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Abstract In this paper, we present a linear programming model where the
parameter space contains some multi-choice parameters. Alternative choices of
multi-choice parameter are considered as random variables. Using interpolating
polynomial for each multi-choice parameter, the model has been transformed into a
non-linear mixed integer probabilistic programming problem. Then chance con-
strained programming technique is used to obtain an equivalent deterministic model
of the transformed problem. To find the deterministic form of the objective function
four different models namely, E-model, V-model, probability maximization model
and fractile criterion model are used. Assuming the values of the multi-choice
parameters as independent normal random variables, the methodology is presented.
A numerical example is also presented to illustrate the methodology.

Keywords Chance-constrained programming - Multi-choice programming - Linear
programming - Probabilistic programming

1 Introduction

In real life, there are several decision making situations where decision makers
have to choose one value from a set of values of a parameter. This type of
situation can be transformed into a mathematical programming model called
multi-choice programming problem (MCPP). In MCPP, a multiple number of
choices are assigned by the decision maker for any multi-choice parameter. Chang
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[1] proposed a new idea to solve multi-objective programming problem called
multi-choice goal programming where for each objective a multiple number of
aspiration levels or goals are set by the decision maker. In addition, to tackle these
multi-choice aspiration levels a binary variable for each goal is introduced. In his
other paper, Chang [2] used some continuous variable to tackle the situation
instead of binary variable. Liao [3] proposed a model called multi-segment goal
programming problem, in which the coefficients of the objective function take
multiple aspiration level. Chang’s [1] binary variable method has been used to
tackle the multi-choice parameters. Biswal and Acharya [4] proposed multi-choice
linear programming problems (MCLPP) in which the right hand side parameters
of the constraints take multiple aspiration level. They proposed a transformation
technique to obtain an equivalent mathematical model. In their other paper [5],
they introduced interpolating polynomial for each multi-choice type parameter to
transform the model.

However, multi-choice programming problem can be considered as a combina-
torial optimization problem. Since in actual decision making situations, we often
make a decision on the basis of uncertain data, it makes proper sense to take the
alternative choices of a multi-choice parameter as random variable in MCLPP.
Stochastic programming is used for such decision making problems where
randomness is involved.

Stochastic programming has been developed in various fields, a bibliographic
review of stochastic programming can be found in [6, 7]. Among these approaches
for stochastic programming, there are two very popular approaches namely,

(i) Chance-constrained programming or probabilistic programming proposed by
Charnes and Cooper [8];
(i) Two stage programming or Recourse programming proposed by Dantzig [9].

In optimization problems, to handle some random parameters we use both these
methods. In chance constrained programming (CCP) technique, constraints of the
problem can be violated up to a given level of probability. These satisfactory levels
of probability are fixed by the decision maker. The two-stage programming
technique also converts the stochastic problem into a deterministic problem. But the
two stage programming does not allow any constraint to be violated. Several
literature are found in the field of stochastic programming [10-16]. Typical areas of
application of stochastic programming are Finance and Industrial Engineering,
Water resource management, Management of stochastic farm resources, Mineral
blending, Human resource management, Energy production, Circuit manufacturing,
Chemical engineering, Telecommunications etc.

Under these situations, in this paper, we concentrate to find a suitable method-
ology to solve the multi-choice linear programming problem with random variables
as the alternative choices of a multi-choice parameter. Since most common
distribution in nature is the normal distribution, we discuss the methodology by
assuming all the alternatives of a multi-choice random parameter as independent
normal random variable with known mean and variance. In some stochastic
programming problems some of the parameters follows non-normal distribution
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namely, uniform, exponential, gamma and log-normal distributions. In the
stochastic programming literature the deterministic models have been established
for stochastic programming problem with such random variables [17, 18].

The organization of the paper is as follows: after giving a brief introduction about
the problem in Sect. 1, we present the mathematical Model of Multi-choice random
Linear Programming Problem in Sect. 2. The deterministic form of the proposed
model is established in Sect. 3. In Sect. 4, a case study is presented and the
proposed method is illustrated with the results. In Sect. 5, some conclusions are
presented.

2 Mathematical model of multi-choice random linear programming
problem

The mathematical model of a multi-choice random linear programming problem can
be presented as:

max :Z:Z{C}l),c;z),...,c}k’)}xj (1)
=1

subject to
S e a0 b)Y, = 12m ()

X;ZO, ‘]:172737,1’1 (3)

where X = (x1,X2,...,X,) is n-dimensional decision vector. We consider the deci-

sion variables as deterministic. Each alternative value q](-l) (I=1,2,...,k;) of the
multi-choice parameter ¢;, j=1,2,...,n; agj)
parameter a;j,i = 1,2,...,m;j = 1,2,...,nand b (t =1,2,...,r;) of multi-choice
parameter b;,i = 1,2,...,m are considered as independent random variable. Since
each of the alternative choices of multi-choice parameter of the problem (1-3) are
random variable, we are unable to apply the usual solution procedure for mathe-
matical programming problem directly to solve the problem. So, we need to develop

some suitable methodology to solve these problems.

