
THEORETICAL ARTICLE

A revisit to queueing-inventory system with reservation,
cancellation and common life time

A. Krishnamoorthy1 • Binitha Benny2 •

Dhanya Shajin1

Accepted: 2 August 2016 / Published online: 19 August 2016

� Operational Research Society of India 2016

Abstract In this paper we consider a single server queueing-inventory system having

capacity to store S items which have a common-life time (CLT), exponentially dis-

tributed with parameter c. On realization of CLT a replenishment order is placed so

as to bring the inventory level back to S, the lead time of which follows exponential

distribution with parameter b. Items remaining are discarded on realization of CLT .

Customers waiting in the system stay back on realization of common life time.

Reservation of items and cancellation of sold items before its expiry time is per-

mitted. Cancellation takes place according to an exponentially distributed inter-

occurrence time with parameter ih when there are ðS� iÞ items in the inventory. In

this paper we assume that the time required to cancel the reservation is negligible.

Customers arrive according to a Poisson process of rate k and service time follows

exponential distribution with parameter l. The main assumption that no customer

joins the system when inventory level is zero leads to a product form solution of the

system state distribution. Several system performance measures are obtained.
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1 Introduction

It is common to purchase an item in the inventory and later cancel (return) it. We shall

refer purchase of an item from inventory as reservation (for example, reservation of a

seat in bus/train/flight for a future journey). Sometimes the purchased item may be

returned. We call this as cancellation (for example, canceling a reserved seat). Each

item on hand may have an expiry date which in some cases is common to all. Several

examples can be cited: batch of medicines that were manufactured together have a

common expiry date; once a bus/train/flight departs the vacant seats have no use,

those could not board the transport system before departure miss it. In this paper we

study a queueing inventory process consisting of S items which have expiry time,

called common life time where reservation of items and cancellation of sold items

within the expiry time is allowed. The common life time (CLT) of items is

exponentially distributed with parameter c, on realization of which the remaining

items are discarded, but the waiting customers stay back in the system. Cancellation

and reservation are permitted as long as common life time is not realized. Inter-

cancellation time follows exponential distribution with parameter depending on the

number of items in reservation list at that moment. Time required to cancel a

reservation is assumed to be negligible. Demands for the item form a Poisson

process of rate k; one unit of item is supplied to a customer at the end of the service.

The service time follows exponential distribution with parameter l.

Queueing-inventory models (inventory with positive service time) is introduced by

Sigman and Simchi-Levy [11]. It was followed by several researchers. A survey of work

in this area is given in Krishnamoorthy et al. [4]. Among these certain significant

contributions in stochastic decomposition could be found (see Schwarz et al. [9], Saffari

et al. [8], Krishnamoorthy and Viswanath [5]). A new class of stochastic network that

exhibit a product form steady state distribution was investigated by Schwarz et al. [10].

The stochastic networks developed there are integrated models for networks of service

stations and inventories. They assume that though the server with attached inventory

does not accept new customer when the inventory is depleted, lost sales are not lost to

the system. A necessary and sufficient condition for a product form steady state

distribution of joint queueing environment process which has applications in inventory

theory is given by Krenzler and Daduna [2]. A product form steady state distribution for

queueing inventory process where service system and random environment interact in

both directions is derived in Krenzler and Daduna [1]. Discrete time (s, S) inventory

model in which the stored items have a random common life time with a discrete phase

type distribution where demands arrive in batches following a discrete phase type

renewal process is considered by Lian et al. [6]

Queueing inventory with reservation, cancellation, common life time and retrial

is introduced by Krishnamoorthy et al. [3]. They assumed that a customer on arrival

to an idle server with at least one item in inventory is immediately taken for service

OPSEARCH (2017) 54:336–350 337

123



or else he joins the buffer of varying size depending on the number of items in the

inventory. If there is no item in the inventory the arriving customer first queue up in

a finite waiting space of capacity K. When it overflows an arrival goes to an orbit of

infinite capacity with probability p or is lost forever with probability 1 � p. From

the orbit he retries for service. However, they fail to produce a product form

solution. For the model discussed in the present paper we do away with the buffer,

waiting space and orbit; instead a single queue is considered. This is at the expense

of loss of some crucial information - the finite waiting list is gone and is replaced by

the number in the waiting room at any time. Nevertheless, under the crucial

assumption that no customer joins the system when inventory level is zero, we

establish the stochastic decomposition property of the system state.

