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Abstract In this article, we study a finite buffer single server variable batch ser-
vice queue where customers arrive according to a batch Markovian arrival process.
The server serves the customers with a variable batch size at the starting point of
services. When all the customers are served in the system exhaustively, the server
leaves for a vacation. Single as well as multiple vacation policies are analyzed. We
derive the queue length distributions at different epochs. Some important perfor-
mance measures such as blocking probabilities, mean queue lengths, mean waiting
time have been obtained. A variety of computational results are presented for
practitioners and others who would like to check their results with those of ours.
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1 Introduction

The BMAP/G/1 queue is a field of intensive research since several years. It has
been analyzed by Ramaswami [1], Lucantoni [2], Neuts [3], Takine and Takahashi
[4], Dudin et al. [5] and many others. TheBMAP , a special class of tractable Markov
renewal process, is a rich class of point processes that includes many well known
processes such as Poisson, PH-renewal processes, and Markov modulated Poisson
process. One of the most significant features of the BMAP is the underlying Marko-
vian structure and fits ideally in the context of matrix analytic solutions to stochastic
models. Matrix analytic methods were first introduced and studied by Neuts [6]. Pois-
son processes are the simplest and most tractable ones used extensively in stochastic
modeling. The idea of theBMAP is to significantly generalize the Poisson processes
and still keep the tractability for modeling purposes. Furthermore, in many practical
applications, notably in communications engineering, production and manufactur-
ing engineering, the arrivals do not usually form a renewal process. So, BMAP is a
convenient tool to model both renewal and non-renewal arrivals.

Batch service queues have been discussed extensively over the last few decades as
they have proven to be very useful in various fields such as production, transporta-
tion, and traffic processes (see, e.g., Chaudhry and Templeton [7], Chakravarthy [8],
Dudin and Chakravarthy [9], Powell and Humblet [10], Banerjee et al. [11], Maity
and Gupta [12], and the references therein). Similarly, batch arrival queues have also
been investigated extensively in the past and a huge amount of literature is available
on this topic (see, e.g., Choudhury and Madan [13], Jain and Upadhyaya [14], Kumar
and Arumuganathan [15], Sikdar et al. [16], and Xu et al. [17]). Several analytical
results on batch arrival/service queue can be found in the book by Chaudhry and
Templeton [7]. The situations where customers arrive in batches and are also served
in batches are referred to as bulk-arrival bulk-service queues and have scope of appli-
cations in communication systems such as ATM switching systems, circuit-switched
TDMA systems and traffic concentrators. In such systems messages (batches), which
consist of several fixed length packets (customers), arrive at switching multiplexer
(server) that transmits packets in batches of variable capacity according to some pro-
tocol to be decided at the beginning of the transmission. For example, the protocol
may be designed in such a way that, if at the beginning of transmission it’s transmis-
sion capacity is k (1 ≤ k ≤ B), where B is the maximum transmission capacity of
the multiplexer, it will transmit min (k, the whole queue) packets. At present, their
utility continues to expand in telecommunication systems where the processor pro-
cesses packets in batch. Figure 1 illustrates the data transmission in ATM switching
system.

Over the past three decades, queueing systems with server vacations have become
a matter of special interest, as they can be used to model server’s unavailability due to
various reasons, while staying within the framework of traditional models. The mod-
eling and analysis for the queueing systems with vacations have widely studied in
many real-life situations such as production/inventory systems, digital communica-
tion and computer network, etc. The readers find a through review of such literature
in Doshi [18], and the monographs of Takagi [19], Tian and Zhang [20] as well as the
references therein. The BMAP/G/1 queue with server vacations has been analyzed
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Fig. 1 Framework of ATM switching system

by Banik [21, 22], Banik and Samanta [23], Baek et al. [24], Ferrandiz [25], Matendo
[26], Schellhaas [27].

Another aspect which is frequently encountered in real applications is about avail-
ability of limited waiting space with the server. In this case, one of the main concerns
of a system designer is to provide a sufficient buffer space so that the loss probability
is kept minimal. To this end, it is essential to calculate the loss probability accurately.
There has been considerable effort in this direction and the readers are referred to the
book by Takagi [28]. The finite buffer BMAP/G/1/N queue with server vacations
have been analyzed by Niu et al. [29] and Banik et al. [30]. Niu et al. [29] have consid-
ered the BMAP/G/1/N queue with single- and multiple-vacation along with setup
and close-down times whereas Banik et al. [30] have studied the BMAP/G/1/N
queue with limited service discipline.

In this paper, we consider a finite buffer BMAP/GY /1/N queue where cus-
tomers are served by the single server in batches of random capacity Y = i (1 ≤
i ≤ B), to be decided at the beginning of the service, with probability yi , where B

is the maximum serving capacity of the server. The queue has finite buffer capacity
of size N (> B), so at any time maximum (N + B) customers can be present in the
system. In addition, server is allowed to take vacations if he finds an empty queue
at service completion epoch. Using the supplementary variable and the embedded
Markov chain techniques, we obtain the distributions of number of customers in the
queue at service completion, vacation termination, arbitrary and arrival epochs. Var-
ious performance measures such as average queue lengths, average waiting time in
the queue, probability of blocking, probability that the server is busy have been dis-
cussed. Finally, some numerical results have been presented in the form of tables and
graphs for a wide range of model parameters. It may be remarked that our model
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includes a wide class of queueing models since we considered correlated arrivals
(BMAP), general service time, and batch service with random capacity. In addition,
finite buffer queues are more important because most of the real-life applications
have finite spaces. Moreover, we can even analyze the infinite buffer queues using
the results of finite buffer queues by taking N sufficiently large.

The model discussed in this paper has potential application in several areas men-
tioned above. One specific practical application fitting our model is the following:
consider a manufacturing system where production orders arrive at the system in
batches of random size and form a single queue based on the order of their arrival.
Items are manufactured in batches of random size which is decided at the beginning
of the production process according to batch service rule discussed above. That is
when i (where i ∈ I+ is the production capacity) orders are present in the queue,
production begins and takes min(i, the whole queue length) orders at a time.
Whenever the production ends and no orders are present, the production facility is
shut down for a random length of time (vacation) which can be utilized for machine
maintenances or can be utilized for other secondary work.

This paper is organized as follows. In Section 2, we give the description of the
model. The steady-state queue length distributions at various epochs are analyzed for
single- and multiple-vacation policies in Sections 3 and 4, respectively. Some impor-
tant performance measures have been discussed in Section 5. Section 6 deals with
numerical results using the analytical results obtained in previous sections. Section 7
concludes the paper.

2 Model description

We consider a BMAP/GY /1/N single and multiple vacations queueing system
wherein customers arrive according to an m-state batch Markovian arrival process
(BMAP ) with representation {Dk, k ≥ 0} of order m. The BMAP in continuous
time is described as follows. Let the underlyingMarkov chain be irreducible and have
infinitesimal generatorD = ∑∞

k=0Dk . At the end of a sojourn time in phase i, that is,
exponentially distributed with parameter λi , there occurs a transition to another (or
possibly the same) phase and that transition may or may not correspond to an arrival.
With probability pij (0), 1 ≤ j ≤ m, j �= i, there will be a transition to phase j with-
out an arrival. With probability pij (k), 1 ≤ j ≤ m, k ≥ 1, there will be a transition
to phase j with a batch arrival of size k. Therefore, we have

m∑

j=1,j �=i

pij (0) +
∞∑

k=1

m∑

j=1

pij (k) = 1, 1 ≤ i ≤ m.

