [21]

established the notion of intuitionistic fuzzy hypergraph. Later, Akram and Dudek

extended this idea and studied its various properties in [1]. They also represented

various applications of intuitionistic fuzzy hypergraphs such as radio coverage

network and clustering problem. Single-valued neutrosophic minimum spanning

tree and its clustering method were studied by Ye [30]. The same author gave many

clustering algorithms based on different methods, including similarity measures,

netting method and distance based similarity measures [33–35]. Yang et al. [28]

discussed single-valued neutrosophic relations. Dhavaseelan et al. [14] defined

strong neutrosophic graphs. Broumi et al. [12] portrayed single-valued neutrosophic

graphs. Akram and Shahzadi [2] introduced the notion of neutrosophic soft graphs

with applications. Akram [4] introduced the notion of single-valued neutrosophic

planar graphs. Akram et al. [3] also introduced the single-valued neutrosophic
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hypergraphs. Representation of graphs using intuitionistic neutrosophic soft sets

was discussed in [6]. Akram and Shahzadi [5] studied properties of single-valued

neutrosophic graphs by level graphs. They also highlighted some flaws in the

definitions of Broumi et al. [12]. In this article, we propose the concept of

intuitionistic single-valued neutrosophic hypergraphs (ISVNHGs) and dual intu-

itionistic single-valued neutrosophic hypergraphs. We discuss the concepts of

ðg;/;wÞ-level hypergraphs, tempered intuitionistic single-valued neutrosophic

hypergraphs and transversal intuitionistic single-valued neutrosophic hypergraphs.

We also describe an application of intuitionistic single-valued neutrosophic

hypergraphs in clustering problem.

2 Intuitionistic single-valued neutrosophic hypergraphs

Definition 2.1 [24] A neutrosophic set N in universe U is defined by a truth

membership function TN : U ! ½0�; 1þ�, indeterminacy membership function IN :
U ! ½0�; 1þ� and a falsity membership function FN : U ! ½0�; 1þ�, with no

condition on the sum of TNðuÞ, INðuÞ and FNðuÞ for all u 2 U.

Definition 2.2 [26] Let U be a set of universe. A single-valued neutrosophic set is

characterized by truth-value, indeterminacy-value and falsity-value, i.e., S ¼
fTSðuÞ; ISðuÞ;FSðuÞ : u 2 Ug where TSðuÞ; ISðuÞ;FSðuÞ : U ! ½0; 1� and 0� TSðuÞ
þ ISðuÞ þ FSðuÞ� 3.

Definition 2.3 [17] Let U be a fixed set. A generalized intuitionistic fuzzy set

(GIFS) I of U is an object having the form I = fðu; lIðuÞ; mIðuÞÞju 2 Ug, where the
functions lIðuÞ :! ½0; 1� and mIðuÞ :! ½0; 1� define the degree of membership and

degree of nonmembership of an element u 2 U, respectively, such that

minflIðuÞ; mIðuÞg� 0:5; for all u 2 U:

This condition is called the generalized intuitionistic condition (GIC).

Being motivated from this definition, Bhowmik and Pal [10] gave the idea of an

intuitionistic single-valued neutrosophic set and discussed its certain properties.

Definition 2.4 [10, 11] An intuitionistic single-valued neutrosophic (ISVN) set on

a universal set V can be stated as a set having the form A ¼ fTAðuÞ;
IAðuÞ;FAðuÞ : u 2 Vg, where

minfTAðuÞ; IAðuÞg� 0:5;

minfFAðuÞ; IAðuÞg� 0:5;

minfTAðuÞ;FAðuÞg� 0:5;

and 0� TAðuÞ þ IAðuÞ þ FAðuÞ� 2.

Definition 2.5 The support set of an ISVNS A ¼ fðv; TAðvÞ; IAðvÞ;FAðvÞÞ : v 2 Vg
is defined as suppðAÞ ¼ fvjTAðvÞ 6¼ 0 and IAðvÞ 6¼ 0 and FAðvÞ 6¼ 0g.

The support set of an ISVNS is a crisp set.
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Definition 2.6 The height of an ISVNS A ¼ fðv; TAðvÞ; IAðvÞ;FAðvÞÞ : v 2 Vg is

defined as h(A) = (max
v2V

TAðvÞ, max
v2V

IAðvÞ, min
v2V

FAðvÞÞ. An ISVNS A is called normal

if there is an element v in A such that TAðvÞ ¼ 1; IAðvÞ ¼ 1;FAðvÞ ¼ 0.

Definition 2.7 Let A ¼ fðv; TAðvÞ; IAðvÞ;FAðvÞÞ : v 2 Vg be an ISVNS on V. Let

g;/;w 2 ½0; 1� such that gþ /þ w� 2, then the ðg;/;wÞ-level set of A is defined

as Aðg;/;wÞ ¼ fv : TAðvÞ� g; IAðvÞ�/;FAðvÞ�wg. Note that ðg;/;wÞ-level set is a
crisp set.

Example 2.1 Let X ¼ fb1; b2; b3; b4g be a set. We define an ISVN set on X as

A ¼ fðb1; 0:5; 0:4; 0:3Þ; ðb2; 0:4; 0:3; 0:3Þ; ðb3; 0:2; 0:3; 0:1Þ; ðb4; 0:9; 0:5; 0:3Þg. By

direct calculations, we have suppðAÞ ¼ fb1; b2; b3; b4g, hðAÞ ¼ ð0:9; 0:5; 0:1Þ. Take
ðg;/;wÞ ¼ ð0:5; 0:2; 0:3Þ 2 ½0; 1�. By direct calculations, (0.5, 0.2, 0.3)-level set is

Að0:5;0:2;0:3Þ ¼ fb1; b4g.