The rest of the paper is arranged as follows. Mathematical formulation is taken

up in Sect. 2. Section 3 provides the steady state analysis of the model. Some

important performance measures are derived in this section. Numerical examples

and optimization problems are discussed in Sect. 4.

Some notations and abbreviations used in the sequel:

• 0� : Inventory level on common life time realization but before the

replenishment.

• e = Column vector of 10s of appropriate order.

• CTMC : Continuous Time Markov Chain.

• LIQBD : Level Independent Quasi-Birth and Death Process.

• CLT : Common Life Time

2 Mathematical formulation

We consider a single server queueing-inventory system consisting of a homoge-

neous item having a CLT . The time duration from the epoch at which we start with

maximum inventory level S at a replenishment epoch, to the moment when the CLT

is realized is called a cycle. The CLT of items is exponentially distributed with

parameter c. On realization of CLT customers waiting in the system stay back in the

system. When CLT is reached a replenishment order is placed, which is realized on

completion of a positive lead time that is exponentially distributed with parameter b.

Reservation of items and cancellation of sold items before the CLT realization is

permitted. Cancellation takes place according to an exponentially distributed inter-

occurrence time with parameter ih, when ðS� iÞ items present in the inventory.

Through cancellation of purchased item, inventory gets added to the existing one;

nevertheless, inventory level will not go above S (the sum of items in sold list and

those in store equal to S). The customers arrive according to a Poisson process of

rate k. Each customer requires a single homogeneous item, having a random

duration of service time which follows an exponential distribution with parameter l.

No customer joins the system when inventory level is zero.

The above system is modelled as a continuous time Markov chain C ¼
fðNðtÞ; IðtÞÞ; t� 0g with state space fðn; 0�Þ; n� 0g

S
fðn; iÞ; n� 0; 0� i� Sg

where N(t) = Number of customers at time t and I(t) = Number of items in the

inventory at that time. The transitions in the Markov Chain are
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• Transitions due to arrival:

(n, i) ! ðnþ 1; iÞ at the rate k for n � 0, 1 � i � S

• Transitions due to service completions:

(n, i) ! ðn� 1; i� 1Þ at the rate l for n � 1, 1 � i � S

• Transitions due to common life time realization:

(n, i) ! ðn; 0�Þ at the rate c for n � 0, 0 � i � S

• First transition that is counted after CLT is realized (which is due to

replenishment):

ðn; 0�Þ ! (n, S) at the rate b for n � 0

• Transition due to cancellation:

(n, i) ! ðn; iþ 1Þ at the rate ðS� iÞh for n � 0, 0 � i � S� 1

The infinitesimal generator of C with entries governed as described above is

Q ¼

B A0

A2 A1 A0

A2 A1 A0

A2 A1 A0

. .
. . .

. . .
.

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

:

where B contains transitions within level 0; A0 represents transitions from n to nþ 1

for n� 0, A1 represents transitions within n for n� 1 and A2 represents transitions

from n to n� 1 for n� 1. All these are square matrices of order Sþ 2.

with bS ¼�ðcþ ShÞ;bi ¼�ðkþ ihþ cÞ;ai ¼�ðkþ lþ ihþ cÞ for 0� i�S� 1.
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2.1 Stability condition

To establish the stability condition, we consider the Markov chain {I(t),t� 0},

where I(t) is as defined earlier with state space given by {0; 1; 2; . . .S; 0�}. Let / =

ð/0;/1; . . .;/S;/
�
0Þ be the steady-state probability vector of this Markov chain. Its

infinitesimal generator is A ¼ ðA0 þ A1 þ A2Þ ¼

with bS ¼ �ðcþ ShÞ; b0i ¼ �ðlþ ihþ cÞ for 0 � i � S� 1.

