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Abstract In this paper, we propose a new hybrid algorithm for solving uncon-

strained global optimization problems by hybridizing the bat algorithm with multi-

directional search algorithm (MDS). We call the proposed algorithm by multi-

directional bat algorithm (MDBAT). In MDBAT algorithm, we try to overcome the

slow convergence of the bat algorithm as a metaheuristic algorithm by invoking one

of the promising direct search algorithm which is called MDS algorithm. The bat

algorithm has a good ability to make exploration and exploitation search while the

MDS has a good ability for accelerating convergence on the region of optimal

response. In the beginning, the standard bat algorithm starts the search for number

of iterations then the MDS algorithm starts its search from bat algorithm found so

far. The combination between the standard bat algorithm and the MDS algorithm

helps the MDS algorithm to start the search from a good solution instead of the

random initial solution. The MDS algorithm can accelerate the search of the pro-

posed algorithm instead of letting the algorithm running for more iterations without

any improvement. We investigate the general performance of the MDBAT algo-

rithm by applying it on 16 unconstrained global optimization problems and
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comparing it against 8 benchmark algorithms. The experimental results indicate that

MDBAT is a promising algorithm and outperforms the other algorithms in most

cases.

Keywords Bat algorithm � Multi-directional search algorithm � Global

optimization � Unconstrained optimization problems

1 Introduction

We consider the unconstrained optimization problem

min f ðxÞ; x 2 Rn ð1Þ

where f : Rn ! R is an objective function and x represents a decision variable

vector. Also, x 2 S � Rn and S denotes the search space, which is n dimensional and

bounded by parametric constraints as follows:

li � xi � ui i ¼ 1; 2; . . .; n ð2Þ

where li and ui are the lower and upper bounds of the decision variables xi,

respectively.

Many researchers have solved the problem in (1) via deterministic algorithms

such as steepest descent, Newton, and conjugate gradient methods, see, e.g., [37].

These methods require the differentiability of the objective function. However,

computing the Jacobian (derivative of the objective function) is a difficult and

expensive operation. Also, the objective function might be nonsmooth. This is a

motivation for many researchers to develop stochastic global optimization

algorithms such as swarm intelligence (SI) algorithms. SI take inspiration from

the behavior of a group of social organisms. These algorithms are applied to solve

global optimization problems and their applications such as Ant Colony Optimiza-

tion (ACO) [8], Artificial Bee Colony [12], Particle Swarm Optimization (PSO)

[13], Bacterial foraging [18], Bat algorithm [35], Bee Colony Optimization (BCO)

[28], Wolf search [25], Cat swarm [6], Cuckoo search [34], Firefly algorithm [33],

Fish swarm/school [15], etc. Some old metaheuristic algorithms such as genetic

algorithms (GA) have some drawbacks when they are dealing with multimodal

optimization problems.

Recently, Yang [35] proposed a novel metaheuristic search algorithm, called bat

algorithm (BA). Preliminary studies show that it is very promising and could

outperform existing algorithms. Bats are captivating animals, are the only mammals

with wings and have advanced capability of echolocation. Micro bats use a type of

sonar, called, echolocation, to detect prey, avoid obstacles, and locate their roosting

crevices in the dark.

BA has a good capability to balance the global exploration and the local

exploitation during the search process. Since BA has a powerful performance, is

easy to implement, and has fast convergence, many researchers have attracted and

applied BA on their works to solve various applications, for example, Yang [36]

applied BA to solve multi-objective optimization and benchmark engineering
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problems. Zhang and Wang [38] improved the diversity of solutions by using the

mutation with bat algorithm for image matching. Komarasamy and Wahi [14] gave

a combination of K-means and bat algorithm (KMBA) for efficient clustering. Lin

et al. [16] carried out parameter estimation in dynamic biological systems using a

chaotic bat algorithm by combining Levy flights and chaotic maps. Nakamura et al.

[17] developed a discrete version of bat algorithm to solve classifications and

feature selection problems. Wang and Guo [31] combined bat algorithm with

harmony search and have produced a hybrid bat algorithm for numerical

optimization of function benchmarks. In addition, Xie et al. [32] presented a

variant of bat algorithm combining differential operator and Levy flights to solve

function optimization problems.

The main objective of this paper is to produce a new hybrid bat algorithm with

the multi-directional search algorithm in order to solve unconstrained global

optimization problems. The proposed algorithm is called multi-directional bat

algorithm (MDBAT). In order to overcome the slow convergence of the bat

algorithm, we invoke the multi-directional search algorithm. The multi-directional

search can accelerate the search instead of letting the algorithm running for more

iterations without any improvement. The bat algorithm running for number of

iterations then the multi-directional search starts the search from the best obtained

solution from the bat algorithm.

The rest of this paper is organized as follows. In Sect. 2, we overview the multi-

directional search algorithm. In Sect. 3, we present the standard bat algorithm and

describe he main concepts of the proposed MSBAT algorithm. In Sect. 4, we

present our numerical experimental results. Finally, in Sect. 5 we end up with our

conclusion and future work.

2 Multi-directional search algorithm

The multi-directional search algorithm was proposed by Dennis and Torczon [30] as

a step towards a general-purpose optimization algorithm with promising properties

for parallel computation. The multi-directional search algorithm is a direct search

algorithm.