It is convenient to represent Dk , k ≥ 0, by letting (D0)ii = −λi , 1 ≤ i ≤ m,
(D0)ij = λipij (0), 1 ≤ i, j ≤ m, j �= i, and (Dk)ij = λipij (k), 1 ≤ i, j ≤ m, k ≥
1. The matrix D0 has strictly negative diagonal elements, non-negative off-diagonal
elements, row sums less than or equal to zero and we assume it is nonsingular. By
assuming D0 is a nonsingular matrix, the interarrival times are finite with probability
one and the arrival process does not terminate. Thus, D0 is an m × m matrix which
governs the phase transitions that correspond to no customer arrivals and Dk , k ≥ 1,
is an m × m matrix with non-negative elements, which governs the phase transitions
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that correspond to a batch arrival of size k. Let K(t) denote the number of arrivals
in (0, t] and J (t) be the phase of the underlying Markov chain at time t with state
space {i : 1 ≤ i ≤ m}. Then {K(t), J (t)} is a two-dimensional Markov process of
BMAP with state space {(n, i) : n ≥ 0, 1 ≤ i ≤ m}. The infinitesimal generator of
BMAP is given by

Q =

⎛

⎜
⎜
⎜
⎝

D0 D1 D2 D3 · · ·
0 D0 D1 D2 · · ·
0 0 D0 D1 · · ·
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎠

.

AsQ is the infinitesimal generator of the BMAP , we have
∑∞

k=0Dke = 0, where
e is a column vector of ones with an appropriate dimension. Further, since D =∑∞

k=0Dk is the infinitesimal generator of the underlying Markov chain {J (t)}, there
exits a stationary probability vector π such that πD = 0, πe = 1. Then the average
arrival rate λ∗ and average batch arrival rate λg of the stationary BMAP are given
by λ∗ = π

∑∞
k=1 kDke and λg = π

∑∞
k=1Dke, respectively.

Let {P(n, t), n ≥ 0, t ≥ 0} denote the m×m matrix whose (i, j)-th element is the
conditional probability defined as

Pij (n, t) = P {K(t) = n, J (t) = j |K(0) = 0, J (0) = i}, 1 ≤ i, j ≤ m.

The matrices P(n, t) satisfy the following system of difference-differential equations:

d

dt
P(0, t) = P(0, t)D0, t > 0, (1)

d

dt
P(n, t) = P(n, t)D0 +

n−1∑

k=0

P(k, t)Dn−k, n ≥ 1, t > 0, (2)

with P(0, 0) = Im and P(n, 0) = 0, n ≥ 1, where Im is the identity matrix of orderm.
Let N denote the waiting capacity of the system and B is the maximum serving

capacity of the server, so that not more than N + B customers can present in the
system at anytime. We assume that B < N . Since customers arrive in batches of
random size and buffer size is finite, we consider here the admission strategy for an
arrival batch is partial-batch acceptance strategy (PBAS). Customers accepted by the
system under PBAS are served by a single server who has a random capacity Y with
probability mass function P(Y = k) = yk , for k = 1, 2, . . . , B, and the probabil-
ity generating function Y (z) = ∑B

k=1 ykz
k with finite mean E[Y ] = ∑B

k=1 kyk . If
the queue length is less than the service capacity Y = k at the beginning of a ser-
vice, the server does not wait until the number of customers reaches k, but takes all
customers waiting in the queue for service at that time. That is, at the beginning of a
service with capacity k, the server takesmin(k, the whole queue length) customers
for service. Let S(x) {s(x)} [S∗(θ)] be the distribution function (DF) {probability
density function (pdf)} [Laplace-Stieltjes transform (LST)] of the service time
S of a batch. We assume that the distribution of service time of a batch does not
dependent on the size of the batch. In this connection, see Pradhan et al. [31] and ref-
erences therein. Let V (x) {v(x)} [V ∗(θ)] be the DF {pdf} [LST] of a vacation time V .
The mean service and vacation times are E[S] = −S∗(1)(0) and E[V ] = −V ∗(1)(0),
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respectively, where f ∗(1)(0) is the first derivative of f ∗(θ) at θ = 0. The traffic inten-
sity is given by ρ = λ∗E[S]/E[Y ]. Let us denote An and Mn, n ≥ 0, as the m × m

matrices defined by
An =

∫ ∞

0
P(n, x)dS(x), n ≥ 0, (3)

Mn =
∫ ∞

0
P(n, x)dV (x), n ≥ 0. (4)

The (i, j)-th element of An (Mn) represents the conditional probability that n cus-
tomers have been arrived to the system during a service (vacation) time of a batch
and the underlying Markov chain of BMAP is in phase j at the end of the service
(vacation) time given that the underlying Markov chain was in phase i at the begin-
ning of the service (vacation). Further, let us denote Ân = ∑∞

k=n Ak , 1 ≤ n ≤ N and
M̂N = ∑∞

k=N Mk .
Note that the derivations of An, Ân, Mn and M̂N are given in Appendices A and

B, when S(x) and V (x) follow phase type (PH) and deterministic distributions.

3 Single vacation

If the server finds no customers present in the queue at a service completion of a
batch, the server enters into the vacation state of random length V . At the end of the
vacation, if the server finds one or more customers waiting in the queue, the server
begins to serve them according to batch service rule. Otherwise, if the server sees
an empty system at the end of that vacation, the server stays in the system (called
dormant period) until at least one customer arrives. Such policy is known as single
vacation (SV ) policy.

3.1 Queue length distribution at service completion and vacation termination
epochs

Let �+(n) [�+(n)], 0 ≤ n ≤ N , be the 1 × m vector whose i-th component �+
i (n)

[�+
i (n)] is the probability that there are n customers in the queue at service comple-

tion [vacation termination] epoch and the batch arrival process in phase i. Consider
a Markov chain described by the state space � = {(n, j, 2) ∪ (n, j, 1) : 0 ≤ n ≤
N; 1 ≤ j ≤ m}, where the three tuple (n, j, 2) refers to a service period with 2
representing busy state, n referring the number of customers in the queue at service
completion epoch, j representing the phase of batch arrival; the three tuple (n, j, 1)
refers to a vacation period with 1 representing vacation state, n referring the number
of customers in the queue at vacation termination epoch, j representing the phase
of batch arrival. The corresponding transition probability matrix (TPM) P with four
block matrices of this Markov chain is given by

P =
[

�(N+1)m×(N+1)m �(N+1)m×(N+1)m
�(N+1)m×(N+1)m �(N+1)m×(N+1)m

]

,

where � describes the transitions among the service completion epochs, � gives the
transition from a service completion to the next vacation termination epoch, � refers
the transition from a vacation termination epoch to next service completion epoch
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and finally � describes the transitions among vacation termination epochs. Then P
can be written as

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 0 · · · 0 0 M0 M1 · · · MN−1 M̂N

L1,0 L1,1 · · · L1,N−B L1,N−B+1 · · · L1,N−1 L1,N 0 0 · · · 0 0
L2,0 L2,1 · · · L2,N−B L2,N−B+1 · · · L2,N−1 L2,N 0 0 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

LB,0 LB,1 · · · LB,N−B LB,N−B+1 · · · LB,N−1 LB,N 0 0 · · · 0 0
0 LB+1,1 · · · LB+1,N−B LB+1,N−B+1 · · · LB+1,N−1 LB+1,N 0 0 · · · 0 0
0 0 · · · LB+2,N−B LB+2,N−B+1 · · · LB+2,N−1 LB+2,N 0 0 · · · 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 · · · LN,N−B LN,N−B+1 · · · LN,N−1 LN,N 0 0 · · · 0 0
Q0 Q1 · · · QN−B QN−B+1 · · · QN−1 QN 0 0 · · · 0 0
L1,0 L1,1 · · · L1,N−B L1,N−B+1 · · · L1,N−1 L1,N 0 0 · · · 0 0
L2,0 L2,1 · · · L2,N−B L2,N−B+1 · · · L2,N−1 L2,N 0 0 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

