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Abstract In the classical p-median problem, the objective is to find a set Y of p

vertices on an undirected graph G ¼ ðV ;EÞ in such a way that Y � V and the sum of

distances from all the vertices to their respective closest vertices in Y is minimized.

In this paper, we have considered the weighted case where every vertex in G has

either a positive or a negative weight under two different objective functions, viz.

the sum of the minimum weighted distances and the sum of the weighted minimum

distances. In this paper, we have proposed a hybrid artificial bee colony (ABC)

algorithm for the positive/negative weighted p-median problem where each solution

generated by ABC algorithm is improved by an interchange based randomized local

search. In addition, an interchange based exhaustive local search is applied on some

of the best solutions obtained after the execution of ABC algorithm in a bid to

further improve their quality. We have compared our approach with the state-of-the-

art approaches available in the literature on the standard benchmark instances.

Computational results demonstrate the effectiveness of our approach.

Keywords Artificial bee colony algorithm � Swarm intelligence � p-Median

problem � p-Median problem with positive/negative weights

1 Introduction

Given an undirected weighted graph G ¼ ðV ;EÞ with jV j ¼ n, the classical p-

median problem seeks on this graph a set Y � V of p vertices in such a way that the
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sum of distances from all the vertices to their respective closest vertices in Y is

minimized. The vertices of the graph can be considered as demand points and the

vertices in Y as the location of facilities, the goal is to select the locations of p

facilities to serve n demand points, so that the sum of the distances of demand points

from their nearest facilities is minimized. We have used the vertices in set Y and

facility locations interchangeably throughout this paper. The p-median problem and

its variations can be used to model many real world situations, e.g., in locating

public facilities, industrial plants and ware-houses. These are only a few examples

from the long list of situations where this model can be applied. This model can also

be used in applications related to cluster analysis, where points in an m-dimensional

space can be regarded as user locations. p-median problem can also be posed in the

form of a matrix as follows: Given a matrix D of dimension n� n, select p columns

of D in a way such that the sum of minimum coefficients in each row within these

p columns is as small as possible.

The classical p-median problem is shown to be NP-hard by Kariv and Hakimi

[26]. Because of this, applicability of exact methods is limited to small instances

only, and we need heuristics to solve large instances. The first heuristic based on the

greedy strategy for the classical p-median problem is proposed by Kuehn and

Hamburger [27]. Another early heuristic is the interchange heuristic proposed by

Teitz and Bart [40]. Since then numerous heuristic and metaheuristic approaches

have been proposed, e.g., fast interchange heuristic [42], global/regional interchange

algorithm [13], LEVEL-2 and LEVEL-3 heuristics [12], gamma heuristic [36], tabu

search [35], variable neighborhood search [19], simulated annealing [11], genetic

algorithms [1, 4, 14, 20], hybrid heuristic methods [33], a swap-based local search

procedure [34], a parallel genetic algorithm [31], particle swarm optimization based

approaches [29, 37] and an artificial bee colony algorithm [3]. A survey on

metaheuristic approaches for the p-median problem can be found in [28].

A location problem with positive and negative weights on the vertices is useful in

applications, where some facilities are non-attractive to some clients (facilities are

obnoxious). Many obnoxious location problems are discussed and classified in

Cappanera [8]. Interested readers can find the survey on obnoxious location

problems in Carrizosa and Plastria [9] and Plastria [32]. Burkard and Krarup [7]

proposed the first location model with positive and negative weights and also proved

that the 1-median problem on a cactus with positive and negative vertex weights can

be solved in linear time. Burkard et al. [5] observed that there exist two different

models when p-median problem with positive/negative weights in graphs is

considered. In the first model, referred to as P1, the sum of the minimum weighted

distances is minimized. In the second model, referred to as P2, the sum of the

weighted minimum distances is minimized.

Burkard et al. [5] developed an Oðn2Þ algorithm for the 2-median problem on a

tree. They also developed an Oðn log nÞ algorithm for stars and an OðnÞ algorithm
for paths for first model (P1). They presented an Oðn3Þ algorithm for the 2-median

problem on a tree for the second model (P2) and showed that the complexity can be

reduced to Oðn2Þ if the medians are restricted to vertices. Burkard and Fathali [6]

presented an algorithm for 3-median problem on a tree for second model (P2). There
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exists some heuristic methods also to solve the positive/negative weighted p-median

problem on graphs. Fathali and Kakhki [17] developed a modified variable

neighborhood search (MVNS). Fathali et al. [16] presented an ant colony

optimization algorithm (ACO). A genetic algorithm (GA) for the positive/negative

weighted p-median problem is proposed by Fathali [15]. ACO and GA are two best

approaches known so far for the positive/negative weighted p-median problem.

In this paper, we have proposed an artificial bee colony (ABC) algorithm based

approach for the positive/negative weighted p-median problem. ABC algorithm is a

new population based metaheuristic technique based on intelligent foraging

behaviour of honey bee swarm, which has been applied successfully to solve

numerous combinatorial optimization problems in diverse domains. Though there

exists an ABC algorithm for the classical p-median problem [3], there exists no

ABC algorithm for the positive/negative weighted p-median problem. Besides, the

approach of [3] contains some design flaws (see Sect. 4.7). This has motivated us to

develop the approach presented in this paper which is altogether different from the

ABC approach presented in [3] for classical p-median problem. We have used two

local search procedures in our ABC approach. In a bid to improve each solution

generated by ABC algorithm, it is passed through an interchange based randomized

local search. In addition, an interchange based exhaustive local search is applied on

some of the best solutions obtained after the execution of ABC algorithm in an

attempt to further improve them. We have compared our ABC approach with ACO

and GA [15, 16] on the standard benchmark instances for the problem.

Computational results show the effectiveness of our approach.

The remainder of this paper is structured as follows: Sect. 2 defines the positive/

negative weighted p-median problem formally. In Sect. 3, we provide an overview

of ABC algorithm. Section 4 presents our ABC approach to solve the positive/

negative weighted p-median problem. Section 5 reports the computational results

and compares our approach with other approaches available in the literature.

Finally, Sect. 6 outlines some concluding remarks.

2 Formal problem definition

The classical p-median problem can be formally stated as follows. Let G ¼ ðV ;EÞ
be an undirected graph with vertex set V ¼ v1; v2; . . .; vnf g and edge set E. The

length of shortest path or distance from vertex vi to vertex vj is denoted as dðvi; vjÞ.
The problem is to choose a set Y containing p vertices of G, in such way that the

sum of distances from all vertices to their closest vertices in Y is minimized, i.e., the

solution is a subset Y ¼ y1; y2; . . .; yp
� �

of V that minimizes

Xn

i¼1

min
j2f1;...;pg

dðvi; yjÞ ð1Þ

In the weighted version of the problem, a weight wi is associated with each vertex

and the objective is to minimize the sum of weighted minimum distances, i.e.,
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Xn

i¼1

wi min
j2f1;...;pg

dðvi; yjÞ ð2Þ

Burkard et al. [5] noted that two different models exist for p-median problem when

weights on the vertices can be both positive and negative. In the first model (P1), the

objective is to minimize the sum of the minimum weighted distances.