Then / satisfies the equations

/A ¼ 0; /e ¼ 1: ð1Þ

The components of / are obtained as

/i ¼
Vi/0 1� i� S

V�
0/0 i ¼ 0�

�

where

Vi ¼

1 i ¼ 0
cþ Sh

l
i ¼ 1

cþ lþ ðS� ði� 1ÞÞhð ÞVi�1 � S� ði� 2ÞÞhð ÞVi�2

l
2� i� S

c
b

XS

i¼0

Vi i ¼ 0�

8
>>>>>>>>>><

>>>>>>>>>>:

The unknown probability /0 can be found from the normalizing condition /e ¼ 1
as

/0 ¼
XS

i¼0

Vi þ V�
0

 !�1

: ð2Þ

The LIQBD description of the model indicates that the queueing-inventory system is

stable (see Neuts [7]) if and only if the left drift exceeds that of right drift. That is,

/A0e\/A2e ð3Þ

which on simplification gives the stability condition as
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k\l: ð4Þ

This leads to

Lemma 2.1 The process C= {ðNðtÞ; IðtÞÞ; t� 0} is stable if and only if k\l.

3 Steady-state analysis

For finding the steady state vector of the process C, we first consider an inventory

system with negligible service time and no backlog of demands. The corresponding

Markov chain may be defined as ~C = {I(t), t� 0} where I(t) has the same definition

as described in Sect. 2. Its infinitesimal generator is given by

Let p ¼ ðp0; p1; p2; . . .; pS; p�0Þ be the steady state vector of the process ~C. Then p

satisfies the equations

pH ¼ 0; pe ¼ 1: ð5Þ

Then the components of p can be obtained as

pi ¼
Uip0 1� i� S

U�
0p0 i ¼ 0�

�

where

Ui ¼

1 i ¼ 0
cþ Sh

k
i ¼ 1

cþ kþ ðS� ði� 1ÞÞhð ÞUi�1 � S� ði� 2ÞÞhð ÞUi�2

k
2� i� S

c
b

XS

i¼0
Ui i ¼ 0�

8
>>>>>>>><

>>>>>>>>:

The unknown probability p0 can be found from the normalizing condition pe ¼ 1
as

p0 ¼
XS

i¼0

Ui þ U�
0

 !�1

: ð6Þ
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Assuming that (4) is satisfied, we compute the steady state probability of the

original system. Let x denote the steady-state probability vector of this system. Then

xQ ¼ 0; xe ¼ 1: ð7Þ

Partitioning x as x ¼ ðx0; x1; x2; . . .Þ where xi ¼ ðxið0Þ; xið1Þ; :::xiðSÞ; xið0�ÞÞ, for

i� 0.Then by (7) we get

x0Bþ x1A2 ¼ 0; ð8Þ

xiA0 þ xiþ1A1 þ xiþ2A2 ¼ 0; i� 0: ð9Þ

We produce a solution of the form

xi ¼ K
k
l

� �i

p; i� 0 ð10Þ

where K is a constant to be determined. With these xi substituted in xQ ¼ 0 we get

x0Bþ x1A2 ¼ Kp Bþ k
l
A2

� �

¼ KpH ¼ 0;

xiA0 þ xiþ1A1 þ xiþ2A2 ¼ K
k
l

� �iþ1

p Bþ k
l
A2

� �

¼ K
k
l

� �iþ1

pH ¼ 0:

Thus we can see that (10) satisfy the Eqs. (8) and (9). Now applying the normalizing

condition xe = 1 we get

K 1 þ k
l

� �

þ k
l

� �2

þ:::

 !

¼ 1:

Hence under the condition k\l we have K ¼ 1 � k
l.

Thus under the condition that k\l, the steady state probability vector of the

process C with generator matrix Q is given by x ¼ ðx0; x1; x2; . . .Þ, where

xi ¼ K
k
l

� �i

p; i� 0 ð11Þ

where

K ¼ 1 � k
l
; ð12Þ

and conversely. Thus, the system state distribution under the stability condition is

the product of marginal distributions of the number of customers in an M / M / 1

system and the number of items in the inventory.

Now we look at a few of the system characteristics that throw light on the

performance of the system.
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3.1 Performance measures