LB,0 LB,1 · · · LB,N−B LB,N−B+1 · · · LB,N−1 LB,N 0 0 · · · 0 0
0 LB+1,1 · · · LB+1,N−B LB+1,N−B+1 · · · LB+1,N−1 LB+1,N 0 0 · · · 0 0
0 0 · · · LB+2,N−B LB+2,N−B+1 · · · LB+2,N−1 LB+2,N 0 0 · · · 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 · · · LN,N−B LN,N−B+1 · · · LN,N−1 LN,N 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where

Li,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B∑

k=1
ykAj , i = 1; 0 ≤ j ≤ N − 1,

B∑

k=1
ykÂN, i = 1; j = N,

B∑

k=i

ykAj +
i−1∑

k=max(1,i−j)

ykAj−i+k, 2 ≤ i ≤ B; 0 ≤ j ≤ N − 1,

B∑

k=i

ykÂN +
i−1∑

k=max(1,i−N)

ykÂN−i+k, 2 ≤ i ≤ B; j = N,

B∑

k=max(1,i−j)

ykAj−i+k, B+1 ≤ i ≤ N; i−B ≤ j ≤ N−1,

B∑

k=1
ykÂN−i+k, B + 1 ≤ i ≤ N; j = N,

Qj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B∑

i=1
Di

B∑

k=i

ykA0, j = 0,

B∑

i=1
Di

B∑

k=i

ykAj +
B∑

i=2
Di

i−1∑

k=max(1,i−j)

ykAj−i+k

+
min(B+j,N)∑

i=B+1
Di

B∑

k=max(1,i−j)

ykAj−i+k, 1 ≤ j ≤ N − 1,

B∑

i=1
Di

B∑

k=i

ykÂN +
B∑

i=2
Di

i−1∑

k=max(1,i−N)

ykÂN−i+k

+
N∑

i=B+1
Di

B∑

k=max(1,i−N)

ykÂN−i+k, j = N,
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with Dk = (−D0)
−1Dk, 1 ≤ k ≤ N − 1 and DN = (−D0)

−1D̂N , where D̂k =∑∞
n=k Dn, k ≥ 1. The (i, j)-th element of the matrixDk is the conditional probability

that a dormant period ends with an arrival of a batch of size k and the arrival process
is in phase j , given that the dormant period begins with the arrival process in phase i.

The probability vectors �+(n) and �+(n), 0 ≤ n ≤ N , of the number of
customers in the queue at service completion and vacation termination epochs can
be obtained by solving the system of equations [�+ �+]P = [�+ �+], and
[�+ �+]e = 1 using the GTH (Grassmann et al. [32]) algorithm given in Latouche
and Ramaswami [33, p. 123], where �+ = [�+(0),�+(1), . . . , �+(N)] and
�+ = [�+(0),�+(1), . . . , �+(N)].

3.2 Queue length distribution at arbitrary epoch

We are now in a position to obtain queue length distribution at arbitrary epoch. For
this we develop relations among distributions of number of customers in the queue
at service completion, vacation termination and arbitrary epochs. The state of the
system at time t is described by the following r.vs., namely

• Kq(t) = number of customers present in the queue excluding the batch in service,
• S̃(t) = the remaining service time of the batch in service,
• Ṽ (t) = the remaining vacation time of the server,
• J̃ (t) = the state of the underlying Markov chain of BMAP ,
• ξ(t)= the state of the server at time t, that is, ξ(t) =⎧

⎨

⎩

2, if the server is busy,
1, if the server is on vacation,
0, if the server is in dormancy.

Let us define their joint probabilities, for 1 ≤ i ≤ m, as

�i(n, x; t) dx = P(Kq(t) = n, J (t) = i, x < S̃(t) ≤ x + dx, ξ(t) = 2), 0 ≤ n ≤ N, x ≥ 0,

�i(n, x; t) dx = P(Kq(t) = n, J (t) = i, x < Ṽ (t) ≤ x + dx, ξ(t) = 1), 0 ≤ n ≤ N, x ≥ 0,

νi (0; t) = P(Kq(t) = 0, J (t) = i, ξ(t) = 0).

Further, in the steady-state, let�(n, x),�(n, x), and ν(0) be the row vectors of order
m whose i-th components are �i(n, x), �i(n, x) and νi(0), respectively. Relating
the states of the system at two consecutive time epochs t and (t + dt), and using
probabilistic arguments, we get a set of partial differential equations for each phase
i, (1 ≤ i ≤ m). Assuming that the steady-state exists and using matrices and vectors
notations, we obtain

− d

dx
�(0, x) = �(0, x)D0 + s(x)

B∑

k=1

[�(k, 0) + �(k, 0)]
B∑

l=k

yl + s(x) ν(0)
B∑

k=1

Dk

B∑

l=k

yl , (5)

− d

dx
�(n, x) =

n∑

k=0

�(k, x)Dn−k + s(x)

B∑

k=1

[�(n + k, 0) + �(n + k, 0)] yk

+s(x) ν(0)
B∑

k=1

Dn+kyk, 1 ≤ n ≤ N − B − 1, (6)
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− d

dx
�(n, x) =

n∑

k=0

�(k, x)Dn−k + s(x)

N−n∑

k=1

[�(n + k, 0) + �(n + k, 0)] yk

+s(x) ν(0)

(
N−1−n∑

k=1

Dn+kyk + D̂N yN−n

)

, N − B ≤ n ≤ N − 1, (7)

− d

dx
�(N, x) =

N−1∑

k=0

�(k, x)D̂N−k + �(N, x)D, (8)

− d

dx
�(0, x) = �(0, x)D0 + v(x)�(0, 0), (9)

− d

dx
�(n, x) =

n∑

k=0

�(k, x)Dn−k, 1 ≤ n ≤ N − 1, (10)

− d

dx
�(N, x) =

N−1∑

k=0

�(k, x)D̂N−k + �(N, x)D, (11)

0 = ν(0)D0 + �(0, 0). (12)

Let us define the Laplace-Stieltjes transform of �(n, x) and �(n, x) as

�∗(n, θ) =
∫ ∞

0
e−θx�(n, x) dx and �∗(n, θ) =

∫ ∞

0
e−θx�(n, x) dx, 0 ≤ n ≤ N, Re (θ) ≥ 0,

so that

�(n) ≡ �∗(n, 0) =
∫ ∞

0
�(n, x) dx and �(n) ≡ �∗(n, 0) =

∫ ∞

0
�(n, x) dx, 0 ≤ n ≤ N.

Now, multiplyingEq. 5 to Eq. 11 by e−θx and integratingw.r.t. x over 0 to ∞, we get

− θ�∗(0, θ) + �(0, 0) = �∗(0, θ)D0 + S∗(θ)

B∑

k=1

[�(k, 0) + �(k, 0)]
B∑

l=k

yl

+S∗(θ) ν(0)
B∑

k=1

Dk

B∑

l=k

yl, (13)

−θ�∗(n, θ) + �(n, 0) =
n∑

k=0

�∗(k, θ)Dn−k + S∗(θ)

B∑

k=1

[�(n + k, 0) + �(n + k, 0)]yk

+S∗(θ) ν(0)
B∑

k=1

Dn+k yk, 1 ≤ n ≤ N − B − 1, (14)

−θ�∗(n, θ) + �(n, 0) =
n∑

k=0

�∗(k, θ)Dn−k + S∗(θ) ν(0)

(
N−1−n∑

k=1

Dn+kyk + D̂NyN−n

)

+S∗(θ)

N−n∑

k=1

[�(n+k, 0) + �(n+k, 0)]yk, N−B ≤n ≤ N−1,(15)

−θ�∗(N, θ) + �(N, 0) =
N−1∑

k=0

�∗(k, θ)D̂N−k + �∗(N, θ)D, (16)
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− θ�∗(0, θ) + �(0, 0) = �∗(0, θ)D0 + V ∗(θ) �(0, 0), (17)

−θ�∗(n, θ) + �(n, 0) =
n∑

k=0

�∗(k, θ)Dn−k, 1 ≤ n ≤ N − 1, (18)

−θ�∗(N, θ) + �(N, 0) =
N−1∑

k=0

�∗(k, θ)D̂N−k + �∗(N, θ)D. (19)

Now, using the above equations, we obtain a few results in the form of lemmas which
will be used to get the queue length distribution at arbitrary epoch. Also, these results
have their own interpretations.