Considering that the constraints Z};l{al(jl),aff),...,a;P”>}xj§{b§1),b§2),

..7195”')}7 i=1,2,...,m of the problem (1-3) need not hold almost surely, but
they can instead hold with some known probabilities. To be more precise, the
original m constraints are interpreted as:

n
Pr<Z{a§jl),a§J-2),...,a,(-jp")}xjﬁ {bﬁl),bﬁz),...,bﬁ"‘)}) >1 -y, i=1,2,...m (4)

j=1

(s=1,2,...,p;) of multi-choice
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where Pr means probability. y; is the given probability of the extents to which the
i-th constraint violations are admitted. The inequalities (4) are called chance con-
straints. These inequalities means that the i-th constraint may be violated, but at
most y; proportion of the time. Hence problem (1-3) can be restated as:

n

max : z = Z{c}”,c}z), .. .,c;k’)}xj (5)

J=1

subject to

& 1 2 (pij) 1 2 Ti e
Pr(Z{afj),afj),...,a; }xjg{bf >,b§ >,...7b§ >}> >1l—y;i=12,....m
x>0, j=1,2,3,...,n (7)

3 Deterministic model formulation

The model established in the previous section is basically a stochastic programming
model. Since random variables are there in the model, we need to establish the
deterministic form of the model to solve the problem. We establish the equivalent
deterministic model of the problem (5-7) by using chance-constrained program-
ming technique.

3.1 Interpolating polynomials for the multi-choice parameters

The model (5-7) contains multi-choice parameters. Multi-choice parameters are
found in the objective function as well as in the constraints. Also, each alternative
value of the multi-choice parameters found to be random variables. We are unable
to apply any stochastic programming approach directly to the model as multiple
choices are present for each parameter. At first, we transform these multi-choice
parameters. To do so, interpolating polynomials are formulated. Interpolating
polynomials are formed by introducing an integer variable corresponding to each
multi-choice parameter. Each integer variable takes exactly & number of nodal
points if the corresponding parameter has k number of choices. Each node
corresponds to exactly one functional value of a multi-choice parameter. Here the
functional value of each node is a random variable. Interpolating polynomial, which
are formulated intersects the affine function exactly once at these nodes. We replace
a multi-choice parameter by an interpolating polynomial using Lagrange’s formula.

For the multi-choice parameter ¢; (j =1,2,...,n), we introduce an integer
variable u; which takes k; number of values. We formulate a Lagrange interpolating
polynomial f (u;) which passes through all the k; number of points given by
Table 1.
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Table 1 Data for multi-choice parameter c;

u; 0 1 2 e ki—1
o) o o

Table 2 Data for multi-choice parameter a;;

Wi 0 1 2 e pij— 1
" 1 2) 3 - Dij
Jay (W) a,(-,») aE/ a[j) “3’ )

Following Lagrange’s formula [20] we obtain the interpolating polynomial for
the multi-choice parameter ¢; (j = 1,2,...,n) as:

‘ D —=2) (s — k1
jmwéqyynémﬁjw ) —2) - (i —k+1)

(=) (g —1)! !
Ll =20 =3) =k + 1) o
(=) 211k — 2)! ! (8)
Ll = D)0 —=2) (4 =k +2) ),
(k; — 1)! s
j=12,..,n

Similarly, we introduce an integer variable w;; to tackle the multi-choice parameter
a; (i=1,2,...,m; j=1,2,...,n). The integer variable w;; takes p; number of dif-
ferent values. Following the Lagrange’s formula, we construct an interpolating
polynomial f;, (w;;). The interpolating polynomial £, (w;;) passes through all the p;;
number of points which are given by Table 2. The interpolating polynomial can be
written as:

fa»»(W,'j' a(.l) a@) o a(yij)) _ (W,‘j — 1)(W,-j —2)--- (W,-j —pij + 1) ag)
i i Y ij (_1)(Pij*l)(pij —1)! J

wiwy —2) - (wy —py + 1) n

(D" -2t 9)
L wilw = Dwy =2) - g = pi +2) o),
(P — 1! v

i=1,2,...m; j=12,...,n

Similarly, we introduce a new integer variable v; for the multi-choice parameter
b;(i=1,2,...,m). We formulate the corresponding interpolating polynomial f}. (v;)
which passes through the data points given by Table 3. The interpolating polyno-
mial can be formulated as:
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Table 3 Data for multi-choice parameter b;

Vi 0 1 2 r,-fl

A p »? ») o B

i i i i

vi—D(vi=2)--(vi—ri+ 1)b(1)
(=) V(= 1) ’
V,‘(V,‘—2)(V[—3)"'(V,‘—rl’+l) (2)
" (=) 211, — 2)! bt (10)
V,'(Vi — 1)(\/,' — 2) cee (Vi — I +2) b(i’,)
(r; — 1)! v

fo(virby b7 b) =

_|_

i=1,2,...,m.
Note that, in each of the above interpolating polynomials random variables are

present. After replacing the multi-choice parameters by interpolating polynomials,
we obtain a transformed stochastic model which can be stated as:

n .
max:Z:Zﬂ/(uj;c;])’c;D’...7Cj(-!)>xj (11)
j=1
subject to

Pr <Zfa,.j(w,;,-; agjl), alg.z), cen ag)’j>))c_,~ <f, (vi; bl(-l), bl(z), e bgm)) >1—y
=

O<y;<l, i=12,...0m
x>0, j=12.73,...,n

(12)
Ogujgkj—l
OSWUSPU—I
OS\/,’SF,‘—I

uj,wij,vieNo; i=1,23,...mj=1,2,...,n.