We first define intuitionistic single-valued neutrosophic graph.

Definition 2.8 An intuitionistic single-valued neutrosophic (ISVN) graph with

underlying set U is a pair H ¼ ðC;DÞ, such that:

1. The degree of truth-membership, degree of indeterminacy-membership and

falsity-membership of the element xi 2 U, are denoted by the mappings

TC : U ! ½0; 1�, IC : U ! ½0; 1� and FC : U ! ½0; 1�, respectively, where

minfTCðxiÞ;FCðxiÞg�0:5;minfTCðxiÞ; ICðxiÞg�0:5;minfFCðxiÞ; ICðxiÞg�0:5;

for all xi 2 U, i ¼ 1; 2; 3; . . .;m; with the condition

0� TCðxiÞ þ FCðxiÞ þ ICðxiÞ� 2:

2. The mappings TD : D � U � U ! ½0; 1�, ID : D � U � U ! ½0; 1� and FD :
D � U � U ! ½0; 1� are defined by

TDðxixjÞ� minfTCðxiÞ;TCðxjÞg; IDðxixjÞ� minfICðxiÞ; ICðxjÞg;FDðxixjÞ
� maxfFCðxiÞ;FCðxjÞg;

denote the degree of truth-membership, indeterminacy-membership and falsity-

membership of the edge xixj 2 D, respectively, where

minfTDðxixjÞ; IDðxixjÞg� 0:5;minfTDðxixjÞ;FDðxixjÞg
� 0:5;minfFDðxixjÞ; IDðxixjÞg� 0:5;

for all xixj 2 D, i ¼ 1; 2; 3; . . .;m, j ¼ 1; 2; 3; . . .;m, with the condition

0� TDðxixjÞ þ FDðxixjÞ þ IDðxixjÞ� 2:

We call C an ISVN vertex set, D an ISVN edge set. D is called a symmetric ISVN

relation on C. We consider an intuitionistic single-valued neutrosophic graph as

shown in (Fig. 1).
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We now define an intuitionistic single-valued neutrosophic hypergraph

(ISVNHG).

Definition 2.9 Let C ¼ fc1; c2; . . .; cmg be a finite set of vertices and D ¼
fD1;D2; . . .;Dmg a finite family of non-trivial ISVN subsets of vertex set C such

that

C ¼
[

i

suppðDiÞ; i ¼ 1; 2; 3; . . .;m;

where the edges Di are ISVN subsets of C, Di ¼ fðvj; TDi
ðvjÞ; IDi

ðvjÞ;FDi
ðvjÞÞg,

Di 6¼ /, for i ¼ 1; 2; 3; . . .;m; and

minfTDi
ðvjÞ; IDi

ðvjÞg� 0:5;

minfFDi
ðvjÞ; IDi

ðvjÞg� 0:5;

minfTDi
ðvjÞ;FDi

ðvjÞg� 0:5;

with the condition

0� TDi
ðvjÞ þ FDi

ðvjÞ þ IDj
ðvjÞ� 2:

Then the ordered pair G ¼ ðC;DÞ is an ISVNHG on C, D is the family of ISVN

hyperedges of G and C is the crisp vertex set of G.

Example 2.2 Consider an ISVNHG G ¼ ðC;DÞ as shown in Fig. 2, such that

C ¼ fc1; c2; c3; c4g and D ¼ fD1;D2;D3g, which is represented by the following

incidence matrix:

NG D1 D2 D3

c1 (0.5, 0.4, 0.3) (0.5, 0.4, 0.3) (0, 0, 0)

c2 (0.2, 0.3, 0.4) (0, 0, 0) (0, 0, 0)

c3 (0, 0, 0) (0, 0, 0) (0.3, 0.4, 0.5)

c4 (0, 0, 0) (0.5, 0.5, 0.5) (0.5, 0.5, 0.5)

b1(0.3, 0.5, 0.2)

b2(0.1, 0.4, 0.3)

b3(0.6, 0.5, 0.4)

b4(0.4, 0.5, 0.5)

(0.3, 0.5, 0.4)

(0.1, 0.3, 0.2)

(0.1, 0.4, 0.4)

0(
.4
, 0
.5
, 0
.
)5 (0.1, 0.3, 0.4)

Fig. 1 Intuitionistic single-valued neutrosophic graph
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Definition 2.10 In an ISVNHG, two vertices c1 and c2 are said to be adjacent if

there is a hyperedge Di 2 D which contains both c1 and c2, i.e., c1, c2 2 suppðDiÞ.
Two hyperedges Di and Dj are called adjacent edges if they have non-empty

intersection, i.e., suppðDiÞ
T
suppðDjÞ 6¼ ;, i 6¼ j. The number of elements in C, i.e.,

|C| is called the order and |D| is called the size of an ISVN hypergraph.

An ISVNHG is said to be n-uniform if suppðDiÞ ¼ n for each Di 2 D.

Definition 2.11 The height of an ISVNHG G ¼ ðC;DÞ is defined as

hðGÞ ¼
W
fhðDiÞjDi 2 Dg.