Lemma 1 The mean number of entrances to the vacation state per unit of time equals
the mean number of departures from the vacation state per unit of time, that is,

�(0, 0)e =
N∑

k=0

�(k, 0)e.

Proof Setting θ = 0 and post-multiplying by e in Eq. 13 to Eq. 16, adding
them and using Eq. 12, after simple algebraic manipulation leads to the result
of Lemma 1.

Lemma 2 The following equalities hold true:

E[S]
N∑

k=0

�(k, 0)e =
N∑

k=0

�(k)e = ρ′ (say), (20)

E[V ]
N∑

k=0

�(k, 0)e + ν(0)e =
N∑

k=0

�(k)e + ν(0)e = 1 − ρ′. (21)

These results have probabilistic interpretations:
∑N

k=0 �(k, 0)e denotes the
mean number of service completion per unit of time and multiplying this by
E[S] gives ρ′, where ρ′ represents the probability that the server is busy.
Similarly,

∑N
n=0 �(n, 0)e denotes the rate of vacation termination and mul-

tiplying this by E[V ] yields the probability that the server is on vaca-
tion. Therefore, 1 − ρ′ represents the probability that the server is in an
unavailable period, which corresponds to the time taken for a vacation plus
dormancy.

Proof Post-multiplying by e in Eq. 13 to Eq. 16 and adding them, using the
relation

∑∞
k=0Dke = 0, Eq. 12 and Lemma 1, after some manipulation,

we obtain
N∑

k=0

�∗(k, θ)e = 1 − S∗(θ)

θ

N∑

k=0

�(k, 0)e.

Taking the limit as θ → 0, after simplification, we obtain (20).
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Similarly, post-multiplying by e in Eq. 17 to Eq. 19 and adding them, using the
relation

∑∞
k=0Dke = 0 and Lemma 1, after some manipulation, we obtain

N∑

k=0

�∗(k, θ)e = 1 − V ∗(θ)

θ

N∑

k=0

�(k, 0)e.

Taking the limit as θ → 0, after some algebraic manipulation, we get
E[V ]∑N

k=0 �(k, 0)e = ∑N
k=0 �(k)e. Adding ν(0)e to the both sides, we have the

desired result (21). One may note here that in the case of SV policy the idle period
may consist of a vacation period and the dormant period.

Lemma 3 The expression for ρ′ is given by

ρ′ =
E[S]

N∑

k=0
�+(k)e

E[S]
N∑

k=0
�+(k)e + E[V ]

N∑

k=0
�+(k)e + �+(0)(−D0)−1e

.

Proof Applying the conditional probability, we get

�+
i (n) = P {n customers in the queue just prior to service completion epoch and

batch arrivalprocess being in phase i | at most N customers in the queue

just prior to either servicecompletion- or vacation termination-epoch}
= 1

ϒ
�i(n, 0), 0 ≤ n ≤ N,

where

ϒ = P {at most N customers in the queue just prior to either service completion-

or vacation termination-epoch}

=
N∑

k=0

[�(k, 0) + �(k, 0)]e.

Similarly, we can obtain an expression for �+
i (n). In matrix and vector notations, we

have

�+(n) = 1

ϒ
�(n, 0), 0 ≤ n ≤ N, (22)

�+(n) = 1

ϒ
�(n, 0), 0 ≤ n ≤ N. (23)

From Eqs. 20 and 21, we can write

ρ′

1 − ρ′ =
E[S]

N∑

k=0
�(k, 0)e

E[V ]
N∑

k=0
�(k, 0)e + ν(0)e

. (24)
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Using Eqs. 12, 22 and 23 in Eq. 24, after simplification, we get the desired result.

Lemma 4 The expression for ϒ is given by

ϒ =
(

ρ′

E[S] + 1 − ρ′

E[V ]
)(

1 + �+(0)(−D0)
−1e

E[V ]
)−1

.

Proof Using Eqs. 20 and 21 in ϒ = ∑N
n=0[�(n, 0) + �(n, 0)]e, we have

ϒ = ρ′

E[S] + 1 − ρ′ − ν(0)e

E[V ] . (25)

Using Eqs. 12 and 23 in Eq. 25, after simplification, we obtain the desired result.

Now, we are in a position to determine arbitrary epoch probabilities in terms of ser-
vice completion and vacation termination epoch probabilities. These can be obtained
using the following theorem.

Theorem 3.1 The arbitrary epoch probabilities ν(0), �(n) and �(n) are given by

ν(0) = ϒ�+(0)(−D0)
−1, (26)

�(0) =
[

ϒ

{
B∑

k=1

[�+(k) + �+(k)]
B∑

l=k

yl − �+(0)

}

+ ν(0)
B∑

k=1

Dk

B∑

l=k

yl

]

(−D0)
−1, (27)

�(n) =
[

n−1∑

k=0

�(k)Dn−k + ϒ

{
B∑

k=1

[�+(n + k) + �+(n + k)]yk − �+(n)

}

+ν(0)
B∑

k=1

Dn+kyk

]

(−D0)
−1, 1 ≤ n ≤ N − B − 1, (28)

�(n) =
[

n−1∑

k=0

�(k)Dn−k + ϒ

{
N−n∑

k=1

[�+(n + k) + �+(n + k)]yk − �+(n)

}

+ν(0)

(
N−1−n∑

k=1

Dn+kyk + D̂NyN−n

)]

(−D0)
−1, N − B ≤ n ≤ N − 1, (29)

�(0) = [
ϒ
(
�+(0) − �+(0)

)]
(−D0)

−1, (30)

�(n) =
[

n−1∑

k=0

�(k)Dn−k − ϒ�+(n)

]

(−D0)
−1, 1 ≤ n ≤ N − 1. (31)

Proof Using Eq. 23 in Eq. 12, a little algebra gives Eq. 26. For Eq. 27 to Eq. 31, set-
ting θ = 0 in Eq. 13 to Eqs. 15, 17 and 18, using Eqs. 22 and 23, after simplification,
we obtain the desired result.

Remark 1 It may be remarked here that we do not have explicit expressions com-
ponentwise separately for �(N) and �(N). However, one can compute them
using Lemma 2 as �(N)e = ρ ′ − ∑N−1

k=0 �(k)e and �(N)e = 1 − ρ′ −
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∑N−1
k=0 �(k)e − ν(0)e. Further, �(N) + �(N) can be obtained using the nor-

malization condition as �(N) + �(N) = π − ∑N−1
k=0 [�(k) + �(k)] − ν(0).

Though we are not getting the vectors �(N) and �(N) componentwise separately,
but the above results are sufficient to determine the key performance measures,
see Section 5.

3.3 Queue length distribution at arrival epoch

Let ν−(0), �−(n), �−(n), 0 ≤ n ≤ N , be the 1 × m vectors whose j -th component
give the probability that a batch arrival finds n customers in the queue and the arrival
process is in phase j just after the arrival of a batch. They are given by

ν−(0) = ν(0)D̂1

λg

,

�−(n) = �(n)D̂1

λg

, 0 ≤ n ≤ N − 1,

�−(n) = �(n)D̂1

λg

, 0 ≤ n ≤ N − 1,

which can be obtained using the “rate-in and rate-out” argument; for more details,
see Kim et al. [34].

Remark 2 It may be remarked here that we do not have explicit expressions for
�−(N) and �−(N). However, one can compute them using the normalization con-
dition as �−(N) + �−(N) = 1

λg
[π − ν(0) − ∑N−1

k=0 (�(k) + �(k))]D̂1. Though

we are not getting the vectors �−(N) and �−(N) componentwise separately, but
�−(N) + �−(N) is sufficient to determine the key performance measures, see
Section 5.