According to Dennis and Torczon [7], the Nelder-Mead Simplex algorithm can

converge to non-minimizers when the dimension of the problem becomes large

enough.

One of the advantages of the multi-directional search is that unlike the Nelder-

Mead simplex algorithm, it is backed by convergence theorems that numerical

testing also indicate are borne out in practice.

Since the multi-directional search is backed by convergence theorems, it has a

promising behavior when applied with the high dimensional problems.

In Algorithm 1 and Fig. 1, we present the main steps of the multi-directional

search algorithm.

We can summarize the main steps of the multi-directional search as follows.
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• Step 1 The algorithm starts by setting the initial values of the expansion factor l,

contraction factor h and the maximum number of iterations parameter Maxitr1.

(Line 1)

• Step 2 The multi-directional search algorithm begins with a simplex S with

verities x0
i , where i ¼ 0; 1; . . .; n. (Line 2)

• Step 3 The vertices are sorted in ascending order where

f ðx0
0Þ� f ðx0

1Þ� � � � � f ðx0
nÞ. (Line 3)

• Step 4 The iteration counter is initialized and the main algorithm loop is

initialized. (Lines 4–5)

• Step 5 The reflected step is started by reflecting the vertices x1; x2; . . .; xn through

the best vertex x0 and the new reflected vertices are evaluated. (Lines 6–9)

• Step 6 If a reflected vertex succeeds and its value is better than the current best

vertex, then the algorithm starts the expansion step. (Line 10)

• Step 7 The expansion process starts to expand each reflected edge by using the

expansion factor l, where l ¼ 2 to create new expanded vertices. The new

expanded vertices are evaluated in order to check the success of the expansion

step. (Lines 10–14)

• Step 8 If the expanded vertex is better than the all reflected vertices, the new

simplex will be the expanded simplex. (Lines 15–16)

• Step 9 If the expansion and reflection steps fail, then the contracted simplex

starts by changing the size of the step via using contraction factor h, which

reduces the reflected simplex to the half in the next iteration. (Lines 18–21)

• Step 10 The new vertices are evaluated and the vertices are sorted according to

their evaluation function value and the new simplex is constructed. (Lines

24–27)

Fig. 1 Multi-directional search
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• Step 11 The iteration counter is increased and the overall process are repeated

till the termination criterion is satisfied which is by default the maximum

number of iterations Maxitr1. Finally, the best solution is produced. (Lines

28–30)

3 The basic bat algorithm

In this section, we overview of the main concepts and structure of the bat algorithm

as follows.

3.1 Main concepts

Bat algorithm (BA) is a novel metaheuristic optimization algorithm proposed by

Yang [35]. Because the bat algorithm is simple to understand, its adjustment

parameters are few, it is easy to implement and its convergence speed is fast at a

very initial stage by switching from exploration to exploitation, however, switching

from exploration to exploitation quickly may lead to stagnation after some initial

stage.

Bats use sonar called as echolocation to detect prey and to avoid obstacles.

Micro-bats are able to recognize positions of the objects by spreading short and high

audio signals and by reflection and collision of these spread signals.

Xin-She Yang idealized the following rules to model Bat algorithm:

• All bats use echolocation to sense distance, and they also know the difference

between food/prey and background barriers in some magical way.

• Each bat randomly moves with velocity vi at a position xi with a frequency fmin
varying loudens A0 and pulse emission rate r.

• Although the loudness can vary in many ways, Xin-She Yang assumes that the

loudness varies from a large value A0 to a minimum value Amin.

The bat algorithm is a population based method, where the population size consist

of bats (solutions). Each bat (solution) in the population is randomly moving with

velocity vi and a location xi. Also each bat is randomly assigned a frequency drawn

uniformly from ½fmin; fmax�. The position of each bat in the population is updated as

shown in the following equations.

fi ¼ fmin þ ðfmax � fminÞb ð3Þ

vti ¼ vt�1
i þ xt�1

i � x�
� �

fi; ð4Þ

xti ¼ xt�1
i þ vti; ð5Þ

where b 2 ½0; 1� is a random vector drawn from a uniform distribution.

The loudness Ai and the pulse rate emission ri are very important to let the

algorithm switch between exploration and exploitation process. When the bat has
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found its pray, the loudness decreases and the rate of pulse emission increases. The

bat algorithm starts with an initial value of the loudness A0 and the rate of pulse

emission r0, then these values will be updated as shown in the following equations.

A
ðtþ1Þ
i ¼ aAðtÞ

i ð6Þ

r
ðtÞ
i ¼ r

ð0Þ
i ½1 � expð�ctÞ� ð7Þ

where a and c are constants, the a parameter plays a similar role as the cooling

factor in the simulated annealing algorithm, where a 2 ½0; 1� and c[ 0.

For the local search part, a solution is selected among the current best solutions,

for each bat, a new solution is generated locally using a local random walk as in (8)

xnew ¼ xold þ kAt ð8Þ

where k is a random number, k 2 ½�1; 1� and At is the average loudness of all the

bats at this iterations.

3.2 Bat algorithm

In Algorithm 2, we show the main steps of the standard bat algorithm and can

summarize these steps as follows.