3.2 Equivalent deterministic form of the chance constraints

The alternative choices of the multi-choice random parameters can follow any
continuous distribution namely uniform, normal, exponential etc. Also these random
variables are independent. The interpolating polynomial corresponding to each
multi-choice random parameter is a linear combination of independent random
variables. So, the polynomial function itself is a random variable. We can find the
distribution function of the random variable by using the following theorem:

Theorem 1 Let X and Y be two independent random variables with distribution
function Fx(x) and Fy(y) respectively, defined for all real numbers. Then the sum
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Z =X +Y is a random variable with distribution function Fz(z), where Fz(z) is
given by:

F) = [ Fe =) (13)
_ [ Oo‘ Fy(z — x)fx (x)dx (14)

where fx(x) and fy(y) represent the probability density function of the random
variables X and Y respectively.

In real life situations, the alternative choices of the multi-choice random
parameter are considered from the same distribution. However, if the alternative
choices of the multi-choice random parameter are from different distribution then
the equivalent deterministic form of the i-th constraint of the problem can be
establish in the following way:

Pr(Zﬂi,(w,y;aE,-”,aé-zl..7 a”)x; <ﬁi(v,»;b§1>7b§2>,...,bE"'>)> > 17, (15)
j=1

= Pr(zfai/(wij§al('jl)va§j’2)>“ al(Jp” ) '_fb,(vl§bz('l)7br(2)7" 7bz(r>) <0> 21—y (16)
=1

Let us define §;= Z{Llfaij(wij;ag-l) a?, .. (p”>) j—fbi(vi;b§1>,b(2)7...,bl(rf)).

j ij oo i i
Then S; is a random variable with distribution function Fs, which can be found by

using Theorem 1. Hence from the Eq. 16, we have the following:
Pr(S;<0)>1-—vy,
:>F5i(0)21_yi
Fg'(1—7)<0
= Ki_,,<0  whereK;_, =max Fg'(1—y,)

which leads us to the deterministic form of the i-th chance constraint of the problem.
3.2.1 Chance constraints with normal random variable

Let us consider the case when all the random variables present in the problem are

independent normal random variables. Let c<l) fj‘v) and b(t) 1=1,2,.. ks =

L2, ,pjt=12,..,rsi=12,...,mj _1 2,...,n be distributed normally
with known mean and variance. Let us consider

I ! ! .

AN, (09 1=1.2, 0k j=1,2,...n
<5>NN(ﬂgjf>,( DY) s=120 0k i=12 . m =12, 0.
BN () =12, r i=1,2,...m
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Table 4 Mean and variance of

the normal random variables Parameter Mean Variance
) I )2
o ) (e8)
s s 5)\2
an ) u’(j ) ( O.I(j))
b@ ﬂ@ (O_(t))z

where the mean and variance of the parameters are given by Table 4.

Now, the interpolating polynomial £, (w;;; al(jl) , al(.jz) s aff‘")) is a linear function of
pij number of independent normal random variables agf )
El), bgz), - bfr‘)) is a linear function
(0

i

with known mean and
variance. Also, interpolating polynomial f3, (v;; b

of r; number of independent normal random variables b;”’ with known mean and

variance. Let

M; = xjfaﬁ(wij;agjl),agjz)7 . .,al(.j?"‘f)) (17)
N; = £, (vi; b 6P bl (18)

Then Mj; is a random variable with mean and variance E(M;;) and V(M) respec-
tively, where E(M;;) and V(M;;) are defined as,

a— D(wii —2) - (wy; — pii + 1
E(M;) =E (wyy ) (Wi ? (wyj —pi + )xjal(jl)
(=)D (py = 1)!
LW = 2wy = 3) - g —pg 1) o
(=)D 11(py — 2)! Y
wii(wy — D(wy —=2) - (Wi —=pi +2)  (py)
(pj —1)! g
(=17 (g — 1) ’
Ly Wilwy = 2)(wy = 3) - (wy —py + 1)
(=) 1(py; — 2)!
wij(wij — 1)(wy —2) - - (Wi — pij +2)
(py — 1!
(Wij_1)(Wij_2)"'(wij_17ij+l)x"u(.l)
(=" (py = 1) Y
Wiy = 2wy —3) -y —py+ D) )
(=171 (p; — 2)! o
4wy = Dwy =2) - (wy =py+2) )
(s —1)! "

2
yE(a})

xE (a({”"))

+ -4 i
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2
|0 = DOy =2) - (wy —py + 1) 1)y
V(M) [ (_])(pij,l)(pij_ ! j ( ij )
n [WU(WU—D(W(Z_—;)"'(Wij—Pij+ 1)xj Z(Jl(]@)z
(=D 1(py —2)!