This completes analytic analysis of BMAP/GY /1/N queue with single vaca-
tion policy. Performance measures and discussion of numerical results are pre-
sented in Sections 5 and 6, respectively. In the following section, we consider
BMAP/GY /1/N queue with multiple vacation policy.

4 Multiple vacation

We consider here the BMAP/GY /1/N queue with the same assumptions and nota-
tions described in Section 2 except the multiple vacation (MV ) policy. In this policy,
when the server finishes serving a batch and finds the queue empty, he goes for a
vacation. On return if the server finds one or more customers waiting, he serves them
as per the batch service rule until the system empties. However, on return from a vaca-
tion if the server finds no customers waiting, he immediately proceeds for another
vacation and continues in this manner until he finds at least one waiting customer in
the queue. Without going into further details, we give a brief account of the model
for the sake of completeness.
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4.1 Queue length distribution at service completion and vacation termination
epochs

Following the procedure described in case of SV policy, we have the TPM for MV

policy as

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 0 · · · 0 0 M0 M1 · · · MN−1 M̂N

L1,0 L1,1 · · · L1,N−B L1,N−B+1 · · · L1,N−1 L1,N 0 0 · · · 0 0
L2,0 L2,1 · · · L2,N−B L2,N−B+1 · · · L2,N−1 L2,N 0 0 · · · 0 0
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.
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.
LB,0 LB,1 · · · LB,N−B LB,N−B+1 · · · LB,N−1 LB,N 0 0 · · · 0 0
0 LB+1,1 · · · LB+1,N−B LB+1,N−B+1 · · · LB+1,N−1 LB+1,N 0 0 · · · 0 0
0 0 · · · LB+2,N−B LB+2,N−B+1 · · · LB+2,N−1 LB+2,N 0 0 · · · 0 0
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0 0 · · · LN,N−B LN,N−B+1 · · · LN,N−1 LN,N 0 0 · · · 0 0
0 0 · · · 0 0 · · · 0 0 M0 M1 · · · MN−1 M̂N

L1,0 L1,1 · · · L1,N−B L1,N−B+1 · · · L1,N−1 L1,N 0 0 · · · 0 0
L2,0 L2,1 · · · L2,N−B L2,N−B+1 · · · L2,N−1 L2,N 0 0 · · · 0 0
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.
LB,0 LB,1 · · · LB,N−B LB,N−B+1 · · · LB,N−1 LB,N 0 0 · · · 0 0
0 LB+1,1 · · · LB+1,N−B LB+1,N−B+1 · · · LB+1,N−1 LB+1,N 0 0 · · · 0 0
0 0 · · · LB+2,N−B LB+2,N−B+1 · · · LB+2,N−1 LB+2,N 0 0 · · · 0 0
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0 0 · · · LN,N−B LN,N−B+1 · · · LN,N−1 LN,N 0 0 · · · 0 0
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⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The probability vectors �+(n) and �+(n), 0 ≤ n ≤ N , of the number of customers
in the queue at service completion and vacation termination epochs can be obtained
by solving the system of equations [�+ �+]P = [�+ �+], and [�+ �+]e = 1 as
described in single vacation policy.

4.2 Queue length distribution at arbitrary epoch

Relating the states of the system at two consecutive time epochs t and (t + dt), and
using probabilistic arguments, we get a set of partial differential equations for each
phase i, (1 ≤ i ≤ m). Assuming that the steady-state exists and using matrices and
vectors notations, we obtain

− d

dx
�(0, x) = �(0, x)D0 + s(x)

B∑

k=1

[�(k, 0) + �(k, 0)]
B∑

l=k

yl , (32)

− d

dx
�(n, x) =

n∑

k=0

�(k, x)Dn−k + s(x)

B∑

k=1

[�(n + k, 0) + �(n + k, 0)]yk, 1 ≤ n ≤ N − B, (33)

− d

dx
�(n, x) =

n∑

k=0

�(k, x)Dn−k + s(x)

N−n∑

k=1

[�(n + k, 0) + �(n + k, 0)]yk,

N−B + 1 ≤ n ≤ N−1, (34)

− d

dx
�(N, x) =

N−1∑

k=0

�(k, x)D̂N−k + �(N, x)D, (35)
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− d

dx
�(0, x) = �(0, x)D0 + v(x)[�(0, 0) + �(0, 0)], (36)

− d

dx
�(n, x) =

n∑

k=0

�(k, x)Dn−k, 1 ≤ n ≤ N − 1, (37)

− d

dx
�(N, x) =

N−1∑

k=0

�(k, x)D̂N−k + �(N, x)D. (38)

Multiplying Eq. 32 to Eq. 38 by e−θx and integrating w.r.t. x over 0 to ∞, we get

− θ�∗(0, θ) + �(0, 0) = �∗(0, θ)D0 + S∗(θ)

B∑

k=1

[�(k, 0) + �(k, 0)]
B∑

l=k

yl , (39)

−θ�∗(n, θ) + �(n, 0) =
n∑

k=0

�∗(k, θ)Dn−k + S∗(θ)

B∑

k=1

[�(n + k, 0) + �(n + k, 0)]yk,

1 ≤ n ≤ N − B, (40)

−θ�∗(n, θ) + �(n, 0) =
n∑

k=0

�∗(k, θ)Dn−k + S∗(θ)

N−n∑

k=1

[�(n + k, 0) + �(n + k, 0)]yk,

N − B + 1 ≤ n ≤ N − 1, (41)

−θ�∗(N, θ) + �(N, 0) =
N−1∑

k=0

�∗(k, θ)D̂N−k + �∗(N, θ)D, (42)

−θ�∗(0, θ) + �(0, 0) = �∗(0, θ)D0 + V ∗(θ)[�(0, 0) + �(0, 0)], (43)

−θ�∗(n, θ) + �(n, 0) =
n∑

k=0

�∗(k, θ)Dn−k, 1 ≤ n ≤ N − 1, (44)

−θ�∗(N, θ) + �(N, 0) =
N−1∑

k=0

�∗(k, θ)D̂N−k + �∗(N, θ)D. (45)

Now, using the above equations, we obtain a few results in the form of lemmas which
will be used to get the queue length distribution at arbitrary epoch. Also, these results
have their own interpretations.

Lemma 5 The following equality holds true:

�(0, 0)e =
N∑

k=1

�(k, 0)e.

Proof Setting θ = 0 and post-multiplying by e in Eq. 39 to Eq. 42, adding them and
after simple algebraic manipulation leads to the result of Lemma 5.

Lemma 6 The following equalities hold true:

E[S]
N∑

k=0

�(k, 0)e =
N∑

k=0

�(k)e = ρ′, (46)

E[V ]
N∑

k=0

�(k, 0)e =
N∑

k=0

�(k)e = 1 − ρ′. (47)
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Proof Post-multiplying by e in Eqs. 39 to 42 and adding them, using the relation∑∞
k=0Dke = 0 and Lemma 5, after some manipulation, we obtain

N∑

k=0

�∗(k, θ)e = 1 − S∗(θ)

θ

N∑

k=0

�(k, 0)e.

Taking the limit as θ → 0, after simplification, we obtain (46).
Similarly, post-multiplying by e in Eq. 43 to Eq. 45 and adding them,

using the relation
∑∞

k=0Dke = 0 and Lemma 5, after some manipulation,
we obtain

N∑

k=0

�∗(k, θ)e = 1 − V ∗(θ)

θ

N∑

k=0

�(k, 0)e.

Taking the limit as θ → 0, after some algebraic manipulation, we obtain (47).

Lemma 7 The probability that the server is busy is given by

ρ′ =
E[S]

N∑

k=0
�+(k)e

E[S]
N∑

k=0
�+(k)e + E[V ]

N∑

k=0
�+(k)e

.