• Step 1 The algorithm starts by setting the initial values of its parameters and the

main iteration counter is set to zero. (Lines 1–2)

• Step 2 The initial population is randomly generated by generating the initial

position x0 and the initial velocity v0 for each bat (solution) in the population,

the initial frequency fi is assigned to each solution in the population, where f is

randomly generated from ½fmin; fmax�. The initial population is evaluated by

calculating the objective function for each solution in the initial population

f ðx0
i Þ. The values of pulse rate ri and loudness Ai are initialized, where r 2 ½0; 1�

and Ai varies from a large A0 to Amin. (Lines 3–9)

• Step 3 The new population is generated by adjusting the position xi and the

velocity vi for each solution in the population is given in (3), (4), and (5). (Lines

12–13)

• Step 4 The new population is evaluated by calculating the objective function for

each solution and the best solution x� is selected from the population. (Lines

14-15)

• Step 5 The local search method is applied in order to refine the best found

solution at each iteration. (Lines 16–19)

• Step 6 The new solution is accepted with some proximity depending on

parameter Ai, the rate of pulse emission increases and the loudness decreases.

The values of Ai and ri are updated as shown in (6) and (7).

• Step 7 The new population is evaluated and the best solution is selected from the

population. The operations are repeated until termination criteria are satisfied

and the overall best solution is produced. (Lines 25–28)
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3.3 The proposed MDBAT algorithm

In Algorithm 3, we present the algorithm of the proposed MDBAT algorithm. The

proposed algorithm applies the same steps of the standard bat algorithm as shown in

Algorithm 2, then the best found bat solution is refined by applying Algorithm 1 for

a number of iterations Maxitr2 till termination criteria are satisfied.

4 Numerical experiments

In this section, we evaluate the efficiency of the MDBAT algorithm by presenting

the general performance of it with various benchmark functions and comparing the

results of the proposed algorithm against various algorithms. In the following

subsections, we present the parameter setting of the proposed algorithm and the

properties of the applied test functions. Also, we present the performance analysis of

the proposed algorithm with the comparative results between it and the other

algorithms.

4.1 Parameter setting

We summarize the parameters of the MDBAT algorithm summarized with their

assigned values in Table 1. We select these values based on the common setting in

the literature or our preliminary numerical experiments.

• Population size P The experimental tests show that the best population size is

P = 20, increasing this number will increase the evaluation function values

without any improvement in the obtained results.

Table 1 Parameter setting

Parameters Definitions Values

P Population size 20

fmin Minimum frequency 0

fmax Maximum frequency 2

A0 The initial loudness 1

r0 The initial pulse rate 0.5

a The loudness constant 0.9

c The rate of pulse emission constant 0.9

k Step size for random walk 1

l Expansion factor 2

h Contraction factor 0.5

Maxitr1 Maximum iterations number for bat algorithm 10

Maxitr2 Maximum iterations number for multi-directional search algorithm 100

Nelite Number of best solution for multi-directional search 1
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• Frequency parameter f Bat movement is based on the value of the frequency

parameter f. In MDBAT algorithm, it turns out that the quality of the solution is

related to the value of f parameter. The experimental tests show that the best

maximum value of f is fmax ¼ 2 and the minimum value of f is fmin ¼ 0.

• Loudness parameters A and a Loudness parameter A is one of the most

important parameter in the bat algorithm. The acceptance of the new generated

solutions is depending on the value of A. The a parameter plays a similar role as

the cooling factor in the simulated annealing algorithm. We set the initial value

of A to A = 1 and the value of a is set to a ¼ 0:9.

• Pulse emission rate r The value of the rate of pulse emission parameter r is very

important to apply the local search method in the algorithm. The experimental

tests show that, the best value of r is 0.9 and the rate of pulse emission constant

is c ¼ 0:9.

• Step size for random walk k The experimental results show that the best step size

k in the random walk is equal to 1. Figure 2 shows the general performance of

the standard bat algorithm with different values of step size at k ¼
0:1; 0:01; 0:001; 1 for functions f1, f2, f4, f5, f6, f8, f9, f16 (randomly picked ).

Figure 2 shows that the best value of k is equal to 1.

• Multi-directional search parameters There are two main parameters in the

multi-directional search algorithm, which are the expansion factor parameter l
and the contraction factor parameter h. We take the selected values for l and h
from lecture, where l ¼ 2 and h ¼ 0:5.

• Stopping condition parameters MDBAT terminates the search when the number

of iterations reaches to the desired maximum number of iterations or any other

termination depends on the comparison with other algorithms. In our experi-

ment, we set the value of the maximum iteration number for bat algorithm

Maxitr1 ¼ 10 before starting the multi-directional search algorithm and the

maximum iteration number for multi-directional search algorithm

Maxitr2 ¼ 100.

• Final intensification We collect the best obtained solutions from the bat

algorithm in a list in order to apply the multi-directional search algorithm on

them, the number of the solutions in this list is called Nelit. We set Nelit ¼ 1 in

order to avoid increasing the value of the function evaluation value.

4.2 Test unconstrained optimization problems

We test MDBAT algorithm on 16 unconstrained optimization functions with

various properties (multi-model, uni-model) functions. We list these functions in

Table 2 and report their properties in Table 3.