2
4t |:WU(WU —D(wy —2)- - (wyj —py +2)Xj:| (O’E;Jij))z

(py = 1)!

Similarly, N; is also treated as a random variable with mean and variance E(N;) and
V(N;). E(N;) and V(N;) are given by:

(V,*— 1)(v,-—2)~~(v,-—r,-+1) (1)+v,»(v,-—2)(v,»—3)~~~(vl-—ri+1) (2)

EWN) == e iy D" nE-2r
vi(v,»fl)(vifz)"'(vi*ri‘l’z) (ri)
I CE 1
) 2
L= DEi=2) (it 1) s0)? vi(vi—=2)(vi—=3)--(vi—ri+1) @2
V(Nz)_ (_1)(;’,.71)(”_1)! ( i ) +|: (_1)(”'72)1!(”1‘_2)! ( i )

iWVi—DWi—=2)---vi—r : r
+...+|:Vl( 1)( (rii)l)!( +2)] (Uz( ,))2

Let us define A;= (3 7, M;—N;),i=1,2,...,m, then A; are also normally dis-
tributed random variables. Hence the constraint (16) can be written as:

A; — iy .
O4; OA;
| A — g
pr(n,»g —&)zl—vi raking ;= =] (20)
OA; o4

where w,, = Y1 E(My) — E(N)), a4, = \/z;.;1 V(My) + V(N;) and n; is the

standardized normally distributed random variable. Therefore the chance constraint
(20) holds if and only if

¢<—ﬂ>z¢(n%), i=1,2,....m 21)

O4;

2
where @(z) = ﬁ [ e =dn is the cumulative density function (C.D.F.) of the
standard normal random variable. The above inequality can be simplified as:

o, +0oam, <0, i=1,2,....m. (22)

Hence we establish the deterministic form of the i-th (i = 1,2, ...,m) constraint as a
non-linear constraint. The constraint can be stated as:
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52%<Ww—w0w—2%~0w—Pw+U<U+WﬂWq—ﬁ0w—3%~0w—Pw+U @

= (=)D (py 1) ’ (=D 11 (p; —2)! ’
i(wii — 1 i —2) (Wi — pii +2 ) n
oy iy )(WEP-» )1)'(w/ Pij )ngp”))+'7;,v,.\jzv(MU)+V(Ni)
ij— ) Jj=1

(V,‘ - ])(V,‘ —2) . -(V,‘ —ri+ 1) (1) V,‘(V,' —2)(\/[ — 3) "'(V,' —ri+ 1) (2)
<[ (=)D — 1)1 " (=) 2113 —2)! &

We obtain the deterministic form of the chance constraints which form the feasible
region (say S) of the model (1-3). To establish the deterministic model of (1-3), we
find the deterministic form of the objective function. Depending on the aim of the
decision maker Charnes and Cooper [8] considered three types of decision rules to
optimize objective functions with random variables:

(i) the minimum or maximum expected value model,
(ii) the minimum variance model and
(iii) the maximum probability model also called as dependent-chance model.

Moreover, Kataoka [21] and Geoffrion [22] individually proposed the fractile
criterion model. We establish the deterministic models by assuming the random
variables as independent normal random variable.

3.3 Expectation maximization model (E-model)

In order to deal with the situations where the decision maker wants to maximize the
expected value of the objective function in (11-12), we consider "E’-model for the
objective function [8]. Substituting the random variables by their expected values,
we obtain the model as:

max - 7 =S | D0 =2) (= k1)
S Tk R T
+“j(”j_2)(”.1'_3)"'(“./'_1‘1“"1) ) (23)

(—DE D11k — 2)! v

I/tj(lztj — 1)(Mj — 2) tet (Mj — kj + 2) 'Lt(kj)

oo (k- 1)! Of
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subject to

zn:x((wij1)(Wij2)'“(WijPij+1) (1)+sz(sz*2)(WU*3)"'(WU*PU+1) @
; (1

(D)7 (py— 1)1 ! (—=1)P 2 11(py —2)! !
wi(wy = D) (wy —2) - (wy —pi+2) -
o S S S ) ey | S VM) £ VN
ij : j=1

vi—=1)(v;=2) - (vi—ri+1) gl)+v,-(vi—2)(vi—3)...(v,~—r,~+1) @
(=D V(= 1) ‘ (=D —2)! l
vi(vi— 1)(v,~—2)---(v,«fr,«+2)”§,,)]

<

(- 1) i
(24)
0<y,<l, i=12...m (25)
x>0, j=1,23,...,n (26)
0<u; <k —1 (27)
0<w;<p;—1 (28)
0<vi<ri—1 (29)
u, wi,vi € No; i=1,2,3,...m;j=1,2,...,n. (30)

Hence we obtain an equivalent deterministic model of the problem (1-3). We apply
non-linear programming approach to solve the problem.