Definition 2.12 Consider an ISVNHG G ¼ ðC;DÞ; the cardinality of an ISVN

hyperedge is the sum of truth-membership, indeterminacy-membership and falsity-

membership values of the vertices connected to a hyperedge, it is denoted by jDij.
The degree of an ISVN hyperedge, Di 2 D is its cardinality, i.e., dGðDiÞ ¼ jDij. The
rank of an ISVNHG is the maximum cardinality of any hyperedge in G, i.e.,

max
Di2D

dGðDiÞ and anti rank is the minimum cardinality of any hyperedge in G, i.e.,
min
Di2D

dGðDiÞ.

Remark 2.1

1. If an ISVNHG G ¼ ðC;DÞ is simple, then ðg;/;wÞ-level hypergraph Gðg;/;wÞ
may or may not be simple. Also, it is possible Diðg;/;wÞ ¼ Djðg;/;wÞ for Di 6¼ Dj,

where Di;Dj 2 D are any two ISVN hyperedges.

2. An ISVNHG G ¼ ðC;DÞ is an ISVN graph (with loops) if and only if G is

elementary, support simple and every hyperedge has two (or one) element

support.

3. The families of crisp hypergraphs (sets) which are formed by the ðg;/;wÞ-
levels of ISVNHGs have an important relationship in common with each other.

Let U and V be two families of hypergraphs such that for every set U in U there

is atleast one set V belonging to V which is superset of U. We can say that V
absorbs U and symbolically we represent this relation between U and V as

UYY. It is possible that V absorbs U while U
T
V = ;, also we have U � V

c1(0.5, 0.4, 0.3)

c2(0.2, 0.3, 0.4)c3(0.3, 0.4, 0.5)

c4(0.5, 0.5, 0.5)

D1

D2

D3

Fig. 2 Intuitionistic single-
valued neutrosophic hypergraph
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implies UYV, but the converse may be false generally. If UYV and U 6¼ V,
then U V.

Definition 2.13 Let G = (C, D) be an ISVNHG such that hðGÞ = (u, v, w). Let

Gðui;vi;wiÞ = Cðui;vi;wiÞ;Dðui;vi;wiÞ
� �

be the ðui; vi;wiÞ-level hypergraphs of G. The

sequence of real numbers ðu1; v1;w1Þ; ðu2; v2;w2Þ; . . .; ðrn; vn;wnÞ; 0\ un\unþ1\;
. . .;\u1 ¼ u; 0\vn\vnþ1\; . . .;\v1 ¼ v; and wn [wnþ1 [ ; . . .; [ ;w1 ¼
w[ 0, which satisfies the properties:

1. if uiþ1\u0\ui; viþ1\v0\vi;wiþ1 [w0 [wiðwi\w0\wiþ1Þ, then Dðu0;v0;w0Þ
¼ Dðui;vi;wiÞ,

2. Dðui;vi;wiÞYDðuiþ1;viþ1;wiþ1Þ,

is fundamental sequence of ISVNHG G, denoted by FSðGÞ, the set of ðui; vi;wiÞ-
level hypergraphs fGðu1;v1;w1Þ;Gðu2;v2;w2Þ; . . .;Gðun;vn;wnÞg is known as core hyper-

graphs of ISVNHG G, and is denoted by CðGÞ.

Definition 2.14 An ISVNHG G ¼ ðC;DÞ is simple if D1;D2 2 D and

TD1
ðvjÞ� TD2

ðvjÞ, FD1
ðvjÞ�FD2

ðvjÞ, ID1
ðvjÞ� ID2

ðvjÞ imply TD1
ðvjÞ ¼ TD2

ðvjÞ,
FD1

ðvjÞ ¼ FD2
ðvjÞ, ID1

ðvjÞ ¼ ID2
ðvjÞ, j ¼ 1; 2; 3; . . .;m:

Definition 2.15 Let G ¼ ðC;DÞ be an ISVNHG with FSðGÞ = fðu1; v1;
w1Þ; ðu2; v2;w2Þ; . . .; ðum; vm;wmÞg and umþ1 ¼ 0; vmþ1 ¼ 0;wmþ1 ¼ 0. G is section-

ally elementary if for every edge Di 2 D and each ðui; vi;wiÞ 2 FSðGÞ, Diðui;vi;wiÞ ¼
Diðu;v;wÞ for all ðu; v;wÞ 2 ððuiþ1; viþ1;wiþ1Þ; ðui; vi;wiÞ�.

Definition 2.16 Let G1 ¼ ðC1;D1Þ and G	
1 ¼ ðC	

1;D
	
1Þ be ISVNHGs and D	

1 � D1

then G	
1 ¼ ðC	

1 ;D
	
1Þ is called a partial ISVNHG of G1, denoted by, G	

1 � G1. If G	
1 is a

partial ISVNHG of G1 and D	
1 
 D1, then we write G	

1 
 G1.

Definition 2.17 An ISVNHG G ¼ ðC;DÞ is elementary whose hyperedges are

elementary. An ISVNS I ¼ ðTI ; II ;FIÞ is elementary if I is single-valued on supp(I).