4.3 The efficiency of applying the multi-directional search in MDBAT
algorithm

In order to investigate the efficiency of invoking the multi-directional search

algorithm, we apply the standard bat algorithm without combining it with the multi-
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directional search algorithm and the proposed algorithm on six functions which are

randomly picked. In Table 4, we report the mean and the standard deviation over 50

runs. The run is successful if the algorithm reaches to the global minimum of the

solution within an error of 10�4 before the 20,000 function evaluation value. If any

algorithm fails to obtain the desired function value, then we report the value of best

obtained function value in parentheses. The results in Table 4 show that the

combination between the standard bat algorithm and the multi-directional search

can accelerate the search and obtain the desired function values for all test functions

faster than the standard bat algorithm which needs more iterations in order to obtain

the desired function values.

Fig. 2 The general performance of the standard bat algorithm with different values of step size k
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Table 2 Unconstrained benchmark functions

Function Name Definition

f1 Sphere f ðxÞ ¼
PD

i¼1 x
2
i

f2 Rosenbrock’s f ðxÞ ¼
PD�1

i¼1 100 xiþ1 � x2
i

� �2þ xi � 1ð Þ2
h i

f3 Rastrigin’s f ðxÞ ¼
PD

i¼1 x2
i � 10 cos 2pxið Þ þ 10

� �
:

f4 Griwank’s f ðxÞ ¼ 1
4000

PD
i¼1 x

2
i �

QD
i¼1 cos xiffi

i
p
� �

þ 1

f5 Schaffer’s f6
f ðxÞ ¼ 0:5 þ sinð

ffiffiffiffiffiffiffiffiffi
x2

1
þx2

2

p
Þ

ð1þ0:001ðx2
1
þx2

2
ÞÞ2

f6 Ackley’s

f ðxÞ ¼ 20 þ expð1Þ � 20exp � 1

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

D

XD

i¼1

x2
i

vuut

0

@

1

A

� exp
1

D

XD

i¼1

cosð2pxiÞ
 !

f7 Corana
f ðxÞ ¼

P4
i¼1

0:15ðzj � 0:05signðzjÞÞ2
dj; if jxj � zjj\0:05;

djx
2
j ; otherwise;

�

ðd1; d2; d3; d4Þ ¼ ð1; 1000; 10; 100Þ, and

zj ¼ bj xj
0:2 j þ 0:49999csignðxjÞ0:2

f8 Levy1
f ðxÞ ¼ 0:1 sin2ð3px1Þ þ

XD�1

i¼1

ðxi � 1Þ2 ð1 þ sin2ð3pxiþ1ÞÞ
� 	

(

þðxD � 1Þ2½1 þ sin2ð2pxnÞ�
o
þ
XD

i¼1

uðxi; 5; 100; 4Þ;

uðz; a; k;mÞ ¼
kðz� aÞm; z[ a;

0; � a� z� a;
kð�z� aÞm; z\� a:

8
<

:

f9 Levy2 f ðxÞ ¼ p
D
f10 sin2ðpx1Þ þ

PD�1
i¼1 ðxi � 1Þ2ð1 þ 10 sin2ðpxi þ 1Þ þ ðxD � 1Þ2
h i

PD
i¼1 uðxi; 10; 100; 4Þ;

f10 Goldstein and

price
f ðxÞ ¼ 1 þ ðx0 þ x1 þ 1Þ2ð19 � 14x0 þ 3x2

0 � 14x1 þ 3x2
1Þ

n o

30 þ ð2x0 � 3x1Þ2ð18 � 32x0 þ 12x2
0 þ 48x1 � 36x0x1 þ 27x2

1

n o

f11 Branin f ðxÞ ¼ ðx1 � 5:1
4p2 x

2
0 þ 5

p x0 � 6Þ2 þ 10ð1 � 1
8pÞcosðx0Þ þ 10

f12 Shubert f ðxÞ ¼
P5

j¼1 jcosðjþ 1Þx1 þ jÞ
P5

j¼1 jcosððjþ 1Þx2 þ jÞ
f13 Easom f ðxÞ ¼ �cosðx1Þcosðx2Þexpð�ððx1 � pÞ2 þ ðx2 � pÞ2ÞÞ
f14 Hartmann f ðxÞ ¼ �

P4
i¼1 aiexpð�

P3
j¼1 Aijðxj � PijÞ2Þ

a ¼ ½ 1 1:2 3 3:2 � A ¼

3 10 30

0:1 10 35

3 10 30

0:1 10 35

2

664

3

775 P ¼

0:3689 0:117 0:2673

0:4699 0:4387 0:747

0:1091 0:8732 0:5547

0:03815 0:5743 0:8828

2

664

3

775

f15 B2 f ðxÞ ¼ x2
1 þ 2x2

2 � 0:3cosð3px1Þ � 0:4cosð4px2Þ þ 0:7

f16 Zakharov f ðxÞ ¼
Pn

i¼1 x
2
i þ ð

Pn
i¼1 0:5ixiÞ2 þ ð

Pn
i¼1 0:5ixiÞ4
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Table 3 Properties of classical