3.4 Variance minimization model (V-model)

In order to deal with the situations where the decision maker minimizes the variance
of the objective function with random variable in (11-12) subject to the fact that the
expected value of the objective function achieved a certain target fixed by the
decision maker, we consider ‘V’-model for the objective function. Let the target
value for the expected value of the objective function fixed by decision maker be T.
Here we minimize the variance of the objective function. The equivalent
deterministic model presented as:

R (j—1)---(j—kj+1)

=

2 2
(a(()Jl))zJr “./'(“.i_2)("‘/];_23)"'(”_1'_]‘/"" 1) 5@
(=% 211k —2)!

ot

w(—1)(w=2) =k +2)1° )2
{ 1! J e )>

(31)
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subject to

Z":xj (=) —=2)-(w—k+1) (1)+uj(uj—2)(uj—3)--~(u,—kj+1) 2)

(-1 Dk —1)! Y (—)% 21k - 2)! Y
i =) =2) - (4 =k +2) w)] o
: T
+-+ (k1) Hoi " | =
(32)
along with the constraints (24—30) (33)

3.5 Probability maximization model (P-model)

In order to deal with the situations where the decision maker wants to maximize the
probability that the objective function with random variable is greater than or equal
to a certain permissible level in (11-12), we consider probability maximization
model [23]. Considering the minimum permissible level of the objective function as
z, we establish the objective function of the model as:

Jj=1

n
max : p(X,U) = Pr(chj(uj;c(I),cj(z), .. .,c](k»)xj > z) (34)

We assume c]w (I=1,2,...,kj; j=1,2,...,n) are independent normal random
variable with known mean and variance, so )| ﬁ.j(u_,-;cj(l) . .,c;k’

1€
normal random variable. Let M = Z;’Zl fo (uj; c}l), cj(»z), e cj(-kf))

))xj is a
x; then expected
value variance of M is given by,

EM)=) x

=D —=2) =k +1) ) w0y =2 =3)w-k+1) o

S R CE I D" g -
o =) —2) (= ki +2) (k)
e (k—1D)! o
2 2
V(M):ix? w—1)-(—k+1) (o) + wi(uj —2) - (uj — ki +1) (c?)?
= A L (=D g -2 |
[y =D =2) - =K+ 2] )2
" +{ (kj —1)! (")
Therefore, we have
Pr (Zﬁ.f(uj;c](l),qlgz), . .,cj(-kj))xj > z) (35)
=1
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—EM
_pr(M>z) — 1 — o L2 EW) (36)
V(M)
Hence we transformed the problem as:
—EM
max : p(X,U)=1—- 2= EM) (37)
V(M)

subject to

ix.<(Wij_1)(Wij_2)"'(Wij_pij+1) m Wiy = 2wy —3)- - (wi—pi+1)
7

Jj=1 (_1)(1]".7])(]1,'1‘—1)! Y (_1)(1’11‘*2)1!(1)[7_2)! Hij
Wij(Wij_1)(W,:,‘—2)--~(wij_p[-j—|-2) (py) n ) .
L (pyj — 1)! A ;V(M,_,H—V(N,)
< (Vi—l)(vi—Z)l...(v,-—r;—F]) 51)+vl-(v,-—2)(v,-—23)...(‘,1._,[__;’_1)u§2)
(=1 V= 1)! (=)D —2)!
+”.+Vi(vi_1)(\)[—2)'~'(V,'—r,'+2)'ul<'rl)
(ri—=1)!
(38)
0<71<1a i=1,2, ,m (39)
x>0, j=1,2,3,..,n (40)
O<uy<k—1 (41)
0<V1<l’i—1 (43)
ui,wij,vi € No; i =1,2,3,...m;j=1,2,...,n. (44)

3.6 Fractile criterion optimization model

In order to deal with the situations where the decision maker is risk-averse and
wants to guarantee that the probability of obtaining maximum value of the objective
function is greater than or equal to some given threshold, we adopt the fractile
criterion model [22]. Basically, the fractile criterion model is considered as
complementary to the probability maximization model or P-model. In this model,
the target variable to the objective function is maximized, provided that the
probability that the objective function value is greater than the target variable is
guaranteed to be larger than a given threshold. Let us denote the target variable to
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the objective function as A and the given threshold be 5. Then fractile criterion
model is given by:

max : A (45)
subject to
Pr(chj(uj;cJ(-l>7c;2), . .,c}k"))xj > /l) >1-p (46)
J=1
0<p<l (47)
along with the constraints (24 — 30) (48)

In the above problem, we have an additional probabilistic constraint. Using chance
constrained programming approach we obtain an equivalent deterministic model
which is given by:

max : A (49)

subject to

ixj<(uj— 1)"'(Mj—kj+ 1) (1) +uj(uj—2)(uj—3)---(uj—kj+ 1) ()
1

luu' L j
Vg —1)1 7 (—1)&E 211k — 2)1 v
wiw; — D —2) - (4, — ki +2) 1)
+oF 1) Hoi | +mopV V(M) =4
(50)
(i = D(wij =2)---(wi —pi +1) () Wij(Wij—Z)(Wy—3) “wi—pi+1)
Z a—1) Hij + Hij
= (=) (py = 1)! (=D 11(py —2)!
ol g 20D ) S+ vy
(pj—1)!
|Vi=DOi=2) it D) o vilvi=2) (i =3) izt D )
- (=D V(= 1)1 : (=D 21 —2)! ’
+‘”+Vi(vi_l)(V,'—Z)"'(Vi—}",'+2)ﬂ§r,)
(}’i—l)!
(51)
O<p<l,i=1,2,...m (52)
0<p<1 (53)
x>0, j=1,2,3,....n (54)
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0<u; <k —1 (55)
0<w;<p;—1 (56)
0<vi<ri—1 (57)
u,wi,vi € No; i=1,23,...m;j=1,2,....n. (58)