Proof From Eqs. 46 and 47, we can write

ρ′

1 − ρ′ =
E[S]

N∑

k=0
�(k, 0)e

E[V ]
N∑

k=0
�(k, 0)e

. (48)

Using Eqs. 22 and 23 in Eq. 48, after simplification, we get the desired result.

Remark 3 One may note here that in case of MV policy, idle period may consist of
several vacations each with identical distribution.

Lemma 8 The expression for ϒ is given by

ϒ = ρ′

E[S] + 1 − ρ′

E[V ] .

Proof Using Eqs. 46 and 47 in ϒ = ∑N
n=0[�(n, 0) + �(n, 0)]e, we have

ϒ = ρ′

E[S] + 1 − ρ′

E[V ] . (49)
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Theorem 4.1 The arbitrary epoch probabilities are given by

�(0) = ϒ

{
B∑

k=1

[�+(k) + �+(k)]
B∑

l=k

yl − �+(0)

}

(−D0)
−1,

�(n)=
[

n−1∑

k=0

�(k)Dn−k+ϒ

{
B∑

k=1

[�+(n+k)+�+(n+k)]yk−�+(n)

}]

(−D0)
−1,

1 ≤ n ≤ N − B,

�(n)=
[

n−1∑

k=0

�(k)Dn−k+ϒ

{
N−n∑

k=1

[�+(n+k)+�+(n+k)]yk−�+(n)

}]

(−D0)
−1,

N−B+1≤n≤N−1,
�(0) = ϒ�+(0) (−D0)

−1,

�(n) =
[

n−1∑

k=0

�(k)Dn−k − ϒ�+(n)

]

(−D0)
−1, 1 ≤ n ≤ N − 1.

Proof Setting θ = 0 in Eq. 39 to Eqs. 41, 43 and 44, then using Eqs. 22 and 23, after
simplification, we obtain the desired result.

Remark 4 It may be remarked here that we do not have explicit expressions com-
ponentwise separately for �(N) and �(N). However, one can compute them using
Lemma 6 as �(N)e = ρ ′ −∑N−1

k=0 �(k)e and �(N)e = 1−ρ′ −∑N−1
k=0 �(k)e. Fur-

ther, �(N) + �(N) can be obtained using the normalization condition as �(N) +
�(N) = π −∑N−1

k=0 [�(k)+�(k)]. Though we are not getting the vectors �(N) and
�(N) componentwise separately, but the above results are sufficient to determine the
key performance measures, see Section 5.

Lemma 9 The vectors �−(n) and �−(n), 0 ≤ n ≤ N , are given by

�−(n) = �(n)D̂1

λg

, 0 ≤ n ≤ N − 1,

�−(n) = �(n)D̂1

λg

, 0 ≤ n ≤ N − 1,

�−(N) + �−(N) = 1

λg

[π −
∑N−1

k=0
(�(k) + �(k))]D̂1.

5 Performance measure

Performance measures are important features of queueing systems as they reflect
the efficiency of the queueing system under consideration. Once the distributions
of number of customers in the queue at different epochs are known, various perfor-
mance measures of the system can be obtained. We derive below some performance
measures such as the average queue lengths, the loss probabilities, etc. The average
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number of customers in the queue at an arbitrary epochLq = ∑N
k=1 k[�(k)+�(k)]e,

the average number of customers in the queue when the server is busy Lb =∑N
k=1 k�(k)e, the average number of customers in the queue when the server is on

vacation Lv = ∑N
k=1 k�(k)e. Next we compute the blocking probabilities of the

first-, an arbitrary- and the last-customer of an arriving batch.

(i) Blocking probability of the first customer in a batch

Let PBF be the probability that the first customer in a batch (and therefore the
whole batch) is being lost upon arrival. The first customer is being lost if there is no
waiting place, i.e., there have been N customers in the queue. Hence, the blocking
probability of the first customer of an arriving batch is given by

PBF = [�−(N) + �−(N)]e.
(ii) Blocking probability of an arbitrary customer in a batch

Let PBA be the probability that an arbitrary customer in a batch is being lost upon
arrival. Let Hk be the matrix of order m × m whose (i, j)-th element [Hk]ij is the
probability that the position of an arbitrary customer in an arrival batch is k with
phase changes from i to j . Then

Hk = 1

λ


∞∑

n=k

Dn, k = 1, 2, 3, . . . ,

Table 1 Queue length distribution at service completion vacation termination epochs in case of single
vacation policy

n �+
1 (n) �+

2 (n) �+(n)e �+
1 (n) �+

2 (n) �+(n)e

0 0.0545746 0.0532677 0.1078423 0.0074704 0.0080303 0.0155007

1 0.0384354 0.0370568 0.0754922 0.0029752 0.0029747 0.0059499

2 0.0398790 0.0379640 0.0778429 0.0005958 0.0005601 0.0011560

3 0.0373385 0.0351071 0.0724456 0.0045428 0.0045333 0.0090761

4 0.0369172 0.0343683 0.0712855 0.0017956 0.0016873 0.0034829

5 0.0333616 0.0306767 0.0640384 0.0048233 0.0047832 0.0096065

6 0.0308793 0.0281832 0.0590625 0.0031767 0.0029820 0.0061587

7 0.0275037 0.0248522 0.0523560 0.0038796 0.0037805 0.0076601

8 0.0237674 0.0213393 0.0451067 0.0040310 0.0037753 0.0078062

9 0.0220101 0.0196873 0.0416975 0.0016088 0.0014325 0.0030413

10 0.0188752 0.0167250 0.0356002 0.0034897 0.0032482 0.0067379

20 0.0033764 0.0028146 0.0061910 0.0007044 0.0005941 0.0012984

30 0.0003476 0.0002758 0.0006233 0.0000624 0.0000488 0.0001112

40 0.0000238 0.0000182 0.0000420 0.0000035 0.0000026 0.0000062

50 0.0000012 0.0000009 0.0000021 0.0000001 0.0000001 0.0000002

100 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

sum 0.4655087 0.4266490 0.8921577 0.0553035 0.0525389 0.1078423
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for details, see Gupta et al. [35]. Hence, an arbitrary customer in a batch is lost if
he finds n (0 ≤ n ≤ N) customers in the queue upon arrival and his position in his
batch is k ≥ N + 1 − n. Thus, we have

PBA = ν(0)
∞∑

k=N+1

Hke +
N∑

n=0

[�(n) + �(n)]
∞∑

k=N+1−n

Hke, for single vacation,

=
N∑

n=0

[�(n) + �(n)]
∞∑

k=N+1−n

Hke, for multiple vacation.

Let Wq be the average waiting time in the queue of an arbitrary customer of a
batch. Then, by Little’s rule, we have Wq = Lq/λ′, where λ′ = λ∗(1 − PBA) is the
effective arrival rate.