functions
Function Bounds Optimal

f1 ½�100; 100�D 0

f2 ½�30; 30�D 0

f3 ½�5:12; 5:12�D 0

f4 ½�600; 600�D 0

f5 ½�100; 100�D 0

f6 ½�32; 32�D 0

f7 ½�1000; 1000�D 0

f8 ½�50; 50�D 0

f9 ½�50; 50�D 0

f10 ½�2; 2�D 3

f11 ½�10; 10�D 0.397887

f12 ½�10; 10�D -186.7309

f13 ½�100; 100�D -1

f14 ½0; 1�D -3.86278

f15 ½�100; 100�D 0

f16 ½�10; 10�D 0

Table 4 The efficiency of

applying the multi-directional

search in MDBAT algorithm

Function D Standard bat MDBAT

f1

Mean 30 (0.1720) 1745

SD 15.48 5.14

f2

Mean 30 (42.8809) 4520

SD 145.23 7.58

f6

Mean 30 (17.5345) 5560

SD 50.45 25.36

f10

Mean 2 8002 815.25

SD 35.65 2e�5

f14

Mean 2 (-3.8619) 1120.25

SD 78.45 3:45e�6

f16

Mean 2 320 220.25

SD 1.25 1:15e�4
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4.4 MDBAT and other algorithms

We give the first test in order to investigate the powerful performance of the

proposed MDBAT algorithm by comparing it with four benchmark algorithms

(particle swarm optimization with its variants). Before discussing the comparison

results of all algorithms, we present a brief description about the comparative four

algorithms [21] as follows.

• RWMPSOg RWMPSOg is Random Walk Memetic Particle Swarm Optimization

(with global variant), which combines the particle swarm optimization with

random walk as a direction exploitation.

• RWMPSOl RWMPSOl is Random Walk Memetic Particle Swarm Optimization

(with local variant), which combines the particle swarm optimization with

random walk as a direction exploitation.

• PSOg PSOg is standard particle swarm optimization with global variant without

local search method.

• PSOl PSOl is standard particle swarm optimization with local variant without

local search method.

4.4.1 Comparison between RWMPSOg, RWMPSOl, PSOg, PSOl and MDBAT

We present the comparison results between our MDBAT algorithm and the other

particle swarm optimization algorithms. We test the five comparative algorithms on

9 benchmark functions f1�f9 and report the results in Table 2. We take the results of

the other comparative algorithms from their original papers [21]. In Tables 5, 6 and

7, we report the minimum (min), maximum (max), average (Mean), standard

deviation (SD) and Success rate (%Suc) of the evaluation function values over 50

runs with different population size (SS) 15, 30 and 60, respectively. The run is

successful if the algorithm reaches to the global minimum of the solution within an

error of 10�4 before the 20,000 function evaluation value. We report the best results

between the comparative algorithms in boldface text. The results in Tables 5, 6 and

7 show that the proposed MDBAT algorithm succeeds and obtains the desired

objective value of each function faster than the other algorithms in most cases.

4.4.2 Comparison results between GA-PSO, DE-PSO, AMPSO and MDBAT

We give the second comparison test by comparing the proposed MDBAT with other

four various hybrid PSO algorithms. The first algorithm is a hybrid genetic

algorithm with particle swarm optimization, which is called GA-PSO. The second

algorithm is a hybrid deferential evolution algorithm with PSO algorithm, the

hybrid algorithm is called DE-PSO algorithm. The third and fourth algorithms are a

modified version of PSO including EP based adaptive mutation operator AMPSO1,

AMPSO2 [9]. Before presenting the comparative results between the proposed

MDBAT algorithm and the other four hybrid PSO algorithms, we give a brief

description of each algorithm as follows.
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Table 5 Comparison results of MDBAT and other PSO-based algorithms for problems f1�f9 at SS = 15

Function RWMPSOg RWMPSOl PSOg PSOl MDBAT

f1

Best 5324 6526 6585 6195 1471

Mean 6009.7 7318.3 10,824.8 8467.5 1476.02

Worst 6713 8746 24,060 10,335 1480

SD 342.9 458.6 3408.4 907.7 2.63

Suc 50 50 43 50 50

f2

Best 3233 3814 4830 3795 3452

Mean 9275.5 7679.0 14,898.3 8004.9 3481

Worst 62,928 24,288 84,735 38,940 3490

SD 11,272.3 3846.9 15,417.8 6441.3 3.245

Suc 50 50 36 50 50

f3

Best 4042 2213 2370 2820 1468

Mean 14,212.2 8999.1 3282.3 10,759 1478.88

Worst 43,767 139,085 6105 81,195 1486

SD 9229.6 19,172.8 1109.8 12,830.5 3.47

Suc 33 49 11 45 45

f4

Best 5115 5370 6030 6105 1874

Mean 5956.5 6588.2 8785.9 8006.4 1884.4

Worst 6602 7698 18,885 10,890 1894

SD 344.5 465.4 2567.2 1042.3 484.2

Suc 50 50 29 50 50

f5

Best 4166 2628 1230 45 5453

Mean 17,962.7 21,386.1 7727.4 27,170 5506.86

Worst 70,755 86,842 59,250 117,975 5653

SD 17,727.2 21,344.6 11,973.9 28,745.1 41.85

Suc 50 50 31 45 50

f6

Best 33,726 9844 – 9420 4470

Mean 42,746.1 12,978.2 – 12,733.5 4490

Worst 69,092 27,297 – 39,990 4500

SD 7086.1 2487.5 – 4123.7 6.06

Suc 42 50 0 50 50

f7

Best 1560 1922 1365 2175 2115.23

Mean 2094.3 2685.8 1896.7 2686.2 2303

Worst 3428 3290 2685 3540 2550

SD 458.0 314.6 244.8 312.1 223.45

Suc 50 50 47 50 45
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• GA-PSO The GA-PSO algorithm was proposed by Kao and Zahara [11]. In GA-

PSO, in order to solve a D dimensional problem, the hybrid approach takes 4D

individuals which are randomly generated. These individuals may be regarded

as chromosomes in the case of GA, or as particles in the case of PSO. These 4D

individuals are evaluated and sorted by their fitness, and the top 2D individuals

are fed into the real-coded GA to create 2D new individuals by crossover and

mutation operations. They proposed a random mutation operator for the real-

coded GA to modify an individual with a random number in the problems

domain with a 20% probability. The created new 2D individuals from real-coded

GA are used to adjust the remaining 2D particles by the PSO method.