Hence, we establish the equivalent deterministic model of the proposed problem.
We obtain the solution for the proposed problem by solving one of the four model
described above (depending on the aim of the decision maker). We use standard
optimization softwares to solve the deterministic model.

4 Numerical example and discussion

In this Section we present a hypothetical case study (see [24]) to illustrate the
problem and methodology presented in this paper. We modeled the problem and
solved it by using the proposed solution procedure.

A cattle feed manufacturing company wants to produce one type of cattle feed
mix which is produced by mixing four type of food material. The food materials are
Barley, Maize, Sesame Flakes and Groundnut. There are four markets where
sufficient amount of Barley available. In all these four markets the price per unit of
barley are different. Also there is some differences in the quality of the Barley.
Similarly, there are five markets where Groundnut meal is available. In all these
four markets the price per unit of Groundnut are different. Also there is some
differences in the quality of the Groundnut. There are three type of maize available
in three different markets. Cost, protein and fat for different type of maize is
different. There two type of Sesame Flakes made from two different type of Sesame.
The amount of Protein and fat available in these different Sesame Flakes are
different. The cost of these available Sesame Flakes are different. The details of
purchase cost of these raw material, amount of protein and fat in those materials are
presented in the Tables 5, 6, 7 and 8. We assume that the cost and protein content of
each material are random variable. Also, fat content of each type of maize are
random variable. The source of the data for cost of different materials is http://164.
100.222.56/amb/1/weeklymandiselect.asp. Protein and fat to vary greatly because of
the local food systems, food security and interventions. Therefore either 20.7 or 21.0
or 22 or 22.7 % are the possible requirement of protein. Also, the required fat
content may be either 4.8 or 5.0 or 5.3 or 5.9 or 6.2 %. The significant level of a
probabilistic constraint corresponding to protein is 0.95. We consider confidence
levels for fat constraint is 0.98 respectively.

Let x1, x2, x3, x4 be the quantities of Barley, Groundnut meal, Maize and Sesame
Flakes mixed in the cattle feed respectively. Let the sum total of the raw materials is
equal to one kg. Also, it is assumed that, the quantities of Barley and Maize i.e., the
value of x; and x3 must be at least 0.5 and 0.01 kg respectively. So, we have an
minimization problem with two chance constraints and two linear constraints.

@ Springer


http://164.100.222.56/amb/1/weeklymandiselect.asp
http://164.100.222.56/amb/1/weeklymandiselect.asp

OPSEARCH (2017) 54:122-142 137

Table 5 Data table of barley

Market Mean of Variance Fat content Average cost Variance
protein content of protein in rupees/Kg. of cost
Market-1 (M}) 11.6 0.25 2.4 114 1.16
Market-2 (M2) 12 0.281 23 12.763 1.5173
Market-3 (M3) 11.8 0.27 22 11.9021 0.6597
Market-4 (M3) 11.5 0.26 2.5 11.7062 1.015

Table 6 Data table of groundnut

Market Mean of Variance Fat content Average cost Variance
protein content of protein in rupees/Kg. of cost
Market-1 (M}) 49.2 1.1 1.29 39.33 7.4
Market-2 (M%) 52.1 0.624 1.35 40.774 18.1734
Market-3 (M3) 51 0.7 1.28 39.72 10.12
Market-4 (M%) 51.8 0.85 1.3 39.997 16.625
Market-5 (M2) 49 1 1.25 38.25 13.495

Table 7 Data table of maize

Market Mean of Variance Mean Variance Average cost Variance
protein of protein of fat of fat in rupees/Kg. of cost
Red maize 11.28 0.194 52 0.25 13.673 0.7712
White maize 10.1 0.17 5 0.24 13.64764 0.489293
Yellow maize 9.4 0.15 4.74 0.2 13.07041 0.74055

Table 8 Data table of sesame flake

Market Mean of Variance Fat content Average cost Variance
protein of protein in rupees/Kg. of cost

Sesame flake (Black) 41.8 20.25 11.1 70911 41.0979

Sesame flake (White) 52 18 12 77.31441 45.36459

The above situation can be modeled into a mathematical model which is a multi-
choice probabilistic linear programming problem. The mathematical model is
expressed as:

min:Z = {c(ll),cﬁz),c(f),c(ﬁ) bxy + {c<21),cf),c(zs),c(;),cgs)}xz + {cgl),cgz),c_(;)}xg + {cil),ciz) }X4