O1ðYÞ ¼
Xn

i¼1

min
j2f1;...;pg

wid vi; yj
� �� �

ð3Þ

In the second model (P2), the objective is to minimize the sum of weighted mini-

mum distances.

O2ðYÞ ¼
Xn

i¼1

wi min
j2f1;...;pg

d vi; yj
� �

ð4Þ

Please note that both models are equivalent when we have positive weights only.

3 Overview of ABC algorithm

The artificial bee colony (ABC) algorithm proposed by Karaboga [21] is a

population based meta-heuristic algorithm, which is inspired by the intelligent

behavior of the foraging honey bees. In a bee colony, there are three types of bees:

employed, onlooker and scout. Employed bees are those bees which are currently

exploiting a food source. The responsibility of the employee bees is to bring loads of

nectar to the hive and share the information about their food sources with other bees

waiting in the hive. The waiting bees are known as onlookers. The onlookers then

choose a food source with a probability directly proportional to its quality and

becomes employed. Scout bees search for new food sources in the vicinity of the

hive and they become employed as soon as they find a new food source. An

employed bee whose food source becomes empty will abandon that food source and

becomes either a scout or an onlooker.

Inspired by the foraging bees’ behavior described above, Karaboga developed

ABC algorithm. This algorithm was originally developed for solving optimization

problems in continuous domain only, later, it has been extended to solve discrete

optimization problems also. Since the development of first ABC algorithm [21],

numerous variants of basic algorithm have been proposed, e.g.

[2, 10, 23–25, 30, 38, 39, 41]. For a recent survey on ABC algorithm and its

applications, one may refer to Karaboga et al. [22].

In ABC algorithm also there are three types of bees, viz. employed, onlooker and

scout with functions similar to their real counterparts. In ABC algorithm, the food

sources represent the possible solutions to the problem under consideration and the

quality of a food source represents the fitness of the represented solution. The

employed bees are associated with food sources. Always, there is a one-to-one

correspondence between food sources and employed bees, which means, the number

70 OPSEARCH (2017) 54:67–93

123



of food sources is equal to the number of employee bees. Usually, but not always,

the number of onlooker bees is also taken to be equal to number of employed bees.

The ABC algorithm follows an iterative search process, which starts with

associating the employee bees with randomly generated food sources (solutions),

then it repeats through the cycles of the employed bee and onlooker bee phases.

In the employed bee phase, each employed bee generates a food source in the

proximity of its associated food source and evaluates its quality. The method of

determining a new food source in the proximity of a particular food source depends on

the problem under consideration. If the quality of the new food source is better than the

current one then the employed bee moves to the new food source leaving the old one.

Otherwise, it remains at the old food source. When all the employed bees finish this

process, then employed bee phase ends and onlooker bee phase begins.

Onlooker bee phase starts with sharing of information by employed bees about

their food sources with the onlookers. Onlookers select the food sources according

to their quality, i.e., higher the value of the fitness of the solution represented by a

food source, higher will be the chances of its selection. As a result of such a

selection, good quality food sources will get more chance for selection by the

onlookers. After all onlookers select the food sources, they determine the food

sources in the proximity of their selected food sources in a manner similar to the

employed bees and evaluate their fitness. Among all the neighboring food sources

generated by the onlookers who chose food source i and the food source i itself, the

best quality food source is determined. This best food source will be updated as food

source i for the next iteration. The onlooker bee phase ends once all food sources are

updated, and then the next iteration of the ABC algorithm begins. The algorithm is

repeated until the termination condition is satisfied.

If a solution associated with any employed bee does not improve over some

specific number of iterations, then that food source is considered as exhausted and

it is discarded by its associated employee bee and that employee bee becomes

scout. Such scouts are converted back into employed bees by associating them

with newly generated solutions. Usually, these new solutions are generated

randomly in the same manner as initial employed bee solutions or by perturbing

an existing solution.

Clearly, every solution is given a fair chance to improve itself in the employed bee

phase. On the other hand, in the onlooker bee phase, because of the selection policy

used by the onlookers as mentioned above good quality solutions get more chance to

improve themselves in comparison to poor quality solutions. This inclination towards

selecting good quality solutions may produce better quality solutions faster, as there

are higher chances of finding even better solutions within the proximity of good

solutions in comparison to poor ones. However, if a solution is locally optimal, then no

better solution exists in its proximity and any attempt to improve it will be futile. The

concept of scout bees helps in this situation. Instead of determining whether a solution

is locally optimal or not with respect to the whole neighborhood which can be a

computationally expensive process, a solution is deemed to be locally optimal if has

not improved over certain number of iterations. This solution is discarded by making

its associated employed bee a scout. A new solution is generated for this scout bee to

make it employed again. Hence, the concept of scout bees helps in getting rid of
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solutions which has not improved since long and which can be locally optimal. For a

search process to be robust, the balance between the exploration and exploitationmust

be maintained. In the ABC algorithm, employed bees and onlooker bees carry out the

exploitation, whereas scout bees are responsible for exploration. The number of

iterations without improvement in the ABC algorithm after which an employed bee

leaves a solution and becomes a scout needs to be set appropriately so as to maintain a

proper balance between exploration and exploitation.

4 ABC approach for the p-median problem with positive/negative
weights

In this section, we present our ABC approach for the p-median problem with

positive/negative weights. Subsequent subsections describe the salient features of

our ABC approach.

4.1 Solution representation and fitness

We have represented a solution directly by the subset of vertices used for locating

the facilities and used the objective function as the fitness function. So for model P1,

fitness is determined using Eq. 3, whereas for model P2, fitness is determined using

Eq. 4. Please note the less value of the fitness function means a more fit solution.

The two models for the proposed p-median problem will differ in the assignment of

demand points to the facilities. In model P1, vertices with positive weights are

assigned to the nearest facility and vertices with negative weights are assigned to the

farthest facility. On the other hand, in model P2 vertices with both positive and

negative weights are assigned to the closest facility.

4.2 Food source selection for onlooker bees

For selecting a food source for an onlooker bee,we have employed the binary tournament

selection method. In the binary tournament selection method, two food sources are

selected randomly and their fitness is compared. The better of the two food sources as per

their fitness is selected with the probability ponl. Otherwise, the worse of the two food

sources is selected, i.e., the probability of selection of worse solution is 1� ponl. The

Pseudo-code for the binary tournament selection method is as follows:

select two solutions e1 and e2 form the employed bee solutions randomly;
generate a random number r between 0 and 1;
if r ≤ ponl then

return the best solution between e1 and e2;

else
return the worst solution between e1 and e2;

Algorithm 1: Pseudo code for binary tournament selection method
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4.3 Initial solution

The initial solution for our ABC algorithm is generated using the random method.