• DE-PSO The DE-PSO algorithm was proposed by Pant et al. [19]. It starts as a

usual DE algorithm till the trial vector is generated. If the trial vector is better

than the corresponding target vector, then it is included in the population,

otherwise the algorithm enters the PSO phase and generates a new candidate

solution using PSO velocity and position update equations. The method is

iteratively repeated till the optimum value is reached.

• AMPSO The AMPSO algorithm was proposed by Pant et al. [20]. The algorithm

is called adaptive mutation operator particle swarm optimization. Two versions

of AMPSO called AMPSO1 and AMPSO2 are proposed. In AMPSO1, the

personal best particle is mutated, while in AMPSO2 the global best particle is

mutated.

In Table 8, we report the comparative results between the proposed MDBAT

algorithm, GA-PSO, DE-PSO, AMPSO1 and AMPSO2. We take the results of

algorithm GA-PSO, DE-PSO, AMPSO1 and AMPSO2 from [29]. In order to make

a fair comparison, we use the same parameters values as in other four algorithms.

We report the average function evaluation results and the rate of success over 100

runs. We report the best values in boldface text.

Table 5 continued

Function RWMPSOg RWMPSOl PSOg PSOl MDBAT

f8

Best 57145 27995 17,325 15840 3137

Mean 74,845.6 38,248.6 29,893.8 19,353.8 5130.4

Worst 110,259 60,191 41,955 27,060 5276

SD 108,48.2 6308.8 7954.4 2027.4 460.37

Suc 47 49 13 43 30

f9

Best 12,882 12,116 2070 4080 2424

Mean 20,300.4 175,79.2 8546 140,11.7 5176.13

Worst 41,456 28,755 48,555 58,575 5276

SD 5209.8 3315.0 10,426.9 13,167.1 486.45

Suc 49 50 30 45 35
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Table 6 Comparison results of MDBAT and other PSO-based algorithms for problems f1�f9 at SS = 30

Function RWMPSOg RWMPSOl PSOg PSOl MDBAT

f1

Best 7507 10,021 9060 13,200 2917

Mean 8615.2 11,129.9 11,242.3 16,716 2922.4

Worst 9616 12,834 17,850 20,250 2927

SD 492.0 658.5 1508.1 1573.7 2.635

Suc 50 50 47 50 50

f2

Best 4944 7879 6450 7440 5148

Mean 10,534.2 12,220.5 12,469.7 14,337.6 6154

Worst 95,361 20,581 35,100 38,100 6875

SD 13,234.9 2554.3 5877.1 6673.5 739.02

Suc 50 50 29 50 50

f3

Best 6669 4050 3270 3720 2921

Mean 18,234.5 13,815.3 5097.3 16,848 2929.08

Worst 50,466 155,611 8250 141,600 2935

SD 10,670.7 21787.9 1276.8 22,935.6 3.21

Suc 46 50 22 50 46

f4

Best 7062 8379 8280 11,850 3917

Mean 7954.6 9881.4 9718.1 16,132.8 3932.5

Worst 9188 11,880 11,910 20,940 3940

SD 446.5 726.2 914.8 2203.4 3.99

Suc 50 50 47 50 50

f5

Best 265 174 2100 90 8909

Mean 12,425.4 18,300.2 18,210.0 28,363.2 8910

Worst 63,487 113,044 271,350 201,450 8915

SD 9827.5 17,947.4 44,027 38,115.6 5.86

Suc 50 50 37 50 50

f6

Best 50,051 19,879 15,090 17,670 9921

Mean 58,797.6 24,600.1 16,395 24,231.6 9936.98

Worst 69,792 30,381 17,700 45,810 9948

SD 4651.9 2378.5 1305 3791.3 6.47

Suc 48 50 2 50 50

f7

Best 2110 3738 2370 3180 4253

Mean 3412.2 4710.6 3272.4 4657.8 4484.75

Worst 6635 5759 4350 5550 4687

SD 825.8 562.9 336.7 520.9 178.28

Suc 50 50 49 50 46
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The results in Table 8 show that, the proposed MDBAT are better in 9 test cases

out of 11 cases. We can conclude from Fig. 2, that the proposed algorithm is a

promising algorithm and faster than the other algorithms.

4.5 Wilcoxon signed-ranks test

Wilcoxons test is a nonparametric procedure employed in a hypothesis testing

situation involving a design with two samples [10, 24, 39]. It is a pairwise test that

aims to detect significant differences between the behavior of two algorithms. q is

the probability of the null hypothesis being true. The result of the test is returned in

q\0:05 indicates a rejection of the null hypothesis, while q[ 0:05 indicates a

failure to reject the null hypothesis. The Rþ is the sum of positive ranks, while R� is

the sum of negative ranks.