1. Expected number of customers in the system, EC ¼ k
l� k

2. Expected number of item in the inventory, EI ¼
XS

i¼1
ipi

3. Expected cancellation rate, ECR ¼
XS

i¼0

ðS� iÞhpi

4. Expected number of cancellation, ECN ¼
PS

i¼0ðS� iÞhpi
c

5. Expected inventory purchase rate by customers, EPR ¼ k
XS

i¼1
pi

6. Expected number of inventory purchased by customers in a cycle,

EPN ¼ k
PS

i¼1 pi
c

7. Expected loss rate of customers, EL ¼ kp0

8. Probability that all items are in sold list before CLT realization, Pvacant ¼ p0

9. Probability that all items are in the system before CLT realization, Pfull ¼ pS

3.2 Expected sojourn time in zero inventory level in a cycle
before realization of CLT

This is the expected time during which the system stays with no inventory. We

derive this for a finite capacity system. For that consider the Markov Chain

{ðNðtÞ; IðtÞÞ;t� 0}. The state space is {ðn; 0Þ;0� n�K}
S

{D} where {D} denotes

the absorbing state of the Markov chain which is realization of CLT or cancellation

and K is the maximum number of customers accommodated in the system. Its

infinitesimal generator is of the form

H1 ¼ T T0

0 0

� �

where T =

Thus expected sojourn time in zero inventory level, E0
T ¼ �aKT

�1e where

aK ¼ ðx0ð0Þ; x1ð0Þ; . . .; xKð0ÞÞ. Expected number of visits ¼ lq
c p1. Thus the

expected sojourn time in zero inventory level in a cycle ¼ lq
c p1ð�aKT�1eÞ.
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3.3 Expected sojourn time in maximum inventory level S in a cycle
before realization of CLT

This is the expected time system stays with maximum inventory. Here also

derivation is done in case of finite number of customers. For that consider the

Markov Chain {ðNðtÞ; IðtÞÞ; t� 0}. The state space is {ðn; SÞ; 0� n�K}
S

{D},

where {D} denotes the absorbing state of the Markov chain which represents

realization of CLT or service completion. Its infinitesimal generator is of the form

H2 ¼ T1 T0
1

0 0

� �

where

Thus the expected sojourn time in maximum inventory level, ES
T1

¼ �aKT�1
1 e

where aK ¼ ðx0ðSÞ; x1ðSÞ; . . .; xKðSÞÞ and expected number of visits to S ¼ h
c pS�1.

Thus, expected sojourn time in maximum inventory level in a cycle

¼ ð�aKT�1
1 eÞ hc pS�1.

4 Numerical illustration

In this section we provide numerical illustration of the system performance with

variation in values of underlying parameters.

4.1 Effect of k on various performance measures

Table 1 indicates that increase in k value makes increase in expected number of

customers in the system, expected loss rate, expected purchase rate, expected

cancellation rate. As k increases there is a decrease in the expected number of items

in the inventory. Also, as k increases probability that all items are in the sold list

prior to realization of CLT increases and probability that all items are in the system

just prior to realization of CLT decreases. These are all natural consequences as

arrival rate increases.
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4.1.1 Effect of the service rate l

Table 2 indicates that increase in l value decreases the expected number of

customers and expected loss rate of customers in the system. As service rate

increases it is natural that loss rate of customers and expected number of customers

in the system decreases. As l increases expected number of items in the inventory

shows a decreasing tendency first and then it increases. This could be attributed to

the increase in cancellation of purchased items. Expected purchase rate increases,

which is on expected lines. However expected cancellation rate increases first and

then decreases as l value increases. The initial increase in cancellation rate is due to

large number of purchases taking place consequent to increasing value of l;

however with further increase in value of l, the traffic intensity decreases and so the

number of actual purchase decreases, which in turn results in the decrease of the rate

of cancellations. Probability for all items in sold list prior to CLT realization

decreases and probability for all items in system also decreases.

4.1.2 Effect of common life time parameter c

In Table 3, there are few surprises. These are in the behaviour of EI , ECR and EPR

with increase in value of c. Increase in c means the CLT realization is faster. We

observe that as c increases there is a decrease in expected number of items in the