One location for facility is selected at a time, randomly from the vertex set V and

this process is repeated until p facilities are located.

4.4 Neighboring solution generation

Our neighboring solution generation process is inspired by the genetic operators

used in [15]. To generate a solution Y 0 in the neighborhood of solution Y, we choose

another solution Y1 randomly from the population and copy those locations of

facilities which are common in both solutions Y and Y1 into Y 0. Then a fraction Fr

(with Fr [ 0:5) of the remaining locations for facilities are added from solution Y,

and the rest are added from solution Y1. Here, Fr is a parameter to be determined

empirically. To add a new location to the solution Y 0, we always add the location

which yields the smallest objective function value (assuming only that many

facilities need to be opened). If the two solutions Y and Y1 are identical, i.e., all the

facility locations in two solutions are same then there is no point in copying all the

location to Y 0 as doing so will produce another solution identical to Y and Y1. This

situation is known as collision in ABC algorithm jargon [38]. If a collision occurs

while generating a neighboring solution for an employee bee then original solution

is abandoned and the concerned employee bee becomes a scout. Then a new

solution is generated randomly in a fashion similar to an initial solution for this

scout bee and its status is again changed back to employed by associating it with this

new solution. This is done to get rid of one duplicate solution. If collision occurs

while generating neighboring solution for an onlooker bee then another solution is

chosen randomly. If again collision occurs then again a solution is chosen randomly.

This process continues till a solution different from original solution is found. The

reason behind handling the collision for an onlooker bee in a manner different from

an employed bee lies in the fact that it is worthless to generate a solution randomly

for an onlooker bee. This is so because an onlooker bee solution can survive only

when it is better than the original solution and solutions of all other onlooker bees

which are associated with this original solution. Obviously, it is highly improbable

that a randomly generated solution is better than all these solutions.

In a bid to further improve the neighboring solution obtained through the afore-

mentioned method, we have used 1-interchange heuristic. In this heuristic method,

we replace one vertex in the solution Y 0 by a vertex which is not present in it and

which results in maximum reduction in objective function value. We randomly

select one vertex in Y 0 and find a vertex in V � Y 0f g, which results in maximum

reduction in objective function value. This method is computationally expensive,

because of the large number of fitness calculations performed each time it is applied.

However, it aids more often than not in improving the quality of a solution. To

balance the computational cost and degree of improvement, we have applied

1-interchange heuristic K times on every solution, where K is a parameter to be

determined empirically.
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4.5 Other features

If there is no improvement in the quality of a food source over a specified number of

iterations say limit, then the employed bee associated with that food source leaves it

and becomes a scout. This scout is associated with a newly generated food source so

that it can become employed again. This food source is generated randomly in the

same manner as an initial solution. After generating a food source, this scout again

becomes employed. The limit is an important control parameter of ABC algorithm.An

employed bee can also become a scout, as mentioned in Sect. 4.4 through collision. So

the number of scouts in a particular iteration depends on these two conditions and there

is no lower and upper limits on the number of scouts in an iteration.

Algorithm 2: Pseudo-Code of our Hybrid ABC Algorithm
randomly generate ne employed bee solutions e1, e2, . . . , ene ;
for i := 1 to L do

best soli := ith best solutions among e1, e2, . . . , ene ;

while termination condition is not satisfied do
for i := 1 to ne do

e := generate neighbor(ei);
for j = 1 to K do

e := 1-interchange(e )

if e is better than ei then
ei := e

for j = 1 to L do
if e is better than best solj then

best solj := e ;

;

break;

for i := 1 to no do
ki := binary tournament(e1 , e2, . . . , ene );
onli := generate neighbor(eki

);
for j = 1 to K do

onli := 1-interchange(onli)

for j := 1 to L do
if onli is better than best solj then

best solj := onli;
break;

for i = 1 to no do
if onli is better than eki

then
eki

:=onli

for i = 1 to ne do
if ei has not improved over last limit iterations then

replace ei with a random solution;

for i := 1 to L do
best soli := local search(best soli);

best := best solution among best sol1, best sol2, . . . , best solL;
return best;
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4.6 Local search

Once the ABC algorithm finishes execution, a local search is applied on the L best

solutions found by the ABC algorithm in a bid to further improve their solution

quality. In this local search, each vertex y in a solution Y is tried to be exchanged

one-by-one with a vertex not in Y so that the value of the objective function is

reduced by the largest amount. This process is repeated till the objective function

can not be improved further. The 1-interchange heuristic, where only K (\p)

randomly chosen vertices instead of all are tried for exchange, can be considered as

a lighter variant of this local search.

Algorithm 2 provides the pseudo-code of our hybrid ABC approach where

generate_neighbor(Y), 1-interchange(Y) and local_search(Y) are three functions

that take as input a solution Y and return respectively a solution in the neighborhood

of Y (first paragraph in Sect. 4.4), a solution obtained after applying 1-interchange

heuristic on Y (second paragraph in Sect. 4.4), a solution obtained after applying

local search on solution Y (Sect. 4.6). binary_tournament(e1; e2; . . .; ene ) is another
function that selects a solution among employed bee solutions e1; e2; . . .; ene using
binary tournament selection method (Sect. 4.2) and returns the index of the solution

selected.

4.7 Key points of difference with a related work

Basti and Sevkli [3] have proposed an artificial bee colony algorithm for the

classical p-median problem. This subsection highlights the key differences between

their approach and our proposed approach:

– Basti and Sevkli [3] have used a real vector of length n to encode a solution in

their ABC algorithm. To decode a solution from this real vector, indices

corresponding to smallest p values in this vector are found and demand points

corresponding to these indices are assumed to be the location of facilities. On

the other hand, in our ABC algorithm, we have represented a solution directly by

the subset of vertices used for locating the facilities, hence the length of a

solution is equal to p (p\n). The encoding scheme of [3] suffers from problem

of redundancy, i.e., the same solution can be encoded in many different ways. In

fact, in the encoding scheme of [3], each solution can be represented in infinitely

many ways. As ABC algorithm works in the space of encoded solutions, in the

presence of redundancy, it has to search a larger space which can severely

impair its performance. On the other hand, encoding scheme used by us does not

suffer from the problem of redundancy as each solution is represented uniquely.

The size of search space in [3] is infinite, whereas in our case it is n
p

� �
. Besides,

the length of an encoded solution has an adverse impact on the efficiency of

several operators associated with ABC algorithm. With respect to this aspect

also, our encoding is better as p\n.