We apply the Wilcoxon signed-ranks test on the results in Tables 5, 6 and 7. In

Tables 9, 10 and 11, we report the comparison by the test between the MDBAT

algorithm and RWMPSOg, RWMPSOl, PSOg and PSOl. Also, we apply the

Wilcoxon signed-ranks test on the results in Table 8 and report the comparison by

test between the MDBAT algorithm and GA-PSO, DE-PSO, AMPSO1, AMPSO2 in

Table12.

The statistical results in Tables 9, 10 and 11 show that the proposed algorithm is

a promising algorithm and outperform the other algorithms.

5 Conclusion and future work

We propose a novel hybrid bat algorithm and multi-directional search algorithm in

order to solve unconstrained global optimization problems. We call the proposed

algorithm by multi-directional bat algorithm (MDBAT). In MDBAT, the standard

bat algorithm starts the search for number of iterations then the multi-directional

Table 6 continued

Function RWMPSOg RWMPSOl PSOg PSOl MDBAT

f8

Best 63,590 32,514 19,110 30,300 2523

Mean 78,764.5 39,916.5 24,277.9 36,608.6 5815.82

Worst 93710 44,470 35,370 42,300 6026

SD 6701.0 2958.3 4173.8 2478.8 752.96

Suc 49 50 19 49 40

f9

Best 22,377 11,422 4740 9570 5654

Mean 34,710.7 19,030.9 17,416.6 21,287.1 6013.6

Worst 50,848 56,181 179,490 97,830 6040

SD 5818.2 8005.8 29,615.7 19,328.5 62.62

Suc 50 50 38 49 40
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Table 7 Comparison results of MDBAT and other PSO-based algorithms for problems f1�f9 at SS = 60

Function RWMPSOg RWMPSOl PSOg PSOl MDBAT

f1

Best 11,757 16,116 14,280 24,780 5816

Mean 13,604.3 18,208.7 16,360.0 34,054.8 5819.78

Worst 15,153 20,323 19,140 40,920 5827

SD 660 947.2 933.3 3769.3 2.15

Suc 50 50 48 50 50

f2

Best 6915 10,458 8880 14,040 8145

Mean 15,515.3 20,687.0 264,200 26,443.2 8503.25

Worst 54,052 37,905 156,900 76,740 9145

SD 20,835.7 5662.9 27,337.6 10,755 450.06

Suc 50 50 39 50 50

f3

Best 6812 4622 5340 10,020 5825

Mean 19,494.8 16,489.6 10,042.5 24,465.6 5827.28

Worst 80,063 75,139 22,860 58,560 5833

SD 15,016.4 12,050.7 3103.7 9765 3.54

Suc 50 50 40 50 44

f4

Best 10,488 14,520 12,240 23,520 5821

Mean 12,142.2 16,858.4 14,891.0 31,506 5832

Worst 13,876 21,845 18,360 39,600 5383

SD 786.7 1417.6 1176.4 3796.8 4.09

Suc 50 50 49 50 40

f5

Best 4826 271 3120 180 10,809

Mean 11,019.3 18,080.2 11,877.3 27,240 10,810

Worst 37,069 56,900 66,600 135,960 10,815

SD 6057.7 12,403.9 12,168.4 27,689.4 1.90

Suc 50 50 44 50 50

f6

Best 69,607 36,395 21,840 39,120 15,882

Mean 79,473.6 48,110.9 25,116 47,902.8 15,835.12

Worst 95,133 59,773 30,300 60,420 15,843

SD 5080.0 5710.3 2171.2 4924.5 5.52

Suc 50 50 20 50 50

f7

Best 4569 7230 4620 7020 8005

Mean 5781.5 8765.1 5616 8769.6 8010.1

Worst 8238 10001 6720 10800 8045

SD 629.4 739.1 401.1 714.3 8.29

Suc 50 50 50 50 45
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search starts the search from the best obtained solution from the bat algorithm. The

hybridization between the bat algorithm and multi-directional search can accelerate

the convergence instead of letting the algorithm runs for more iterations without any

improvements. We apply the standard bat algorithm without combining it with the

multi-directional search algorithm and the proposed algorithm on six functions

which are randomly selected. Also, we report the mean and the standard deviation

over 50 runs. We consider the run is successful if the algorithm reaches to the global

minimum of the solution within an error of 10�4 before the 20,000 function

evaluation value. If any algorithm fails to obtain the desired function value, then we

report the value of best obtained function value in parentheses. Further, we show

that the combination between the standard bat algorithm and the multi-directional

search can accelerate the search and obtain the desired function values for all test

functions faster than the standard bat algorithm which needs more iterations in order

to obtain the desired function values.

We verify the robustness and the effectiveness of the proposed algorithm by

applying it on 16 unconstrained global optimization problems and compare it

against 8 various particle swarm optimization algorithms, namely, random walk

memetic particle swarm optimization (with global and local variants), standard

particle swarm optimization with global and variants with local search method,

adaptive mutation operator particle swarm optimization, genetic algorithm with

PSO, and differential evaluation with PSO.

Finally, the experimental results show that the proposed algorithm is a promising

algorithm and has a powerful ability to solve unconstrained optimization problems

faster than other algorithms in most cases.