(59)
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subject to
Pr({al,, ai,, ay,af, b+ {aly, aty, aty, aly, @y 0 + {als, ais,a33 bxs + {ayy, iy }xa >br)
>0.95, by € {207,21.0,22,22.7}
(60)

Pr({2.4,2.3,2.2,2.5}x; + {1.29,1.35,1.28,1.3,1.25}x + {a3;, a33, @33 }
X3+{11.1,12}X42b2) (61)
>0.98, b, <€ {4.8,50,53,59,62}

X1+x+x3+x=1 (62)
1 >05 (63)
x3>0.01 (64)
x>0, j=1234 (65)
where
~N(11.4,1.16), P ~ N (12.763,1.5173), ¢ ~ N (11.9021,0.6597), ¢\ ~ N/ (11.7062,1.015),
~N(39.33,7.4), ¢V ~./\/'(4O‘774,18.1734)702 ~N(39.72,10.12), ¢V ~N(39.997,16.625),

~N(38.25,13.495), ¢\ ~ NV(13.673,0.7712), ¢ ~ N (13.64764,0.489293),
/\/(13 07041,0.74055), c\") ~ A/(70.911,41.0979),

~N(77.31441,45. 36459)'a(111)~N(11 6,0.25), al?) ~ N(12 0.281),

N(11.38,0. 27) a“ )N (11.5,0.26),a\) ~ N (49.2,1.1), a3 ~ N'(52.1,0.624),
~N(51,0.7), a% ~N(51 8,0.85), a<152>~/\/(49 1),al} ~N(11 28,0.194),
(
(

a“

alz
~N(10.1,0.17), aH ~N(94 0. 15) u]4 ~N(41 8,20.25), u,4 ~N(52 18);

N(5.2,0.25),a8) ~N'(5,0.24),a5) ~ N (4.74,0.2)}

~
a]}
‘123 ~

Using ‘E’-model we obtain the deterministic equivalent of the model (59-65) as:

min : Z' = (0.481483z) — 2.55642% + 3.4379167z; + 11.4)x,
+ (—.299375 +2.43416773 — 6.45616773 + 5.7653z; + 39.33)x,
+ (=0.2759352; + 0.250575z3 + 13.673)x3 + (70.911 + 6.4034124)x4
(66)

subject to
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(0.0833z; — 0.55z] +0.8667z; + 11.6)x,
+ (—0.47573 +3.83323 — 10.17522 4 9.717z5 + 49.2)x;
+ (02423 — 14273 + 11.28)x3 + (41.8 4+ 10.224)x4
— 1.645[(0.25 — 0.9167z; +4.504827 — 6.92027] +4.587 — 1.369z] +0.1522%)x?
4 (1.1 —4.5834z; +25.8427% — 54.7042273 4 55.35z3 — 30.078823 +9.011625
— 1.40162] +0.088325)x3
+ (0.1936 — 0.5808z3 + 1.3467z3 — 1.0454z3 4 0.2559z3)x3
+ (20.25 — 40.5z4 + 38.2522)x2)2
>20.7 —.1667z3 + 8572 — .3834z5 (67)

(0.06667z; — 0.2z7 +0.03333z; + 2.4)x1
+ (—0.0158323 + 131723 — .3491723 + 29325 + 1.29)x,
+ (=0.0335 — 1723+ 5.2)x3

+ (11.1 4 0.9z4)xs — 2.055x3 \/ (0.25 — 0.75z3 + 1.82257% — 1.435z73 + 0.3525z3)
> 4.8 —0.03337 + 23375 — 416722 + 4167z

(68)

Xt+x+x3+xs=1 (69)

x1>0.5 (70)

x3>0.01 (71)

x>0, j=1,234 (72)

z1 €{0,1,2,3}, 2 € {0,1,2,3,4}, z3 € {0, 1,2}, z4 € {0, 1}, z5 (73)

€ {OJ 17213}7 26 € {07 1727374}

The mathematical model (66-73) is a mixed integer nonlinear programming
problem. Using nonlinear programming technique [25] we can solve the problem.
Using MATHEMATICA [26] software we obtain the optimal solution. Mathe-
matica use “Differential Evolution” algorithm to find the numerical global optimal
solution of the nonlinear programming problem. In this method the tolerance for
accepting constraint violations is *0.001° (See [27]). So, the constraints are violated
slightly (See Table 9). In order to compare the solution obtained by Mathematica,
the transformed model is also solved in GAMS [28] solver. The same optimal
solution is obtained. Optimal solutions of the different models are given by the
Table 9.