(iii) Blocking probability of the last customer in a batch

Let PBL be the probability that the last customer in a batch is being lost upon
arrival. The last customer in a batch is being lost if he finds n (0 ≤ n ≤ N) customers

Table 2 Queue length distribution at arbitrary epoch in case of single vacation policy

n �1(n) �2(n) �(n)e �1(n) �2(n) �(n)e

0 0.0151522 0.0147955 0.0299477 0.1506600 0.1580105 0.3086705

1 0.0106762 0.0102966 0.0209728 0.0215702 0.0197739 0.0413441

2 0.0110752 0.0105479 0.0216230 0.0023708 0.0020590 0.0044298

3 0.0103774 0.0097599 0.0201373 0.0325666 0.0298370 0.0624036

4 0.0102579 0.0095532 0.0198111 0.0071280 0.0061897 0.0133177

5 0.0092784 0.0085332 0.0178116 0.0333072 0.0304545 0.0637617

6 0.0085864 0.0078388 0.0164252 0.0125411 0.0108859 0.0234269

7 0.0076541 0.0069169 0.0145711 0.0239551 0.0217619 0.0457170

8 0.0066145 0.0059394 0.0125539 0.0157177 0.0136310 0.0293486

9 0.0061259 0.0054800 0.0116059 0.0042302 0.0035253 0.0077555

10 0.005254 0.0046563 0.0099107 0.0131500 0.0113753 0.0245253

20 0.000941 0.0007846 0.0017256 0.0013165 0.0010534 0.0023699

30 0.000097 0.0000770 0.0001740 0.0000763 0.0000573 0.0001336

40 0.000007 0.0000051 0.0000117 0.0000033 0.0000024 0.0000057

50 0.0000003 0.0000003 0.0000006 0.0000001 0.0000000 0.0000001

100 0.0000000 0.0000000

sum 0.1294568 0.1186724 0.2481292 0.3583376 0.3416033 0.6999409

ν(0) = [0.0250262, 0.0269037],
ν(0) +∑99

n=0[�(n) + �(n)] = [0.5128205, 0.4871795].
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in the queue upon arrival and his batch size is k ≥ N + 1 − n. Hence, the blocking
probability of the last customer of a batch is given by

PBL = 1

λg

⎡

⎣ν(0)
∞∑

k=N+1

Dke +
N∑

n=0

[�(n) + �(n)]
∞∑

k=N+1−n

Dke

⎤

⎦ , for single vacation

= 1

λg

⎡

⎣
N∑

n=0

[�(n) + �(n)]
∞∑

k=N+1−n

Dke

⎤

⎦ , for multiple vacation.

6 Numerical result

In this section, we provide a few numerical examples to get some practical idea of
the system. It would be helpful for the engineers and practitioners to know how the
various system performances behave with the corresponding change of model param-
eters. During the computational work, several outputs were generated for testing the
procedure but only a few of them are presented here. All the calculations were per-
formed using Maple 13 on PC having configuration Intel(R) Core(TM) i3-3240 CPU

Table 3 Queue length distribution at arrival epoch in case of single vacation policy

n �−
1 (n) �−

2 (n) �−(n)e �−
1 (n) �−

2 (n) �−(n)e

0 0.0184724 0.0114019 0.0298743 0.1864543 0.1194888 0.3059432

1 0.0129828 0.0079617 0.0209445 0.0259678 0.0155078 0.0414756

2 0.0134339 0.0081842 0.0216182 0.0028249 0.0016403 0.0044652

3 0.0125561 0.0075993 0.0201554 0.0392016 0.0234038 0.0626054

4 0.0123874 0.0074588 0.0198462 0.0084933 0.0049311 0.0134244

5 0.0111770 0.0066861 0.0178632 0.0400776 0.0239017 0.0639793

6 0.0103287 0.0061549 0.0164835 0.0149420 0.0086733 0.0236153

7 0.0091892 0.0054469 0.0146360 0.0287883 0.0171111 0.0458994

8 0.0079313 0.0046857 0.0126170 0.0187236 0.0108634 0.0295870

9 0.0073401 0.0043279 0.0116681 0.0050027 0.0028433 0.0078460

10 0.0062847 0.0036875 0.0099722 0.0156575 0.0090725 0.0247300

20 0.0011130 0.0006327 0.0017457 0.0015457 0.0008603 0.0024060

30 0.0001137 0.0000630 0.0001767 0.0000886 0.0000477 0.0001363

40 0.0000078 0.0000042 0.0000120 0.0000039 0.0000020 0.0000059

50 0.0000004 0.0000002 0.0000006 0.0000001 0.0000001 0.0000002

99 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

sum 0.1558489 0.0930703 0.2489193 0.4347393 0.2649849 0.6997242

ν−(0) = [0.0311395, 0.0202170], �−(100) + �−(100) = [0.0000000, 0.0000000],
ρ′ = 0.2481292, PBF = 0.0000000, PBA = 0.0000000, PBL = 0.0000000,

Lb = 1.6148584, Lv = 2.7408514, Lq = 4.3557098, Wq = 2.2234644.
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@ 3.40GHz with 4.00 GB RAM. No difficulty arises during computational work
even for large N(= 250) which generates a transition probability matrix P of order
1004 × 1004. Hence, we solved 1004 system of simultaneous linear equations for
�+(n) and �+(n), 0 ≤ n ≤ N . In real world applications, the size of an arriving
batch is always bounded. Thus, assuming that arriving batch size has a finite sup-
port is reasonable in mathematical modeling. Tables 1, 2 and 3 show the results of
BMAP/PHY /1/100 queue in case of single vacation policy with the matrices Dn

of BMAP as

D0 =
[−1.425 0.850

0.875 −1.275

]

, D1 =
[
0.095 0.020
0.025 0.055

]

, D3 =
[
0.1425 0.030
0.0375 0.0825

]

,

D5 =
[
0.1425 0.030
0.0375 0.0825

]

, D7 =
[
0.095 0.020
0.025 0.055

]

.

This leads to π = [
0.5128205 0.4871795

]
with λ∗ = 1.9589744. We assume that

maximum batch size for service is B = 3 with y1 = 0.7, y2 = 0.2, y3 = 0.1.
The phase type representation of service time is taken as β = [0.4 0.6], S =[−6.683 2.453

1.367 −8.566

]

with E[S] = 0.1714053. The vacation time is taken as deter-

ministic with mean E[V ] = 1/0.25. These lead to ρ = 0.2398418. We evaluated
the state probabilities using the procedure discussed for finite-buffer queue by taking

Table 4 Queue length distribution at service completion vacation termination epochs in case of multiple
vacation policy

n �+
1 (n) �+

2 (n) �+(n)e �+
1 (n) �+

2 (n) �+(n)e

0 0.0024509 0.0016543 0.0041052 0.0006688 0.0006178 0.0012866

1 0.0011127 0.0006266 0.0017393 0.0002523 0.0000701 0.0003224

2 0.0009898 0.0006389 0.0016287 0.0000361 0.0000160 0.0000521

3 0.0010042 0.0006473 0.0016515 0.0000070 0.0000025 0.0000095

4 0.0011636 0.0007401 0.0019037 0.0000012 0.0000005 0.0000016

5 0.0014712 0.0008505 0.0023217 0.0002143 0.0001343 0.0003486

6 0.0012632 0.0007667 0.0020299 0.0001306 0.0000546 0.0001853

7 0.0012875 0.0007896 0.0020771 0.0000348 0.0000145 0.0000493

8 0.0013398 0.0008200 0.0021598 0.0000084 0.0000034 0.0000117

9 0.0014203 0.0008630 0.0022834 0.0000018 0.0000007 0.0000025

10 0.0014930 0.0009000 0.0023929 0.0000651 0.0000367 0.0001017

50 0.0029430 0.0016030 0.0045459 0.0000046 0.0000021 0.0000067

100 0.0030044 0.0016112 0.0046156 0.0000040 0.0000020 0.0000060

150 0.0026851 0.0014360 0.0041211 0.0000007 0.0000003 0.0000010

200 0.0023391 0.0012501 0.0035893 0.0000001 0.0000000 0.0000001

250 0.0066534 0.0024678 0.0091212 0.0000007 0.0000004 0.0000011

sum 0.6470488 0.3475594 0.9946082 0.0034341 0.0019576 0.0053918
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sufficiently large N and found that ν(0) + ∑∞
n=0[�(n) + �(n)] = π as it should

be. This is due to the fact that finite-buffer queue behaves as an infinite-buffer queue,
when ρ < 1 and N is sufficiently large.

Tables 4, 5 and 6 show the results of BMAP/DY /1/250 queue in case of multiple
vacation policy with the matrices Dn of BMAP as

D0 =
[−1.530 0.250

0.275 −1.225

]

,D1 =
[
0.0790 0.0625
0.6125 0.0025

]

,D5 =
[
0.5025 0.1260
0.0125 0.1025

]

,

D18 =
[
0.41 0.10
0.10 0.12

]

.