Example 2.3 Consider the ISVNHG G ¼ ðC;DÞ, where C ¼ fc1; c2; c3; c4g and

D ¼ fD1;D2;D3;D4;D5g. Then the corresponding incidence is given as follows:

IG D1 D2 D3 D4 D5

c1 (0.7, 0.5, 0.5) (0.9, 0.5, 0.1) (0, 0, 0) (0, 0 ,0) (0, 0, 0)

c2 (0.7, 0.5, 0.5) (0.9, 0.5, 0.1) (0.9, 0.5, 0.1) (0.7, 0.5, 0.5) (0, 0, 0)

c3 (0, 0, 0) (0, 0, 0) (0.9, 0.5, 0.1) (0.7, 0.5, 0.5) (0.4, 0.3, 0.3)

c4 (0, 0, 0) (0.4, 0.3, 0.3) (0, 0, 0) (0.4, 0.3, 0.3) (0.4, 0.3, 0.3)

Here hðGÞ = (0.9, 0.5, 0.1). By calculating the ðui; vi;wiÞ-level hypergraphs of G
we have
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Dð0:9;0:5;0:1Þ ¼ ffc1; c2g; fc2; c3gg ¼ Dð0:7;0:5;0:5Þ ¼ ~D1:

Dð0:4;0:3;0:3Þ ¼ ffc1; c2; c4g; fc2; c3g; fc3; c4gg ¼ ~D2. G is not simple ISVNHG and

not support simple. Further, Dð0:9;0:5;0:1Þ 6¼ Dð0:4;0:3;0:3Þ and Dð0:9;0:5;0:1ÞYDð0:4;0:3;0:3Þ.

So, the fundamental sequence is FSðGÞ = fðu1; v1;w1Þ ¼ ð0:9; 0:5; 0:1Þ; ðu2; v2;w2Þ
¼ ð0:4; 0:3; 0:3Þg and the set of core hypergraphs is CðGÞ = fGð0:9;0:5;0:1Þ

¼ ðV1; ~D1Þ;Gð0:4;0:3;0:3Þ ¼ ðC2; ~D2Þg. G is not sectionally elementary as D1ðu;v;wÞ 6¼
D1ð0:9;0:5;0:1Þ for ðu; v;wÞ ¼ ð0:7; 0:5; 0:5Þ.

The partial ISVN hypergraphs, G	 ¼ ðC	;D	Þ, where D	 ¼ fD2;D3;D5g is

simple, G		 ¼ ðC		;D		Þ; where D		 ¼ fD1;D5;D3g is elementary, G			 ¼
ðC			;D			Þ; where D			 ¼ fD2;D3;D5g is sectionally elementary.

Definition 2.18 An ordered ISVNHG is an ISVN hypergraph in which CðGÞ is

ordered, i.e., if CðGÞ = fGðl1;m1;n1Þ;Gðl2;m2;n2Þ; . . .;Gðln;mn;nnÞg, then Gðl1;m1;n1Þ �
Gðl2;m2;n2Þ �; . . .;� Gðln;mn;nnÞ. If CðGÞ is ordered and if whenever D	 2 D	

jþ1 n Dj,

then D	 *C	
j then ISVNHG G is simply ordered.

Definition 2.19 The strength of a hyperedge Dj, denoted by gðDjÞ, is defined as

gðDjÞ ¼ ðminðTDj
ðvÞÞ;minðIDj

ðvÞÞ;maxðFDj
ðvÞÞÞ;

for every TDj
ðvÞ[ 0;FDj

ðvÞ[ 0; IDj
ðvÞ[ 0.

Example 2.4 In the above example, the strength of each hyperedge is gðD1Þ ¼
ð0:7; 0:5; 0:5Þ; gðD2Þ ¼ ð0:4; 0:3; 0:3Þ; gðD3Þ ¼ ð0:9; 0:5; 0:1Þ;
gðD4Þ ¼ ð0:4; 0:3; 0:5Þ; gðD5Þ ¼ ð0:4; 0:3; 0:3Þ. Thus, D3 is the stronger edge than

D1;D2;D4;D5.

We now define the DT tempered ISVNHG as follows:

Definition 2.20 An ISVNHG G ¼ ðC;DÞ is called a DT tempered ISVNHG if

there is a crisp hypergraph G0 ¼ ðC;D0Þ and ISVNS DT is defined on C, where

TDT : C �! ð0; 1�, FDT : C �! ð0; 1� and IDT : C �! ð0; 1� with the condition

minfTDT ðvÞ; IDT ðvÞg� 0:5;

minfFDT ðvÞ; IDT ðvÞg� 0:5;

minfTDT ðvÞ;FDT ðvÞg� 0:5;

such that D ¼ fCDjD 2 D0g; where

TCD
ðxÞ ¼

minfTDT ðyÞjy 2 Dg; if x 2 D;

0; otherwise:

�

ICD
ðxÞ ¼

minfIDT ðyÞjy 2 Dg; if x 2 D;

0; otherwise:

�

FCD
ðxÞ ¼

maxfFDT ðyÞjy 2 Dg; if x 2 D;

0; otherwise:

�
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We will denote the DT tempered ISVNHG of G0 ¼ ðC;D0Þ and ISVNS DT by

DT
�G0.

Theorem 2.1 An ISVNHG G ¼ ðC;DÞ is a DT tempered ISVNHG of G0 if and only

if G is elementary, support simple and simply ordered.

Proof Consider G = (C, D) is a DT tempered ISVN hypergraph of G0. Clearly, G is

elementary and support simple. We will prove that G is simply ordered. Let

CðGÞ ¼ fGðl1;m1;n1Þ ¼ ðC1;D
0
1Þ;Gðl2;m2;n2Þ ¼ ðC2;D

0
2Þ; . . .;Gðln;mn;nnÞ ¼ ðCn;D

0
nÞg.

Since G is elementary, then G is ordered. Suppose there is D 2 D0
jþ1 n D0

j and d 2 D

such that TDðdÞ ¼ ljþ1; IDðdÞ ¼ mjþ1, and FDðdÞ ¼ njþ1. Since TDðdÞ ¼ ljþ1\lj;

IDðdÞ ¼ mjþ1\mj, and FDðdÞ ¼ njþ1 [ ni, it follows that d 62 Cj and D*Cj, hence

G is simply ordered.