– Real vector encoding scheme of [3] incurs a decoding overhead to get the actual

solution from its encoded version. In our case, no decoding overhead is incurred
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as each solution is represented directly by the subset of vertices used for locating

the facilities

– As Basti and Sevkli [3] used a real vector to encode a solution, they followed the

original neighboring solution generation method proposed by Karaboga [21],

i.e., a neighboring solution is generated by changing the value of one randomly

chosen parameter of the original solution. On the other hand, our neighboring

solution generation method is based on the assumption that if a vertex is present

in one good solution then there are chances that the same vertex may appear in

many good solutions. Hence, we have given maximum attention to those

vertices which are common in original solution and randomly selected solution,

followed by those vertices which are in one of these solutions.

– Basti and Sevkli used roulette wheel selection method for selecting a solution

for an onlooker bee. We have used binary tournament selection method for

selecting a solution for an onlooker bee. Its an established fact that binary

tournament selection method performs better than roulette wheel selection

method and at the same time its computationally less expensive. In fact, it has

roughly the same performance as rank selection method [18].

– In their work, a greedy local search algorithm is applied on every solution

generated by the ABC algorithm. While applying this local search on a solution,

facility locations are considered one-by-one. The facility location in consider-

ation is tried for replacement with all other non facility locations. The location

that yields the least objective function value is retained and then the next facility

location is considered. Our 1-interchange heuristic is similar. However, instead

of trying all facilities one-by-one, only K\p facilities are tried for replacement

to cut the computational cost. Facilities to be tried for replacement are selected

randomly. In addition, in our work, another local search is applied on L best

solutions obtained after the execution of ABC algorithm. This local search is

also similar to the local search of Basti and Sevkli except for the fact that we

keep applying this local search repeatedly as long as there is improvement in

solution quality, i.e., our local search stops when a complete pass through the

existing facility locations fails to improve the solution quality.

5 Computational results

Our hybrid ABC approach has been implemented in C and executed on a Linux

based Intel Core i5 2400 system with 4 GB RAM running at 3.10 GHz. In all our

computational experiments, the number of employed bees (ne) is taken to be 25, the

number of onlooker bees (no) is taken to be 50, ponl is set to 0.85, limit is set to 50,

Fr is set to
2
3
, K is set to 2 and L is set to 5. Our hybrid ABC approach terminates

after 100 iterations. All these parameter values were chosen empirically after a large

number of trials.

We have compared our hybrid ABC approach with two best approaches, viz. GA

[15] and ACO [16] approaches. For this comparison, we have used the same 40 test
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instances as used in Fathali [15] and Fathali et al. [16]. These instances are slightly

modified version of the uncapacitated p-median problem instances available for

download from OR-Library1. Slight modification is done in these instances to

accommodate negative weights. Vertices weights in these instances is restricted to

�1 only. Further, the negative weight of �1 is assigned to only the first 2 or first 5

or first 10 vertices and to all odd numbered vertices. The case where first 5 vertices

have negative weights was considered in Fathali [15] only, whereas the case where

first 2 vertices have negative weights was considered in Fathali et al. [16] only. All

other cases are considered by both the papers. Hence, the results for GA and ACO

are not available for instances with 2 negative weights and 5 negative weights

respectively. Like GA and ACO approaches, we have executed our hybrid ABC

approach 5 times on each instance and reported the average results.

Tables 1, 3, 4, 5, 6, 7, 8, 9 and 10 present the results of ABC algorithm on various

types of instances and compare them with those of genetic algorithm (GA) and ant

colony algorithm (ACO) methods. Table 1 reports the results of various approaches

on instances with positive weights. This table also reports the average total CPU

times in seconds of GA, ACO and ABC approaches on each instance with positive

weights. However, for models P1 and P2, we have reported the total CPU time that

is averaged over all the instances that are derived from the same instance of the

uncapacitated p-median problem. This is done to ensure conformity with Fathali

[15] and Fathali et al. [16]. Table 2 reports these times and next paragraph further

explains how these times have been computed. Tables 3, 4, 5 and 6 report the results

of various approaches for model P1 on instances with 2 negative weights, 5 negative

weights, 10 negative weights and half negative weights respectively, whereas

Tables 7, 8, 9 and 10 does the same for model P2. As mentioned already,

performances of GA and ACO were not evaluated on instances with 2 negative

weights and 5 negative weights respectively, and hence, Tables 3 and 7 report the

results of ABC and ACO only, whereas Tables 4 and 8 report the results of ABC

and GA only. Results for GA and ACO are taken from their respective papers. The

columns under the common heading Objective function value report the objective

function value averaged over 5 runs for various approaches, whereas columns under

the common heading% Error report the relative error of various approaches on each

instance. The relative error is defined as follows:

f � fO=B

fO=B
�� �� � 100

where f is the objective function value obtained by the algorithm and fO=B is the

optimal or the best known value so far obtained. Optimal values are known only for

the instances with positive weights. For other types of instances, proven optimal

values are not known. Moreover, for some instances, our ABC approach has found a

value better than the best known value. In such cases, we have replaced the best

known value with new best known value found by our ABC algorithm. Such cases

are reported in bold font in these tables.

1 http://www.brunel.ac.uk/*mastjjb/jeb/info.html
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Table 3 The results of various

approaches on instances with 2

negative weights under model

P1

Instance N P Objective function value % Error

Best ACO ABC ACO ABC

1 100 5 5300 5300 5300 0.00 0.00

2 100 10 3724 3724 3724 0.00 0.00

3 100 10 3541 3541 3541 0.00 0.00

4 100 20 2450 2450 2450 0.00 0.00

5 100 33 878 878 878 0.00 0.00

6 200 5 7485 7485 7485 0.00 0.00

7 200 10 5311 5327 5311 0.30 0.00

8 200 20 4050 4050 4050 0.00 0.00

9 200 40 2458 2471 2458 0.53 0.00

10 200 67 986 986 986 0.00 0.00

11 300 5 7522 7522 7522 0.00 0.00

12 300 10 6494 6494 6494 0.00 0.00

13 300 30 4122 4122 4122 0.00 0.00

14 300 60 2679 2679 2679 0.00 0.00

15 300 100 1534 1534 1534 0.00 0.00

16 400 5 7994 7994 7994 0.00 0.00

17 400 10 6899 6899 6899 0.00 0.00

18 400 40 4569 4569 4569 0.00 0.00

19 400 80 2691 2691 2695 0.00 0.15

20 400 133 1615 1615 1616 0.00 0.06

21 500 5 9044 9044 9044 0.00 0.00

22 500 10 8444 8444 8444 0.00 0.00

23 500 50 4475 4475 4475 0.00 0.00

24 500 100 2805 2805 2810 0.00 0.18

25 500 167 1633 1633 1635 0.00 0.12

26 600 5 9803 9803 9803 0.00 0.00

27 600 10 8190 8190 8190 0.00 0.00

28 600 60 4339 4343 4339 0.09 0.00

29 600 120 2913 2913 2913 0.00 0.00

30 600 200 1840 1840 1842 0.00 0.11

31 700 5 10,015 10,015 10,015 0.00 0.00

32 700 10 9211 9211 9211 0.00 0.00

33 700 70 4575 4575 4576 0.00 0.02

34 700 140 2830 2830 2830 0.00 0.00

35 800 5 10,319 10,319 10,319 0.00 0.00

36 800 10 9862 9862 9862 0.00 0.00

37 800 80 4921 4921 4921 0.00 0.00

38 900 5 10,993 10,993 10,993 0.00 0.00

39 900 10 9347 9347 9347 0.00 0.00

40 900 90 5029 5031 5029 0.04 0.00
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Table 4 The results of various