Our future work is concentrated on the following directions:

• Apply the proposed algorithms on solving constrained optimization and

engineering problems [1] such as design of a tension/compression spring [5],

Table 7 continued

Function RWMPSOg RWMPSOl PSOg PSOl MDBAT

f8

Best 77,465 62,821 26,100 64,080 5914

Mean 89,876.7 74,476.9 30,172.7 74,986.8 7305.08

Worst 106,207 83,195 33,840 120,360 7526

SD 7017.4 5460.9 1770.7 7833 382.89

Suc 49 50 33 50 42

f9

Best 34,611 8951 6300 17,280 7247

Mean 54,114.9 20,441.7 39,581.1 25,918.8 7520.42

Worst 144,452 74,149 427,680 59,520 7526

SD 19,734.5 13,287.7 91,879.1 6634.4 39.45

Suc 50 50 38 50 43
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design of a welded beam [22], design of a gear train [23], and design of a

pressure vessel [23].

• Modify our proposed algorithm in order to solve other combinatorial problems,

large scale integer programming and minimax problems [2, 3, 26].

Table 8 Mean error of the function values of GA-PSO, DE-PSO, AMPSO1, AMPSO2 and MDBAT

algorithms

Function D Mean GA-PSO DE-PSO AMPSO1 AMPSO2 MDBAT

f1 2 Function evaluation 206 938 980 620 116.74

Error 0.0004 1:67e�5 4:23e�5 3:34e�5 4.84e27

Success rate% 100 100 100 100 100

f2 2 Function evaluation 140,894 2351 2668 2750 120

Error 0.00064 2:46e�5 2:16e�5 3:03e�5 0.00

Success rate% 100 100 100 100 100

f10 2 Function evaluation 25,706 1155 1120 1196 740.88

Error 0.00012 3:67e�5 3:81e�8 9.89e26
6:6e�6

Success rate% 100 100 100 100 100

f11 2 Function evaluation 8254 1148 754 2778 662.4

Error 0.00009 2:29e�6 1:52e�5 1:49e�5 2.23e26

Success rate% 100 100 100 100 100

f12 2 Function evaluation 96,211 3689 2132 2146 775.2

Error 0.00007 3:03e�6 1:72e�5 2.54e27
1:45e�6

Success rate% 100 100 100 100 100

f13 2 Function evaluation 809 1792 1258 1432 623.26

Error 0.00003 1:67e�5 4:10e�5 3:71e�5 4.23e26

Success rate% 100 100 100 100 100

f14 3 Function evaluation 2117 1059 1020 1132 981.22

Error 0.00020 1:74e�5 1:96e�5 2:04e�5 2.48e25

Success rate% 100 100 100 100 100

f15 2 Function evaluation 174 928 622 679 791.1

Error 0.00001 1:11e�5 1.17e26
2:64e�5 7:47e�5

Success rate% 100 100 100 100 100

f16 2 Function evaluation 95 834 756 780 184

Error 0.00005 1:12e�5 2:54e�5 2:61e�6 6.82e29

Success rate% 100 100 100 100 100

f16 5 Function evaluation 398 2677 1992 2018 381

Error 0.00000 3:49e�5 3:44e�5 5:07e�5 2.75e210

Success rate% 100 100 100 100 100

f16 10 Function evaluation 872 7258 5980 6218 671

Error 0.00000 6:91e�5 7:41e�5 9:11e�5 3.96e211

Success rate% 100 100 100 100 100
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• Modify our proposed algorithm to solve large scale unconstrained global

optimization problems and molecular potential energy function as done by the

authors of this paper in [4, 27].
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Table 9 Wilcoxon test for

comparison results in Table 5
Compared methods Solution evaluations

Method 1 Method 2 R� Rþ q-value Best method

MDBAT RWMPSOg 1 44 0.010862 MDBAT

MDBAT RWMPSOl 0 45 0.007686 MDBAT

MDBAT PSOg 1 35 0.017290 MDBAT

MDBAT PSOl 0 45 0.007686 MDBAT

Table 10 Wilcoxon test for

comparison results in Table 6
Compared methods Solution evaluations

Method 1 Method 2 R� Rþ q-value Best method

MDBAT RWMPSOg 1 44 0.010862 MDBAT

MDBAT RWMPSOl 0 45 0.007686 MDBAT

MDBAT PSOg 1 44 0.010862 MDBAT

MDBAT PSOl 0 45 0.007686 MDBAT

Table 11 Wilcoxon test for

comparison results in Table 7
Compared methods Solution evaluations

Method 1 Method 2 R� Rþ q-value Best method

MDBAT RWMPSOg 0 45 0.007686 MDBAT

MDBAT RWMPSOl 0 45 0.007686 MDBAT

MDBAT PSOg 0 45 0.007686 MDBAT

MDBAT PSOl 0 45 0.007686 MDBAT

Table 12 Wilcoxon test for

comparison results in Table 8
Compared methods Solution evaluations

Method 1 Method 2 R� Rþ q-value Best method

MDBAT GA-PSO 8 58 0.026231 MDBAT

MDBAT DE-PSO 0 66 0.003346 MDBAT

MDBAT AMPSO1 10 56 0.040860 MDBAT

MDBAT AMPSO2 1 65 0.004439 MDBAT
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