Conversaly, suppose that G is elementary, support simple and simply ordered. For

CðGÞ ¼ fGðl1;m1;n1Þ ¼ ðC1;D
0
1Þ;Gðl2;m2;n2Þ ¼ ðC2;D

0
2Þ; . . .;Gðln;mn;mnÞ ¼ ðCn;D

0
nÞg, the

fundamental sequence is FSðGÞ = fðl1;m1; n1Þ; ðl2;m2; n2Þ; . . .; ðln;mn; nnÞg with

0\ln\ln�1\; . . .;\l1; 0\mn\mn�1\; . . .;\m1; nn [ nn�1 [ ; . . .; [ n1 [ 0:

Gðln;mn;nnÞ = ðCn;D
0
nÞ and ISVN set DT on Cn is defined as

TDT ðdÞ ¼
l1; ifd 2 C1;

lj; ifd 2 Cj n Cj�1; j ¼ 2; 3; . . .; n:

�

IDT ðdÞ ¼
m1; ifd 2 C1;

mj; ifd 2 Cj n Cj�1; j ¼ 2; 3; . . .; n:

�

FDT ðdÞ ¼
n1; ifd 2 C1;

nj; ifd 2 Cj n Cj�1; j ¼ 2; 3; . . .; n:

�

Now we prove that D = fCDjD 2 D0
ng, where

TCD
ðaÞ ¼

^fTDT ðyjy 2 DÞg; if a 2 D;

0; otherwise:

�

ICD
ðaÞ ¼

^fIDT ðyjy 2 DÞg; if a 2 D;

0; otherwise:

�

FCD
ðaÞ ¼

^fFDT ðyjy 2 DÞg; if a 2 D;

0; otherwise:

�

Let D 2 D0
n. As G is elementary and support simple then there is a unique ISVN

hyperedge Di in D having support D 2 D0
n. We will show that DT tempered ISVN

hypergraph G ¼ ðC;DÞ is determined by the crisp graph G0
n ¼ ðC;D0

nÞ, i.e.,

CD2D0
n
¼ Di, i ¼ 1; 2; 3; . . .; n.

Since all ISVN hyperedges are elementary and G is support simple, then distinct

edges have different supports, i.e., hðDiÞ is equal to some member ðli;mi; niÞ of

FSðGÞ. As a consequence, D � Cj and if j[ 1, then D 2 D0
j n D0

j�1,

TDðdÞ� li; IDðdÞ�mi, and FDðdÞ� ni for some d 2 D: Since D � Cj, we claim that

TDT ðdÞ ¼ li; IDT ðdÞ ¼ mi;FDT ðdÞ ¼ ni for some d 2 D, if not then

TDT ðdÞ� li�1; IDT ðdÞ�mi�1;FDT ðdÞ� ni�1 for all d 2 D implies D � Ci�1 and
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because G is simply ordered, D 2 D0
i n D0

i�1, then D*Ci�1, which is a contradiction.

Thus CD ¼ Di, i ¼ 1; 2; . . .;m; by the definition of CD. h

Proposition 2.1 Let G ¼ ðC;DÞ be a simply ordered ISVN hypergraph and

FSðGÞ ¼ fðl1;m1; n1Þ; ðl2;m2; n2Þ; . . .; ðln;mn; nnÞg. For a crisp hypergraph

Gðln;mn;nnÞ, there is a partial ISVNS hypergraph G	 ¼ ðC;D	Þ of G ¼ ðC;DÞ such

that following hold:

1. G	 is a DT tempered ISVN hypergraph of Gðln;mn;nnÞ,

2. FSðG	Þ = FSðGÞ and CðG	Þ ¼ CðGÞ.

Proof Since G is simply ordered, G is an elementary ISVNS hypergraph. We take

the partial ISVN hypergraph G	 ¼ ðC;D	Þ of G ¼ ðC;DÞ by removing all those

edges of D which are properly contained in another edge, where D	 ¼ fDi 2 Dj if
Di � Dj and Dj 2 D, then Di ¼ Djg. Since Gðln;mn;nnÞ is simple and its all edges are

elementary, if any hyperedge in G is subset of another hyperedge then both edges

have the same support. So FSðG	Þ = G and CðG	Þ ¼ CðGÞ. From the definition of D	,

G	is elementary, support simple. Thus by above Theorem G	 is a DT tempered ISVN

hypergraph. h

Example 2.5 Consider an ISVN hypergraph G ¼ ðC;DÞ, where C ¼
fp1; p2; p3; p4g and D ¼ fQ1;Q2;Q3g and the incidence matrix of G is given as:

IG Q1 Q2 Q3

p1 (0.1, 0.2, 0.6) (0, 0, 0) (0.3, 0.4, 0.6)

p2 (0.1, 0.2, 0.6) (0.1, 0.2, 0.3) (0, 0, 0)

p3 (0.1, 0.2, 0.6) (0, 0, 0) (0.3, 0.4, 0.6)

p4 (0, 0, 0) (0.1, 0.2, 0.3) (0, 0, 0)

Let DT ¼ fðp1; 0:3; 0:4; 0:5Þ; ðp2; 0:1; 0:2; 0:3Þ; ðp3; 0:5; 0:4; 0:6Þ; ðp4; 0:4; 0:3;
0:3Þg be an ISVN subset defined on C.