approaches on instances with 5

negative weights under model

P1

Instance N P Objective function value % Error

Best GA ABC GA ABC

1 100 5 4681 4730 4730 1.05 1.05

2 100 10 2915 2915 2916 0.00 0.03

3 100 10 2529 2529 2532 0.00 0.12

4 100 20 1432 1432 1464 0.00 2.23

5 100 33 61 61 61 0.00 0.00

6 200 5 7061 7061 7064 0.00 0.04

7 200 10 4812 4846 4858 0.71 0.96

8 200 20 3399 3399 3433 0.00 1.00

9 200 40 1918 1919 1918 0.05 0.00

10 200 67 514 514 514 0.00 0.00

11 300 5 7290 7290 7290 0.00 0.00

12 300 10 6201 6201 6201 0.00 0.00

13 300 30 3798 3798 3808 0.00 0.26

14 300 60 2263 2269 2263 0.27 0.00

15 300 100 1151 1153 1151 0.17 0.00

16 400 5 7787 7787 7787 0.00 0.00

17 400 10 6723 6735 6727 0.18 0.06

18 400 40 4219 4219 4221 0.00 0.05

19 400 80 2420 2420 2421 0.00 0.04

20 400 133 1346 1346 1349 0.00 0.22

21 500 5 8888 8888 8897 0.00 0.10

22 500 10 8230 8230 8230 0.00 0.00

23 500 50 4256 4256 4288 0.00 0.75

24 500 100 2538 2538 2542 0.00 0.16

25 500 167 1394 1394 1400 0.00 0.43

26 600 5 9655 9655 9655 0.00 0.00

27 600 10 8038 8038 8038 0.00 0.00

28 600 60 4043 4043 4055 0.00 0.30

29 600 120 2698 2698 2727 0.00 1.07

30 600 200 1603 1604 1603 0.06 0.00

31 700 5 9909 9909 9909 0.00 0.00

32 700 10 8935 8955 8955 0.22 0.22

33 700 70 4411 4411 4424 0.00 0.29

34 700 140 2605 2605 2628 0.00 0.88

35 800 5 10,230 10,230 10,230 0.00 0.00

36 800 10 9735 9735 9742 0.00 0.07

37 800 80 4723 4723 4742 0.00 0.40

38 900 5 10,860 10,860 10,860 0.00 0.00

39 900 10 9070 9070 9070 0.00 0.00

40 900 90 4862 4862 4881 0.00 0.39
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Table 5 The results of various approaches on instances with 10 negative weights under model P1

Instance N P Best Objective function value % Error

GA ACO ABC GA ACO ABC

1 100 5 3611 3611 3611 3611 0.00 0.00 0.00

2 100 10 1247 1247 1247 1247 0.00 0.00 0.00

3 100 10 1029 1029 1029 1029 0.00 0.00 0.00

4 100 20 -52 -52 -52 -52 0.00 0.00 0.00

5 100 33 -1143 -1143 -1143 -1143 0.00 0.00 0.00

6 200 5 6374 6374 6374 6374 0.00 0.00 0.00

7 200 10 4095 4095 4095 4095 0.00 0.00 0.00

8 200 20 2575 2575 2575 2575 0.00 0.00 0.00

9 200 40 1085 1088 1091 1085 0.28 0.55 0.00

10 200 67 -204 -204 -204 -204 0.00 0.00 0.00

11 300 5 6756 6756 6756 6756 0.00 0.00 0.00

12 300 10 5610 5610 5610 5610 0.00 0.00 0.00

13 300 30 3193 3193 3193 3193 0.00 0.00 0.00

14 300 60 1480 1480 1489 1480 0.00 0.61 0.00

15 300 100 632 635 632 632 0.47 0.00 0.00

16 400 5 7426 7426 7426 7426 0.00 0.00 0.00

17 400 10 6292 6292 6292 6292 0.00 0.00 0.00

18 400 40 3693 3693 3693 3693 0.00 0.00 0.00

19 400 80 2012 2013 2012 2013 0.05 0.00 0.05

20 400 133 910 910 910 911 0.00 0.00 0.11

21 500 5 8630 8630 8630 8630 0.00 0.00 0.00

22 500 10 7765 7765 7845 7765 0.00 1.03 0.00

23 500 50 3795 3795 3795 3795 0.00 0.00 0.00

24 500 100 2151 2151 2151 2153 0.00 0.00 0.09

25 500 167 990 990 990 994 0.00 0.00 0.40

26 600 5 9400 9400 9400 9400 0.00 0.00 0.00

27 600 10 7651 7651 7651 7651 0.00 0.00 0.00

28 600 60 3576 3576 3578 3577 0.00 0.06 0.03

29 600 120 2358 2359 2358 2360 0.04 0.00 0.08

30 600 200 1196 1199 1196 1196 0.25 0.00 0.00

31 700 5 9519 9688 9688 9688 1.78 1.78 1.78

32 700 10 8362 8418 8418 8418 0.67 0.67 0.67

33 700 70 4142 4144 4147 4142 0.05 0.12 0.00

34 700 140 2219 2219 2219 2220 0.00 0.00 0.05

35 800 5 10,039 10,039 10,039 10,039 0.00 0.00 0.00

36 800 10 9415 9415 9415 9415 0.00 0.00 0.00

37 800 80 4384 4384 4384 4385 0.00 0.00 0.02

38 900 5 10,696 10,696 10,696 10,696 0.00 0.00 0.00

39 900 10 8535 8535 8535 8535 0.00 0.00 0.00

40 900 90 4595 4595 4599 4596 0.00 0.09 0.02
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Table 6 The results of various approaches on instances with half negative weights under model P1