inventory, expected loss rate of customers. Shorter the CLT , lesser will be the

purchase rate, so cancellation rate also decreases. Also, we observe that as CLT

Table 1 Effect of k: fix S ¼ 20; h ¼ 3;l ¼ 15; c ¼ 0:1; b ¼ 2

k EC EI EL ECR EPR Pvacant Pfull

9 1.4992 16.2817 1:3246 � 10�6 8.2979 8.5697 1:4717 � 10�7 0.0602

10 1.9946 15.9726 6:1139 � 10�6 9.2258 9.5154 6:1139 � 10�7 0.0459

11 2.7185 15.6629 2:1047 � 10�5 10.1563 10.4442 1:9133 � 10�6 0.0355

12 3.8342 15.3587 5:5471 � 10�5 11.0717 11.3313 4:6226 � 10�6 0.0280

13 5.6433 15.0756 1:1340 � 10�4 11.9242 12.1367 8:7234 � 10�6 0.0229

Table 2 Effect of l: S ¼ 20; h ¼ 3; k ¼ 11; c ¼ 0:1;b ¼ 2

l EC EI EL ECR EPR Pvacant Pfull

12 7.7781 15.7020 8:3553 � 10�5 10.0471 10.1282 7:5957 � 10�6 0.0380

13 4.9860 15.6684 6:0072 � 10�5 10.1447 10.3136 5:4611 � 10�6 0.0364

14 3.5499 15.6618 3:7134 � 10�5 10.1616 10.4034 3:3759 � 10�6 0.0357

15 2.7185 15.6629 2:1047 � 10�5 10.1563 10.4442 1:9133 � 10�6 0.0355

16 2.1905 15.6665 1:1363 � 10�5 10.1490 10.4622 1:0330 � 10�6 0.0354

17 1.8302 15.6665 5:9801 � 10�6 10.1440 10.4700 5:4364 � 10�7 0.0353
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realization decreases probability that all items are in sold list just prior to CLT

realization decreases and probability that all items are in system prior to CLT

realization increases.

4.1.3 Effect of cancellation rate h

Table 4, shows that as cancellation rate increases expected number of customers in

the system initially show a slight increase and then it remains constant. Expected

number of items in the inventory and expected cancellation rate show an upward

trend, which is a consequence of increasing value of h. Expected purchase rate

increases first and then remains constant and expected loss rate of customers

decrease with respect to increase in h. Also, we observe that as cancellation rate

increases probability that all items are in sold list just prior to CLT realization

decreases and probability that all items are in system just prior to CLT realization

increases.This tendency is a consequence of higher cancellation rate for the same

CLT parameter value.

4.1.4 Effect of replenishment rate b

From Table 5, we observe that as replenishment rate increases expected number of

customers in the system show a slight decreasing tendency and expected loss rate of

customers increase. There is an increase in expected number of items in the

inventory, expected cancellation rate, expected purchase rate. Also, we observe that

Table 3 Effect of c: S ¼ 20; h ¼ 3; k ¼ 11;l ¼ 13;b ¼ 2

c EC EI EL ECR EPR Pvacant Pfull

0.1 4.9860 15.6684 6:0072 � 10�5 10.1447 10.3136 5:4611 � 10�6 0.0364

0.2 4.9865 15.0569 5:6983 � 10�5 9.3877 9.8460 5:1803 � 10�6 0.0449

0.3 4.9871 14.4928 5:4177 � 10�5 8.7134 9.4188 4:9251 � 10�6 0.0524

0.4 4.9875 13.9706 5:1615 � 10�5 8.1101 9.0272 4:6923 � 10�6 0.0590

0.5 4.9880 13.4857 4:9268 � 10�5 7.5680 8.6669 4:4789 � 10�6 0.0648

0.6 4.9884 13.0342 4:7109 � 10�5 7.0791 8.3342 4:2827 � 10�6 0.0699

Table 4 Effect of h: S ¼ 20; c ¼ 0:1; k ¼ 11;l ¼ 13;b ¼ 2

h EC EI EL ECR EPR Pvacant Pfull

1 4.9854 9.7793 0.0278 9.2706 10.2863 0.0025 0.0099

2 4.9859 14.0978 1:5007 � 10�4 9.9043 10.3136 1:3643 � 10�5 0.0153

3 4.9860 15.6684 6:0072 � 10�5 10.1447 10.3136 5:4611 � 10�6 0.0364

4 4.9860 16.4797 3:4360 � 10�5 10.2809 10.3137 3:1236 � 10�6 0.0726

5 4.9860 16.9753 2:3040 � 10�5 10.3736 10.3137 2:0946 � 10�6 0.1165

6 4.9860 17.3093 1:7012 � 10�5 10.4440 10.3137 1:5466 � 10�6 0.1624
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as replenishment rate increases probability that all items are in sold list just prior to

CLT realization and probability that all items are in system just prior to CLT

realization increases.

4.2 Optimization problem

Based on the above performance measures we construct a cost function to check the

maximality of profit function.