Then, it can be seen that Tfp1;p2;p3gðp1Þ ¼ minfTDT ðp1Þ; TDT ðp2Þ; TDT ðp3Þg ¼
0:1; Ifp1;p2;p3gðp1Þ ¼ minfIDT ðp1Þ; IDT ðp2Þ; IDT ðp3Þg ¼ 0:2;Ffp1;p2;p3gðp1Þ ¼ maxfFDT

ðp1Þ;FDT ðp2Þ;FDT ðp3Þg ¼ 0:6 and Tfp1;p2;p3gðp2Þ ¼ minfTDT ðp1Þ; TDT ðp2Þ; TDT ðp3Þg
¼ 0:1; Ifp1;p2;p3gðp2Þ ¼ minfIDT ðp1Þ; IDT ðp2Þ; IDT ðp3Þg ¼ 0:2;Ffp1;p2;p3gðp2Þ ¼ maxf
FDT ðp1Þ;FDT ðp2Þ;FDT ðp3Þg ¼ 0:2, and Tfp1;p2;p3gðp3Þ ¼ minfTDT ðp1Þ; TDT ðp2Þ;
TDT ðp3Þg ¼ 0:1; Ifp1;p2;p3gðp3Þ ¼ minfIDT ðp1Þ; IDT ðp2Þ; IDT ðp3Þg ¼ 0:2;Ffp1;p2;p3g
ðp3Þ ¼ maxfFDT ðp1Þ;FDT ðp2Þ;FDT ðp3Þg ¼ 0:6, that is Cfp1;p2;p3g ¼ D1. Also

Cfp2;p4g ¼ D2;Cfp1;p3g ¼ D3. Thus G is DT tempered.

Definition 2.21 The dual of an ISVNHG G ¼ ðC;DÞ is an ISVNHG GH ¼ ðD;CÞ;
where D ¼ fe1; e2; . . .; eng is set of vertices corresponding to D1;D2; . . .;Dn,

respectively and C = fC1;C2; . . .;Cng set of hyperedges corresponding to

C1;C2; . . .;Cn, respectively.
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Example 2.6 Consider an ISVNHG D ¼ ðC;DÞ, where C ¼ fq1; q2; q3; q4g and

D ¼ fP1;P2;P3g is represented by the incidence matrix. The ISVNHG and its dual

are shown in Figs. 3 and 4, respectively.

MD P1 P2 P3

q1 (0.5, 0.4, 0.3) (0.5, 0.4, 0.3) (0, 0, 0)

q2 (0.2, 0.3, 0.4) (0, 0, 0) (0, 0, 0)

q3 (0, 0, 0) (0, 0, 0) (0.3, 0.4, 0.5)

q4 (0, 0, 0) (0.5, 0.5, 0.5) (0.5, 0.5, 0.5)

The dual of ISVNHG D is DH ¼ ðD;CÞ such that D ¼ fp1; p2; p3g;
C ¼ fQ1;Q2;Q3;Q4g, where

Q1 ¼fðp1; 0:5; 0:4; 0:3Þ; ðp2; 0:5; 0:4; 0:3Þ; ðp3; 0; 0; 0Þg;
Q2 ¼fðp1; 0:2; 0:3; 0:4Þ; ðp2; 0; 0; 0Þ; ðp3; 0; 0; 0Þg;
Q3 ¼fðp1; 0; 0; 0Þ; ðp2; 0; 0; 0Þ; ðp3; 0:3; 0:4; 0:5Þg;
Q4 ¼fðp1; 0; 0; 0Þ; ðp2; 0:5; 0:5; 0:5Þ; ðp3; 0:5; 0:5; 0:5Þg:

q1(0.5, 0.4, 0.3)

q2(0.2, 0.3, 0.4)q3(0.3, 0.4, 0.5)

q4(0.5, 0.5, 0.5)

P1

P2

P3

Fig. 3 ISVNHG

p1 p2

p3

Q1

Q2

Q
3

Q
4

Fig. 4 Dual ISVNHG DH
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The incidence matrix of Dual ISVNHG is given as follows:

Theorem 2.2 If G is linear ISVNHG, then its dual ISVNHG G	 without isolated

vertex is linear ISVNHG.

Proof Let G be a linear ISVNHG. Suppose that G	 is not linear ISVNHG, then

there must be two distinct ISVN hyperedges Ci and Cj of G	 having at least two

vertices e1 and e2 in common. By defnition of dual ISVNHG, vi and vj belongs to D1

and D2 (the ISVN hyperedges of G corresponds to the vertices e1, e2 of G	,
respectively) so G is not linear ISVNHG. A Contradiction to the statement that G is

linear ISVNHG. Hence, dual G	 of a linear ISVNHG without isolated vertex is also

linear ISVNHG. h

Remark 2.2 G	 ¼ ðGÞt, That is, incidence matrix of G	 is the transpose of the

incidence matrix of G. Also, the dual of a simple ISVNHG may or may not be

simple.

Now, we define the ISVN transversal of an ISVN hypergraph.

Definition 2.22 Let G ¼ ðC;DÞ be an ISVNHG and hðDiÞ the height of ISVN

hyperedge Di. Then the ISVN transversal s of G is defined as an ISVN subset

defined on C such that shðDiÞ \ DhðDiÞ 6¼ ; for all Di 2 D:

If s0 
 s and s0 is not an ISVN transversal of G then s is called the minimal

transversal.

Here, we state the following propositions without proof.