Instance N P Best Objective function value % Error

GA ACO ABC GA ACO ABC

1 100 5 -7651 -7651 -7651 -7651 0.00 0.00 0.00

2 100 10 -9445 -9445 -9445 -9445 0.00 0.00 0.00

3 100 10 -12,398 -12,398 -12,398 -12,398 0.00 0.00 0.00

4 100 20 -11,507 -11,507 -11,507 -11,507 0.00 0.00 0.00

5 100 33 -10,930 -10,811 -10,811 -10,930 1.09 1.09 0.00

6 200 5 -9971 -9971 -9971 -9971 0.00 0.00 0.00

7 200 10 -10,403 -10,403 -10,403 -10,403 0.00 0.00 0.00

8 200 20 -13,912 -13,912 -13,901 -13,912 0.00 0.08 0.00

9 200 40 -13,997 -13,997 -13,997 -13,997 0.00 0.00 0.00

10 200 67 -12,437 -12,437 -12,437 -12,437 0.00 0.00 0.00

11 300 5 -10,271 -10,271 -10,271 -10,271 0.00 0.00 0.00

12 300 10 -14,850 -14,850 -14,850 -14,850 0.00 0.00 0.00

13 300 30 -13,557 -13,557 -13,557 -13,557 0.00 0.00 0.00

14 300 60 -17,676 -17,676 -17,676 -17,676 0.00 0.00 0.00

15 300 100 -14,437 -14,437 -14,437 -14,437 0.00 0.00 0.00

16 400 5 -10,792 -10,792 -10,792 -10,792 0.00 0.00 0.00

17 400 10 -11,583 -11,583 -11,583 -11,583 0.00 0.00 0.00

18 400 40 -16,286 -16,286 -16,286 -16,286 0.00 0.00 0.00

19 400 80 -14,200 -14,200 -14,200 -14,199 0.00 0.00 0.01

20 400 133 -16,362 -16,362 -16,361 -16,362 0.00 0.01 0.00

21 500 5 -11,296 -11,296 -11,296 -11,296 0.00 0.00 0.00

22 500 10 -16,588 -16,588 -16,588 -16,588 0.00 0.00 0.00

23 500 50 -15,272 -15,272 -15,272 -15,271 0.00 0.00 0.01

24 500 100 -17,427 -17,221 -17,221 -17,427 1.18 1.18 0.00

25 500 167 -17,924 -17,924 -17,922 -17,923 0.00 0.01 0.01

26 600 5 -13,060 -13,060 -13,060 -13,060 0.00 0.00 0.00

27 600 10 -16,204 -16,204 -16,179 -16,204 0.00 0.15 0.00

28 600 60 -22,970 -22,970 -22,970 -22,970 0.00 0.00 0.00

29 600 120 -17,796 -17,796 -17,796 -17,796 0.00 0.00 0.00

30 600 200 -21,333 -21,333 -21,333 -21,332 0.00 0.00 0.00

31 700 5 -11,466 -11,396 -11,396 -11,396 0.61 0.61 0.61

32 700 10 -30,465 -30,465 -30,456 -30,465 0.00 0.03 0.00

33 700 70 -16,917 -16,914 -16,917 -16,917 0.02 0.00 0.00

34 700 140 -24,017 -23,803 -23,805 -24,017 0.89 0.88 0.00

35 800 5 -14,709 -14,709 -14,709 -14,709 0.00 0.00 0.00

36 800 10 -21,934 -21,934 -21,934 -21,934 0.00 0.00 0.00

37 800 80 -21,038 -21,038 -21,036 -21,036 0.00 0.01 0.01

38 900 5 -21,059 -21,059 -21,059 -21,059 0.00 0.00 0.00

39 900 10 -38,980 -38,980 -38,980 -38,980 0.00 0.00 0.00

40 900 90 -19,350 -19,350 -19,350 -19,347 0.00 0.00 0.02
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Table 7 The results of various

approaches on instances with 2

negative weights under model

P2

Instance N P Objective function value % Error

Best ACO ABC ACO ABC

1 100 5 5499 5499 5499 0.00 0.00

2 100 10 4009 4029 4009 0.50 0.00

3 100 10 3920 3920 3920 0.00 0.00

4 100 20 2845 2845 2845 0.00 0.00

5 100 33 1292 1292 1292 0.00 0.00

6 200 5 7590 7590 7590 0.00 0.00

7 200 10 5457 5471 5457 0.26 0.00

8 200 20 4281 4281 4281 0.00 0.00

9 200 40 2702 2713 2702 0.41 0.00

10 200 67 1213 1213 1214 0.00 0.08

11 300 5 7574 7574 7574 0.00 0.00

12 300 10 6584 6584 6584 0.00 0.00

13 300 30 4259 4259 4259 0.00 0.00

14 300 60 2888 2897 2888 0.31 0.00

15 300 100 1706 1706 1706 0.00 0.00

16 400 5 8034 8034 8034 0.00 0.00

17 400 10 6943 6945 6943 0.03 0.00

18 400 40 4713 4713 4713 0.00 0.00

19 400 80 2815 2815 2817 0.00 0.07

20 400 133 1747 1747 1749 0.00 0.11

21 500 5 9100 9100 9100 0.00 0.00

22 500 10 8487 8487 8487 0.00 0.00

23 500 50 4577 4577 4577 0.00 0.00

24 500 100 2923 2923 2927 0.00 0.14

25 500 167 1777 1777 1779 0.00 0.11

26 600 5 9827 9827 9827 0.00 0.00

27 600 10 8217 8217 8217 0.00 0.00

28 600 60 4453 4457 4453 0.09 0.00

29 600 120 3016 3016 3019 0.00 0.10

30 600 200 1973 1973 1976 0.00 0.15

31 700 5 10,038 10,038 10,038 0.00 0.00

32 700 10 9251 9251 9251 0.00 0.00

33 700 70 4654 4654 4656 0.00 0.04

34 700 140 2956 2956 2956 0.00 0.00

35 800 5 10,336 10,336 10,336 0.00 0.00

36 800 10 9897 9931 9897 0.34 0.00

37 800 80 5015 5015 5017 0.00 0.04

38 900 5 11,014 11,014 11,014 0.00 0.00

39 900 10 9350 9377 9377 0.29 0.29

40 900 90 5111 5114 5111 0.06 0.00
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Table 8 The results of various