We define a revenue function as RF as

RF ¼ C1EPR þ C2ECR � hIEI � hCEC

¼ p0 C1k
XS

1¼1

Ui þ C2

XS�1

i¼0

ðS� iÞhUi � hI
XS

i¼1

iUi

( )

� hC
k

l� k

where

• C1 = revenue to the system due to per unit purchase of item in the inventory

• C2 = revenue to the system due to per unit cancellation of inventory purchased

• hI = holding cost per unit time per item in the inventory

• hC = holding cost of customer per unit per unit time

In order to study the variation in different parameters on profit function we first

fix the costs C1 ¼ $150;C2 ¼ $50; hI ¼ $20; hC ¼ $5.

4.2.1 Effect of variation in S, c and h on RF

Table 6 shows that the change in revenue function with respect to S and h (see

Fig. 1). The revenue function increases first with h and then keep going down. It

may be noted that cancellation to some extent prior to common life realization

results in higher profit to the system since there is a cancellation penalty imposed on

the customer. As common life time realization decreases profit becomes less. This is

due to lower cancellation rate. Table 7 shows that the change in revenue function

Table 5 Effect of b: S ¼ 20; h ¼ 3; k ¼ 11;l ¼ 13; c ¼ 0:1

b EC EI EL ECR EPR Pvacant Pfull

1 4.9865 14.9579 5:720 � 10�5 9.6846 9.8460 5:2001 � 10�6 0.0347

2 4.9860 15.6684 6:0072 � 10�5 10.1447 10.3136 5:4611 � 10�6 0.0364

3 4.9858 15.9205 6:1094 � 10�5 10.3079 10.4796 5:5540 � 10�6 0.0370

4 4.9857 16.0496 6:1618 � 10�5 10.3915 10.5646 5:6017 � 10�6 0.0373

5 4.9856 16.1281 6:1937 � 10�5 10.4423 10.6162 5:6306 � 10�6 0.0374

6 4.9856 16.1808 6:2151 � 10�5 10.4764 10.6509 5:6501 � 10�6 0.0376
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with respect to S and c (see Fig. 2) keeping rate of cancellation a constant. Table 8

shows the change in revenue function with respect to c and h (Fig. 3).

5 Conclusion

We analyzed an inventory system with reservation and CLT for inventory.

Purchased items could be returned before expiry of CLT . The CLT of items is

exponentially distributed. On realization of CLT customers waiting in the system

Table 6 Effect of S and h. Fix k ¼ 11; l ¼ 13; c ¼ 0:1; b ¼ 2

S # h ! 1 1.5 2 2.5 3 3.5 4

10 1511.2 1789.9 1882.4 1904.6 1906.8 1904.3 1901.2

11 1602 1835.4 1890.2 1895.8 1892.1 1887.6 1883.7

12 1677 1859.5 1885.2 1881.5 1875.2 1869.9 1865.8

13 1735.7 1867.3 1873.1 1864.7 1857.4 1851.9 1847.8

14 1778.6 1863.9 1857.5 1847.1 1839.4 1833.9 1829.8

15 1806.7 1853.5 1840.4 1829.1 1821.4 1815.8 1811.7

16 1882 1839.1 1822.6 1811.1 1803.3 1797.8 1793.7

Table 7 Effect of c and S. Fix k ¼ 11; l ¼ 13;b ¼ 2; h ¼ 2

S # c ! 0.1 0.15 0.2 0.25 0.3 0.35 0.4

10 1882.4 1828.1 1776.7 1728 1681.6 1637.6 1595.6

11 1890.2 1834.5 1781.7 1731.7 1684.2 1639.2 1596.4

12 1885.2 1828.5 1775.5 1725 1677.1 1631.7 1588.6

13 1873.1 1816.6 1763.2 1712.7 1664.8 1619.4 1576.3

14 1857.5 1801.2 1748 1697.7 1650 1604.8 1561.8

15 1840.4 1784.4 1731.5 1681.4 1634.1 1589.1 1546.5

16 1822.6 1767 1714.4 1664.7 1617.7 1573.1 1530.7

Table 8 Effect of h and c. Fix

S ¼ 15 k ¼ 11;l ¼ 13;b ¼ 2
c # h ! 1 1.5 2 2.5 3

0.1 1806.7 1747.2 1691.3 1638.8 1589.4

0.15 1853.5 1793.3 1736.7 1683.5 1633.3

0.2 1840.4 1784.4 1731.5 1681.4 1634.1

0.25 1829.1 1776 1725.7 1677.9 1632.6

0.3 1821.4 1770.2 1721.6 1675.4 1631.4

0.35 1815.8 1766.0 1718.7 1673.6 1630.7

0.4 1811.7 1763 1716.6 1672.4 1630.3
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stay back. When CLT is reached a replenishment order is placed, lead time of