Proposition 2.2 For an ISVN transversal of G ¼ ðC;DÞ, we have hðsÞ� hðDiÞ for
all Di 2 D, and for a minimal transversal of G, we have

hðsÞ ¼ _fDijDi 2 Dg ¼ hðGÞ:

Theorem 2.3 Let G be an ISVNHG and TrðGÞ be the family of minimal ISVN

transversals of G then TrðGÞ 6¼ ;.

Example 2.7 Consider the ISVNHG G = (C, D), where C = fu1; u2; u3g and D =

fd1; d2; d3g, which is represented by the following incidence matrix:

IDH Q1 Q2 Q3 Q4

p1 (0.5, 0.4, 0.3) (0.2, 0.3, 0.4) (0, 0, 0) (0, 0, 0)

p2 (0.5, 0.4, 0.3) (0, 0, 0) (0, 0, 0) (0.5, 0.5, 0.5)

p3 (0, 0, 0) (0, 0, 0) (0.3, 0.4, 0.5) (0.5, 0.5, 0.5)

IG d1 d2 d3

u1 (0, 0, 0) (0, 0, 0) (0.4, 0.3, 0.2)

u2 (0.9, 0.3, 0.1) (0.4, 0.3, 0.2) (0.4, 0.3, 0.2)

u3 (0.4, 0.3, 0.2) (0, 0, 0) (0.4, 0.3, 0.2)
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Clearly, hðGÞ = (0.9, 0.3, 0.1), the ISVN transversals of G are s1ðGÞ ¼
fðu2; 0:9; 0:3; 0:1Þ; ðu3; 0:4; 0:3; 0:2Þg and s2ðGÞ ¼ fðu2; 0:9; 0:3; 0:1Þg. FS of G is

FSðGÞ = fð0:9; 0:3; 0:1Þ; ð0:4; 0:3; 0:2Þg, s1ð0:9;0:3;0:1Þ ¼ fu2g and s1ð0:4;0:3;0:2Þ ¼
fu2; u3g: s2ð0:9;0:3;0:1Þ ¼ fu2g and s2ð0:4;0:3;0:2Þ ¼ fu2g: Dð0:9;0:3;0:1Þ ¼ fu2g,
Dð0:4;0:3;0:2Þ ¼ ffu2; u3g; fu2g; fu1; u2; u3gg. The minimal transversal of G is

s2ðGÞ ¼ fðu2; 0:9; 0:3; 0:1Þg.

3 Clustering problem

Clustering (or cluster analysis) involves the task of classifying data points into

clusters or classes in such a way that the objects in the same class or cluster are

similar and the objects belonging to different clusters are not much similar. The

identification of clusters can be done by means of similarity measures. The

connectivity and distance can be taken as the similarity measures. Similarity

measures are chosen according to the choice of data or the application. The purpose

of graph clustering is to grouping the vertices into classes according to the

properties of the graph. So that the edges having high similarity are in the same

group. In statistical data analysis, clustering analysis serves as a strong and

significant tool, which can be widely used in various fields, like pattern recognition,

banking sector, microbiology, document classification and data mining, etc. In a

computer cluster, a set of more than one connected computers work together. The

benefit of such clustering of computers is that if any one computer of the cluster

fails, another computer can manage the workload of failed computer.

Definition 3.1 Let W be a universal set. A collection of ISVN sets

fA1;A2;A3; . . .;Amg is an ISVN partition if

(i)
S
j

suppðAjÞ ¼ W , j ¼ 1; 2; 3; . . .;m,

(ii)
Pm

j¼1

TAj
ðxÞ = 1 for all x 2 W ,

(iii)
Pm

j¼1

IAj
ðxÞ = 1 for all x 2 W ,

(iv) there is at most one j for which FAj
ðxÞ ¼ 0 for all x 2 W (there is atmost

one ISVNS for which TAj
ðxÞ þ IAj

ðxÞ þ FAj
ðxÞ ¼ 2 for all x 2 W).

A family of ISVN subsets fA1;A2;A3; . . .;Amg is said to be an ISVN partition if it

captivates the above conditions.

An ISVN matrix ðaijÞ can be used to interpret an ISVN partition, where aij
indicates the truth value, indeterminacy value and falsity value of element xi in class

j. We see that the incidence matrix in ISVNHG is as similar as this matrix. So that

we can express an ISVN partition by an ISVNHG G = (W, D) such that

(i) W ¼ fx1; x2; x3; . . . ; xng is a set of elements, i ¼ 1; 2; 3; . . .; n,
(ii) D ¼ fD1;D2;D3; . . .;Dmg be a finite class of nontrivial ISVN sets,

(iii)
S
k

suppðDkÞ ¼ W , k ¼ 1; 2; 3; . . .; n,
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(iv)
Pm

k¼1

TAj
ðxÞ ¼ 1 for all x 2 W ,

(v)
Pm

k¼1

IAj
ðxÞ ¼ 1 for all x 2 W ,

(vi) there is at most one j for which FAj
ðxÞ ¼ 0 for all x 2 W (there is atmost

one ISVNS such that TAj
ðxÞ þ IAj

ðxÞ þ FAj
ðxÞ ¼ 2 for all x).

It should be noted that the conditions (iv)–(vi) are combined with the ISVNHG for

ISVN partition. Along with these three conditions, an ISVN covering can be

represented as an ISVNHG. Naturally, ðg;/;wÞ-level cut can be applied to ISVN

partition.