approaches on instances with 5

negative weights under model

P2

Instance N P Objective function value % Error

Best GA ABC GA ABC

1 100 5 5324 5324 5324 0.00 0.00

2 100 10 3696 3696 3696 0.00 0.00

3 100 10 3592 3592 3592 0.00 0.00

4 100 20 2460 2460 2460 0.00 0.00

5 100 33 994 994 994 0.00 0.00

6 200 5 7266 7266 7266 0.00 0.00

7 200 10 5224 5224 5224 0.00 0.00

8 200 20 4034 4034 4034 0.00 0.00

9 200 40 2539 2540 2539 0.04 0.00

10 200 67 1074 1077 1074 0.28 0.00

11 300 5 7440 7440 7440 0.00 0.00

12 300 10 6511 6511 6511 0.00 0.00

13 300 30 4187 4187 4187 0.00 0.00

14 300 60 2773 2785 2773 0.43 0.00

15 300 100 1576 1581 1576 0.32 0.00

16 400 5 7870 7870 7870 0.00 0.00

17 400 10 6849 6849 6849 0.00 0.00

18 400 40 4589 4589 4589 0.00 0.00

19 400 80 2737 2741 2737 0.15 0.00

20 400 133 1703 1703 1706 0.00 0.18

21 500 5 8980 8980 8980 0.00 0.00

22 500 10 8403 8403 8403 0.00 0.00

23 500 50 4520 4520 4520 0.00 0.00

24 500 100 2853 2853 2853 0.00 0.00

25 500 167 1735 1735 1738 0.00 0.17

26 600 5 9719 9719 9719 0.00 0.00

27 600 10 8137 8137 8137 0.00 0.00

28 600 60 4384 4385 4384 0.02 0.00

29 600 120 2965 2965 2965 0.00 0.00

30 600 200 1939 1939 1941 0.00 0.10

31 700 5 9915 9968 9968 0.53 0.53

32 700 10 9179 9179 9179 0.00 0.00

33 700 70 4619 4624 4619 0.11 0.00

34 700 140 2910 2913 2910 0.10 0.00

35 800 5 10,286 10,286 10,286 0.00 0.00

36 800 10 9803 9803 9803 0.00 0.00

37 800 80 4967 4967 4970 0.00 0.06

38 900 5 10,914 10,914 10,914 0.00 0.00

39 900 10 9305 9305 9305 0.00 0.00

40 900 90 5075 5075 5078 0.00 0.06
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Table 9 The results of various approaches on instances with 10 negative weights under model P2

Instance N P Best Objective function value % Error

GA ACO ABC GA ACO ABC

1 100 5 4826 4826 4826 4826 0.00 0.00 0.00

2 100 10 2976 2976 2976 2976 0.00 0.00 0.00

3 100 10 3341 3341 3341 3341 0.00 0.00 0.00

4 100 20 1854 1854 1854 1854 0.00 0.00 0.00

5 100 33 533 533 533 533 0.00 0.00 0.00

6 200 5 6787 6787 6787 6787 0.00 0.00 0.00

7 200 10 4949 4949 4949 4949 0.00 0.00 0.00

8 200 20 3812 3812 3812 3812 0.00 0.00 0.00

9 200 40 2389 2391 2392 2389 0.08 0.13 0.00

10 200 67 903 904 903 903 0.11 0.00 0.00

11 300 5 7136 7136 7136 7136 0.00 0.00 0.00

12 300 10 6395 6395 6395 6395 0.00 0.00 0.00

13 300 30 4011 4011 4011 4011 0.00 0.00 0.00

14 300 60 2564 2564 2564 2564 0.00 0.00 0.00

15 300 100 1457 1462 1457 1461 0.34 0.00 0.27

16 400 5 7624 7624 7624 7624 0.00 0.00 0.00

17 400 10 6668 6668 6668 6668 0.00 0.00 0.00

18 400 40 4437 4437 4437 4437 0.00 0.00 0.00

19 400 80 2629 2633 2629 2632 0.15 0.00 0.11

20 400 133 1621 1623 1621 1623 0.12 0.00 0.12

21 500 5 8800 8800 8800 8800 0.00 0.00 0.00

22 500 10 8291 8291 8291 8291 0.00 0.00 0.00

23 500 50 4337 4337 4337 4337 0.00 0.00 0.00

24 500 100 2748 2779 2779 2784 1.13 1.13 1.31

25 500 167 1636 1636 1636 1638 0.00 0.00 0.12

26 600 5 9528 9528 9528 9528 0.00 0.00 0.00

27 600 10 8004 8004 8004 8004 0.00 0.00 0.00

28 600 60 4296 4296 4296 4296 0.00 0.00 0.00

29 600 120 2896 2897 2896 2898 0.03 0.00 0.07

30 600 200 1850 1850 1851 1855 0.00 0.05 0.27

31 700 5 9820 9820 9820 9820 0.00 0.00 0.00

32 700 10 9053 9053 9053 9053 0.00 0.00 0.00

33 700 70 4566 4572 4566 4568 0.13 0.00 0.04

34 700 140 2833 2835 2833 2835 0.07 0.00 0.07

35 800 5 10,142 10,142 10,142 10,142 0.00 0.00 0.00

36 800 10 9637 9637 9637 9637 0.00 0.00 0.00

37 800 80 4875 4875 4878 4877 0.00 0.06 0.04

38 900 5 10,800 10,800 10,839 10,800 0.00 0.36 0.00

39 900 10 9201 9201 9201 9201 0.00 0.00 0.00

40 900 90 5026 5026 5028 5026 0.00 0.04 0.00
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Table 10 The results of various approaches on instances with half negative weights under model P2