which follows exponential distribution. No new arrival joins when inventory level

is zero. This leads to a product form solution. Under stability condition we

computed the long run system state distribution. These are in turn used for

computing several system performance measures. Expected sojourn time in
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maximum inventory level and zero inventory level in a cycle are derived. An

optimization of a revenue function is also done numerically.

We propose to examine whether a product form solution exist for a queueing-

inventory system with finite capacity.

Acknowledgments The authors thank the referee(s) for their critical comments/suggestions which

helped in improving the presentation of the paper.

References

1. Krenzler, R., Daduna, H.: Loss systems in a random environment steady-state analysis. Queueing

Syst. (2014). doi:10.1007/s11134-014-9426-6

2. Krenzler, R., Daduna, H.: Loss systems in a random environment-embedded Markov chains analysis,

1–54. http://preprint.math.unihamburg.de/public/papers/prst/prst2013-02 (2013)

3. Krishnamoorthy, A., Shajin, D., Lakshmy, B.: On a queueing-inventory with reservation, cancella-

tion, common life time and retrial. Ann. Oper. Res. (2015). doi:10.1007/s10479-015-1849-x

4. Krishnamoorthy, A., Lakshmy, B., Manikandan, R.: A survey on inventory models with positive

service time. Opsearch 48(2), 153–169 (2011)

5. Krishnamoorthy, A., Viswanath, N.C.: Stochastic decomposition in production inventory with service

time. EJOR (2013). doi:10.1016/j.ejor.2013.01.041

6. Lian, Z., Liu, L., Neuts, M.F.: A discrete-time model for common lifetime inventory systems. Math.

Oper. Res. 30(3), 718–732 (2005)

7. Neuts, M.F.: Matrix-geometric solutions in stochastic models: an algorithmic approach. The Johns

Hopkins University Press, Baltimore (1981). [1994 version is Dover Edition]

8. Saffari, M., Asmussen, S., Haji, R.: The M/M/1 queue with inventory, lost sale and general lead

times. Queueing Syst. (2013). doi:10.1007/s11134-012-9337-3

9. Schwarz, M., Sauer, C., Daduna, H., Kulik, R., Szekli, R.: M/M/1 queueing systems with inventory.

Queueing Syst. 54, 55–78 (2006)

10. Schwarz, M., Wichelhaus, C., Daduna, H.: Product form models for queueing networks with an

inventory. Stoch. Models 23(4), 627–663 (2007)

11. Sigman, K., Simchi-Levi, D.: Light traffic heuristic for an M/G/1 queue with limited inventory. Ann.

OR 40, 371–380 (1992)

1
2

3
4

5

0
2

4
6

8
1500

1600

1700

1800

1900

θ
γ

R
F

Fig. 3 Effect of c and h

350 OPSEARCH (2017) 54:336–350

123

http://dx.doi.org/10.1007/s11134-014-9426-6
http://preprint.math.unihamburg.de/public/papers/prst/prst2013-02
http://dx.doi.org/10.1007/s10479-015-1849-x
http://dx.doi.org/10.1016/j.ejor.2013.01.041
http://dx.doi.org/10.1007/s11134-012-9337-3

	A revisit to queueing-inventory system with reservation, cancellation and common life time
	Abstract
	Introduction
	Mathematical formulation
	Stability condition

	Steady-state analysis
	 Performance measures
	Expected sojourn time in zero inventory level in a cycle before realization of {{\textit{CLT}}}
	Expected sojourn time in maximum inventory level S in a cycle before realization of {{\textit{CLT}}}

	Numerical illustration
	Effect of \lambda on various performance measures
	Effect of the service rate \mu
	Effect of common life time parameter \gamma
	Effect of cancellation rate \theta
	Effect of replenishment rate \beta

	Optimization problem
	Effect of variation in S, \gamma and \theta on {\mathcal {RF}}


	Conclusion
	Acknowledgments
	References