For the ‘V-model’ and ‘P-model’ the target costs are set as 30 and 35
respectively. The maximum probability with the production cost as 35 is 88.59 %.
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Table 9 Optimal solutions of different models

E-model V-model P-model Fractile criterion
model
Expected production  27.4907 27.59904 32.470434 29.140667
cost per kg (Rs.)
Variance 2.430969 2.34192 4.40923 291725
Amount of barley 0.5 (M}) 0.5 (M) 0.601967 (M3) 0.5 (M)
(market selected)
Groundnut meal 0.0528782 (M%)  0.0612867 (M)  0.0332155 (M3)  0.09108582 (M)

(market selected)
Maize (type selected) 0.234664 (Red) 0.229148 (Red) 0.073741 (Yellow) 0.1633939 (Red)

Sesame flake 0.212458 (White) 0.209565 (White) 0.291076 (White)  0.2455203 (Black)
(type selected)

Protein content 20.700003 20.699999 22.64667 20.6999999

Fat content 4.800001 4.7999999 5.2017 4.79999997

From the Table 9 we can see that, for the different models the markets for Barley or
the market for Groundnut Meal or types of Maize and Sesame flakes chosen are
different in most of the cases. Hence from these models and the results obtained we
conclude that the consideration of the multi-choice random parameters in the
parametric space is very logical and helpful for the decision makers to take proper
decision.

5 Conclusions

In this paper, a suitable methodology is established to solve a multi-choice linear
programming problem where the decision maker set a number of random aspiration
level for any parameter presents in the problem. By considering the alternative
aspiration level as normal random variable, we establish the methodology. At first,
we tackle the multi-choice parameter by using some interpolating polynomial.
Interpolating polynomials are linear functions of normal random variables. So, the
transformed problem is treated as a probabilistic programming problem. By using
chance constraint programming approach, we establish an equivalent deterministic
model. We present four different models to find the deterministic form of the
objective function, depending on the desire of the decision maker. The proposed
methodology provides a novel way for solving the multi-choice linear programming
problems involving random variables as the alternative choices of the parameters.
The present method serves as a useful decision making tool for a decision maker to
find optimal solution with best alternative for a multi-choice parameter. A further
study is essential for this problem in the presence of other random variables, namely
uniform, exponential and log-normal random variable. There are several real life
problems such as Production planning problem, Inventory control problem,
Scheduling problems in management science where this multi-choice probabilistic
programming technique can be applied.
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Appendix

In this section we include the description of MATHEMATICA commands for
solving the mixed integer programming problem. To solve an integer programming
problem using MATHEMATICA software we use ‘NMinimize’ or ‘NMaximize’
function to find the optimal value of the problem.

The detail of the MATHEMATICA command to solve mixed integer nonlinear
programming problem of Sect. 4 is given below:

NMinimize|

{(481483 x 21”3 — 2.5564 x 2172 + 3.4379167 x z1 + 11.4) x x1+

(—.2993 % 22"4 + 2.434167 * 22”3 — 6.456167 * 22”2 + 5.7653 * 22 + 39.33) » x2+
(—0.275935 % 232 + 0.250575 * 23 + 13.673) % x3 + (70.911 + 6.40341 % z4) * x4,
(0.0833 x 213 — 0.55 % 21”2 + 0.8667 * z1 + 11.6) x x1+

(—0.475 % 22"4 + 3.83 % 22”3 — 10.175 % 22"'2 + 9.717 % 22 + 49.2) * x2+

(024 %232 — 1.42 % 23 + 11.28) % X3 + (41.8 + 10.2  24) % x4—

1.645%

V((0.25 — 09167  z1 + 4.5048 x 212 — 6.9202 * z1"3 + 4.58 x z1"4—

1.369 % 215 +0.1522176) * x1"2+

(1.1 —4.5834 % 72 + 25.842 % 72/"2 — 54.70422 % 72”3 + 55.3522"4—

30.0788 22”5 +9.0116 % 22"6 — 1.4016 % 22”7 + 0.0883 72"'8) x x2"2+

(0.1936 — 0.5808 * 23 + 1.3467 * 23”2 — 1.0454 % z3"3 + 0.2559 * 23" 4)x

X372 + (20.25 — 40.5 % z4 + 38.25 % 24"2) * x4'2) >

—0.1667 % 25”3 + .85 % 25”2 — 3834 % z5 + 20.7,

(0.06667 * 21"3 — 2 x 21”2 + 0.03333 x z1 + 2.4) x x1+

(—0.01583 x 22"4 + 1317 % 22”3 — 34917 % 22"°2 + .293 % 22 + 1.29) * x2+
(—0.03 232 — 17 %23 +5.2) *x3 + (11.1 + 0.9 % z4) * x4—

2.055 % x3 % \/(0.25 — 0.75 % 23 + 1.8225 % 23°2 — 1.435 % 23/3 + 0.3525 # z3/4) > =
—0.03333 % 26™4 4+ 2333 % 26”3 — 41667 * 26”2 + 41667 * 26 + 4.8,

xl +x24+x3+x4==1,x1>0.5,x2>0,x3>0.01,x4>0,z1>0,2z2>0,
z3>0,24>0,25>0,26>0,21 <3,22<4,23<2,724< =1,25<3,

26 <4,{z1,22,73,74,75,26} € Integers},

{x1,x2,x3,x4,z1,22,23, 74,725,726}

The obtained solution of the problem is as follows:

{27.4907, {x1 — 0.5,x2 — 0.0528782,x3 — 0.234664,x4 — 0.212458, z1
— 0,22 — 1,23 - 0,24 — 1,25 — 0,26 — 0}}
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