Instance N P Best Objective function value % Error

GA ACO ABC GA ACO ABC

1 100 5 -635 -635 -635 -635 0.00 0.00 0.00

2 100 10 -1245 -1245 -1245 -1245 0.00 0.00 0.00

3 100 10 -1131 -1131 -1131 -1131 0.00 0.00 0.00

4 100 20 -1477 -1477 -1477 -1477 0.00 0.00 0.00

5 100 33 -1687 -1687 -1687 -1687 0.00 0.00 0.00

6 200 5 -1163 -1163 -1163 -1163 0.00 0.00 0.00

7 200 10 -1360 -1360 -1360 -1360 0.00 0.00 0.00

8 200 20 -1765 -1765 -1764 -1765 0.00 0.06 0.00

9 200 40 -2212 -2212 -2212 -2212 0.00 0.00 0.00

10 200 67 -1815 -1815 -1815 -1815 0.00 0.00 0.00

11 300 5 -797 -797 -797 -797 0.00 0.00 0.00

12 300 10 -1290 -1290 -1290 -1290 0.00 0.00 0.00

13 300 30 -1709 -1709 -1697 -1708 0.00 0.70 0.06

14 300 60 -2224 -2224 -2219 -2223 0.00 0.22 0.04

15 300 100 -2154 -2152 -2151 -2154 0.09 0.14 0.00

16 400 5 -932 -932 -932 -932 0.00 0.00 0.00

17 400 10 -1318 -1254 -1254 -1233 4.86 4.86 6.45

18 400 40 -2096 -2096 -2096 -2089 0.00 0.00 0.33

19 400 80 -2119 -2119 -2119 -2119 0.00 0.00 0.00

20 400 133 -2295 -2291 -2290 -2295 0.17 0.22 0.00

21 500 5 -687 -687 -622 -687 0.00 9.46 0.00

22 500 10 -1111 -1111 -1098 -1098 0.00 1.17 1.17

23 500 50 -1933 -1933 -1915 -1933 0.00 0.93 0.00

24 500 100 -2221 -2216 -2221 -2221 0.23 0.00 0.00

25 500 167 -2379 -2376 -2368 -2379 0.13 0.46 0.00

26 600 5 -820 -820 -820 -820 0.00 0.00 0.00

27 600 10 -1053 -1053 -1053 -1053 0.00 0.00 0.00

28 600 60 -2119 -2119 -2107 -2117 0.00 0.57 0.09

29 600 120 -2198 -2198 -2197 -2197 0.00 0.05 0.05

30 600 200 -2321 -2320 -2320 -2321 0.04 0.04 0.00

31 700 5 -748 -748 -748 -748 0.00 0.00 0.00

32 700 10 -1030 -1030 -975 -1030 0.00 5.34 0.00

33 700 70 -2009 -2009 -2009 -2005 0.00 0.00 0.20

34 700 140 -2437 -2436 -2427 -2437 0.04 0.41 0.00

35 800 5 -855 -855 -855 -855 0.00 0.00 0.00

36 800 10 -985 -985 -985 -985 0.00 0.00 0.00

37 800 80 -2278 -2278 -2263 -2276 0.00 0.66 0.09

38 900 5 -607 -607 -522 -607 0.00 14.0 0.00

39 900 10 -901 -901 -901 -901 0.00 0.00 0.00

40 900 90 -2347 -2347 -2343 -2347 0.00 0.17 0.00
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As mentioned in the previous paragraph, Table 2 reports the average total CPU

times in seconds of GA, ACO and ABC approaches for each of the two models (P1

and P2). The first three columns represents the problem number of the original

uncapacitated p-median problem, number of nodes and number of centres. columns

4–7 report the average time for model P1 and columns 8–11 report the average time

for the model P2. As explained earlier, performances of GA and ACO were not

evaluated on instances with 2 negative weights and 5 negative weights respectively.

Hence, to ensure fair comparison, we have computed average total CPU times for

our approach in two ways. For comparison with the GA, the averages are computed

using instances with 5 negative weights, 10 negative weights and half negative

weights, whereas for comparison with ACO, the averages are computed using

instances with 2 negative weights, 10 negative weights and half negative weights.

Hence, we have two columns labelled ABC for each of the two models. Columns 5

and 9 report the time of ABC approach for comparison with GA, whereas columns 7

and 11 report the time of ABC approach for comparison with ACO. Again, the data

for GA and ACO are taken from their respective papers.

Table 11 summarizes the results. This table reports for each approach on each

instance group of 40, the number of instances for which the approach in question

found result inferior to best known value (column W) and sumtotal of relative error

(column TE). This table also report the number of instances in each instance group

where our ABC approach found the new best known value (column BKV-I). Please

note that for instances with positive weights both models are equivalent and optimal

solutions are known. That is why a ‘-’ is placed for these instances under Model

and BKV-I columns.

From these tables, some interesting observation can be made. Results of different

approaches vary according to the types of instances. ABC approach improves the

best known values for more than 10 % of the instances (35 out of 320). Most of

these instances are those with relatively large value of p. Barring few exception,

there is not much difference in the performance of various approaches on the

instances with small values of p. Only when the value of p is large, the performance

of different approaches tend to differ significantly. However, none of the approaches

Table 11 Summary table
Model Weights GA ACO ABC BKV-I

W TE W TE W TE

– Positive 11 1.48 7 0.53 14 1.51 –

P1 2-neg – – 4 0.96 6 0.64 4

P1 5-neg 8 2.71 – – 24 11.12 4

P1 10-neg 8 3.59 8 4.91 11 3.30 2

P1 Half-neg 5 3.79 10 4.05 6 0.67 3

P2 2-neg – – 9 2.29 10 1.13 8

P2 5-neg 9 1.98 – – 6 1.10 8

P2 10-neg 9 2.16 6 1.77 10 2.42 1

P2 Half-neg 7 5.56 18 39.46 9 8.48 5
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can be considered as clearly superior to others on all types of instances with large

value of p. The difficulty of various approaches on instances with large value of p

can be explained theoretically also on the basis of the search space size. Actually,

there are n
p

� �
solutions and for the fixed n, the number of solutions increase with

increase in p till p ¼ bn
2
c. All the values of p in the instances considered here is less

than bn
2
c, and hence, the search space size increases with the increase in p for fixed

n. As the approaches have to search a larger search space, they find these instances

relatively difficult.

We can observe that our ABC approach performs better than ACO on 5 out of 7

instance groups in terms of total error, whereas reverse is true if we compare two

approaches in terms of number of instances where an approach fails to reach the best

known value. This shows that whenever ABC approach fails to reach the best

known value, its solution is closer to best known value in comparison to the solution

of ACO under similar situation. Overall, there are 62 and 66 instances (out of 280)

where ACO and ABC fail to reach the best known value. ACO approach perform

much worse in comparison to our ABC approach on instances with half negative

weights under both the models, whereas it performs the best in comparison to ABC

on instances with no negative weight.

On the other hand, GA fares better than ABC on both counts. There are 3

instance groups only where ABC performs better than GA in terms of total error,

whereas on remaining 4 groups GA performs better. There is only one instance

group where GA fails to reach the best known value on higher number of instances

than ABC. However, GA performs much worse in comparison to ABC in terms of

total error on instances with half negative weights under model P1.

As far as execution times of various approaches are concerned, GA and ACO

approaches were executed on a 1.7 GHz Pentium 4 system which is different from

the system used to execute our ABC approach. Therefore, execution times can not

be compared precisely. However, a rough comparison can always be made. Even

after compensating for differences in processing speed, we can safely say that our

approach is faster than GA on most of the instances. However, ACO is faster than

our approach.

6 Conclusions

In this paper, we have proposed an ABC algorithm based approach for solving the p-

median problem with positive and negative weights. We have compared the results

of our approach with two best approaches, viz. GA and ACO on the standard

benchmark instances of the problem. Comparison with ACO approach is specially

significant as both ABC and ACO are swarm intelligence based approaches. ABC

approach is able to improve the best known values for slightly more than 10 % of

the instances. Though the relative performance of different approaches vary

according to the types of instances, the overall performance of GA is clearly better

than ABC approach in terms of solution quality, but ABC approach is faster. On the

other hand, ABC approach is much better than ACO approach on instances where
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half of the weights are negative under both the models, but at the expense of larger

execution times.

As a future work, we would like to extend our ABC approach to capacitated p-

median problem. Similar approaches can be designed for other related facility

location problems also.
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