Example 3.1 Let us suppose the clustering problem as an illustrative example of

an ISVN partition on the visual image processing. We take the five objects which

are restricted into two classes:tank and house. To cluster these five objects

a1; a2; a3; a3; a4; a5 into At (tank) and Bh (house), an ISVN partition matrix is given

in Table 1 below in the form of incidence matrix of an ISVNHG.

By applying ðg;/;wÞ-cut to the hypergraph we attain a hypergraph Gðg;/;wÞ as

given in Table 2 which is not an ISVNHG. We denote the edge in Gðg;/;wÞ-cut

hypergraph Gðg;/;wÞ as Djðg;/;wÞ. This hypergraph G represents the covering because

of condition:ðivÞ
Pm

j¼1

TAj
ðxÞ ¼ 1 for all x 2 W ,ðvÞ

Pm

j¼1

IAj
ðxÞ ¼ 1 for all x 2 W and

Table 1 ISVN partition matrix G At Bh

a1 (0.96, 0.50, 0.04) (0.04, 0.50, 0.96)

a2 (1, 0.50, 0) (0, 0.50, 1)

a3 (0.05, 0.50, 0.05) (0.95, 0.50, 0.03)

a4 (0.30, 0.50, 0.61) (0.70, 0.50, 0.04)

a5 (0.61, 0.50, 0.04) (0.39, 0.50, 0.05)

Table 2 Hypergraph

Gð0:60;0:50;0:04Þ
Gð0:60;0:50;0:04Þ Atð0:60;0:50;0:04Þ Bhð0:60;0:50;0:04Þ

a1 1 0

a2 1 0

a3 0 1

a4 0 1

a5 1 0

Table 3 Dual of hypergraph G	
ð0:60;0:50;0:04Þ W1 W2 W3 W4 W5

At 1 1 0 0 1

Bh 0 0 1 1 0
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(vi)there is at most one j for which FAj
ðxÞ ¼ 0, is not always guaranteed.

Dual of the above hypergraph is given in Table 3.

The clarifications for ~gðDjðg;/;wÞÞ are:

• The elements having at least ~g truth value, indeterminacy value and most falsity

value are grouped as an edge in the partition hypergraph Hðg;/;wÞ.

• The strength of edge ~gðDjðg;/;wÞÞ in Hðg;/;wÞ is ~g. Thus, cohesion or strength of a

class in a partition can be measured by the strength of edge.

As an example, the strength of classes Atð0:60;0:50;0:04Þ and Bhð0:60;0:50;0:04Þ at

g ¼ 0:60, / ¼ 0:50, w ¼ 0:04 are ~gðAtð0:56;0:50;0:40ÞÞ ¼ ð0:96; 0:50; 0:04Þ and

~gðBhð0:60;0:50;0:04ÞÞ ¼ ð0:70; 0:50; 0:04Þ, respectively. Thus, we see that the class

~gðAtð0:60;0:50;0:04ÞÞ is stronger than ~gðBhð0:60;0:50;0:04ÞÞ because

~gTðAtð0:60;0:50;0:04ÞÞ[ ~gTðBhð0:60;0:50;0:04ÞÞ. Taking into account the above analysis

on the hypergraph Hð0:60;0:50;0:04Þ and H	
ð0:60;0:50;0:04Þ, we have:

1. The ISVN partition can be represented by ISVN hypergraph, visually. The

ðg;/;wÞ-cut hypergraph also represents the ðg;/;wÞ-cut partition.
2. The dual hypergraph H	

ð0:60;0:50;0:04Þ represents those elements Wi, which can

be classified into same class Djðg;/;wÞ. For example, the edges W1;W2;W5 of

the dual hypergraph represent that the elements a1; a2; a5 can be grouped

into At at level (0.60, 0.50, 0.04).

3. In the ISVN partition, we have
Pm

j¼1

TAj
ðxÞ = 1,

Pm

j¼1

IAj
ðxÞ = 1 for all x 2 W

and for all x 2 W , there is at most one j such that FAj
ðxÞ ¼ 0 . If we take

ðg;/;wÞ-cut at level ðg� 0:5 or /� 0:5 or w� 0:5Þ, no element can be

grouped into two classes at the same time. That is, if g� 0:5 or /� 0:5 or

w� 0:5, distinct elements are contained in distinct classes in Hðg;/;wÞ.

4. At the ðg;/;wÞ ¼ ð0:60; 0:50; 0:04) level, gðAtð0:60;0:50;0:04ÞÞ is strongest

class as its strength is highest, i.e., (0.96, 0.50, 0.04). It means that this class

can be grouped independently from other parts. Thus the class Bh can be

removed from other classes and continue the clustering process. In this way,

the elimination of weak classes from the others can allow us to decompose a

clustering problem into smaller ones. Following this strategy, we can reduce

data in clustering problem.

4 Conclusions

An intuitionistic neutrosophic set is an extension of an intuitionistic fuzzy set. In

several areas of computer science research such as data mining, image distribution,

clustering, image capturing and networking, various theoretical ideas of graphs as

well as hypergraphs are applied. The models which are based on intuitionistic

neutrosophic sets are more appropriate and well-suited as compare to traditional

models. In this paper we have discussed intuitionistic single-valued neutrosophic
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hypergraphs. We also discussed an application of intuitionistic single-valued

neutrosophic hypergraphs in clustering problem. We plan to widen our research of

fuzzification to (1) Interval-valued neutrosophic graphs, (2) bipolar neutrosophic

hypergraphs, (3) rough neutrosophic graphs and (4) application of intuitionistic

neutrosophic graphs in decision support systems.
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