This leads to π = [
0.6499838 0.3500162

]
with λ∗ = 9.9039812. We assume

that maximum batch size for service is B = 7 with y1 = 0.45, y3 = 0.25,
y5 = 0.2, y7 = 0.1. The service time is taken as deterministic with mean
E[S] = 1/3.5. The phase type representation of vacation time is taken as α =
[0.7 0.3], T =

[−1.098 0.864
0.071 −0.532

]

with E[V ] = 2.5400159. These lead to

ρ = 0.9757617.

Table 5 Queue length distribution at arbitrary epoch in case of multiple vacation policy

n �1(n) �2(n) �(n)e �1(n) �2(n) �(n)e

0 0.0028701 0.0017922 0.0046623 0.0064284 0.0058456 0.0122740

1 0.0011000 0.0006481 0.0017481 0.0022267 0.0006022 0.0028288

2 0.0010822 0.0006809 0.0017632 0.0003006 0.0001324 0.0004330

3 0.0010974 0.0006906 0.0017880 0.0000568 0.0000203 0.0000771

4 0.0012837 0.0007900 0.0020737 0.0000092 0.0000036 0.0000127

5 0.0014122 0.0008244 0.0022367 0.0019012 0.0011706 0.0030718

6 0.0012900 0.0007826 0.0020726 0.0010978 0.0004532 0.0015510

7 0.0013308 0.0008098 0.0021406 0.0002825 0.0001168 0.0003993

8 0.0013880 0.0008417 0.0022297 0.0000666 0.0000266 0.0000931

9 0.0014644 0.0008824 0.0023468 0.0000142 0.0000056 0.0000198

10 0.0015285 0.0009164 0.0024449 0.0005492 0.0003057 0.0008549

50 0.0028473 0.0015488 0.0043961 0.0000358 0.0000160 0.0000518

100 0.0028765 0.0015424 0.0044189 0.0000308 0.0000155 0.0000462

150 0.0025660 0.0013723 0.0039383 0.0000052 0.0000025 0.0000078

200 0.0022346 0.0011942 0.0034288 0.0000010 0.0000005 0.0000015

249 0.0026634 0.0010835 0.0037469 0.0000002 0.0000000 0.0000003

250 0.0043787 0.0000085

sum 0.6175642 0.3320800 0.9540229 0.0291925 0.0167762 0.0459771

�(250) + �(250) = [0.0032270, 0.0011601].
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Table 6 Queue length distribution at arrival epoch in case of multiple vacation policy

n �−
1 (n) �−

2 (n) �−(n)e �−
1 (n) �−

2 (n) �−(n)e

0 0.0035595 0.0010573 0.0046168 0.0091128 0.0027221 0.0118349

1 0.0013401 0.0003978 0.0017379 0.0022708 0.0006680 0.0029388

2 0.0013454 0.0003997 0.0017451 0.0003384 0.0001001 0.0004385

3 0.0013643 0.0004053 0.0017696 0.0000610 0.0000180 0.0000790

4 0.0015848 0.0004707 0.0020555 0.0000100 0.0000030 0.0000130

5 0.0017157 0.0005092 0.0022249 0.0023475 0.0006972 0.0030447

6 0.0015856 0.0004708 0.0020564 0.0012169 0.0003595 0.0015764

7 0.0016373 0.0004862 0.0021234 0.0003133 0.0000926 0.0004058

8 0.0017058 0.0005065 0.0022123 0.0000732 0.0000216 0.0000948

9 0.0017962 0.0005333 0.0023295 0.0000155 0.0000046 0.0000201

10 0.0018720 0.0005558 0.0024277 0.0006579 0.0001951 0.0008531

50 0.0033886 0.0010047 0.0043933 0.0000405 0.0000120 0.0000524

100 0.0034094 0.0010107 0.0044201 0.0000358 0.0000106 0.0000464

150 0.0030392 0.0009009 0.0039400 0.0000060 0.0000018 0.0000078

200 0.0026461 0.0007843 0.0034305 0.0000011 0.0000003 0.0000015

249 0.0029423 0.0008692 0.0038116 0.0000002 0.0000000 0.0000002

sum 0.7325692 0.2171631 0.9497323 0.0353003 0.0104738 0.0457741

�−(250) + �−(250) = [0.0034699, 0.0010236],
ρ′ = 0.9540229, PBF = 0.0044936, PBA = 0.0254053, PBL = 0.0274397,

Lb = 116.3755530, Lv = 1.0642413, Lq = 117.4397943, Wq = 12.1669414.

In Fig. 2, we have plotted the probability that the server is busy (ρ ′) against the
mean vacation time for a BMAP/PHY /1/18 queue with SV as well as MV with
the following model parameters. The BMAP representation is taken as

D0 =
[−2.625 1.50

0.875 −1.375

]

, D1 =
[
0.525 0.150
0.075 0.225

]

, D3 =
[
0.350 0.100
0.050 0.150

]

,

with λ∗ = 1.3090909. The PH -type representation of service time is taken as β =
[0.3 0.7], S =

[−2.183 2.453
1.367 −2.986

]

with E[S] = 1.3006183 and ρ = 0.8961198.

We assume y1 = 0.3, y2 = 0.5, y3 = 0.2. The vacation time distribution is taken as

E2 with α = [1.0 0.0], T =
[−κ κ

0.0 −κ

]

with E[V ] = 2.0/κ , and suitably varying

κ to get various values of E[V ]. It is observed from Fig. 2 that ρ′ decreases when
the mean vacation time E[V ] increases. Also, one can observe that ρ′ is little higher
in SV as compare to MV. Finally they converge to the same value when the mean
vacation time is long. This is due to the fact that the server sees at least one customer
in the system after returning from the vacation state in both the policies. In Fig. 3, we
have plotted the average waiting time in the queue (Wq) against E[V ] with the same
model parameters as used for Fig. 2. It is seen from this figure that Wq increases
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when E[V ] increases. Further, we also see that Wq is little higher in MV than SV.
Finally they converge to the same value when the mean vacation time is long. This
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is due to the fact that the customers have to wait in the queue long time in both the
policies when the server returns from the vacation state after a long time.
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The effect of traffic intensity (ρ) on the blocking probability of a last customer
(PBL) and the average queue length (Lq) are shown in Figs. 4 and 5, respectively
for a BMAP/EY

2 /1/20 queue with SV as well as MV with the following input
parameters: BMAP representation is taken as

D0 =
⎡

⎢
⎣

−0.542410 0.003728 0.000000
0.004349 −0.022989 0.000622
0.000000 0.001243 −2.269670

⎤

⎥
⎦ , D4 =

⎡

⎢
⎣

0.014352 0.000000 0.362725
0.000000 0.012178 0.000435
1.581375 0.003479 0.003044

⎤

⎥
⎦ ,

D7 =
⎡

⎢
⎣

0.004101 0.000000 0.103636
0.000000 0.003479 0.000124
0.451822 0.000994 0.000870

⎤

⎥
⎦ , D15 =

⎡

⎢
⎣

0.002050 0.000000 0.051818
0.000000 0.001740 0.000062
0.225911 0.000497 0.000435

⎤

⎥
⎦ ,

with λ∗ = 2.8500199. The service time distribution is taken as E2 with β =
[1.0 0.0], S =

[−κ κ

0.0 κ

]

, and therefore E[S] = 2/κ and suitably vary-

ing κ to obtain various values of ρ. We assume y5 = 0.2, y7 = 0.2, y10 =
0.6. The PH -type representation of a vacation is taken as α = [0.7 0.3],
T =

[−1.098 0.864
0.071 −0.532

]

with E[V ] = 2.54. From these figures it can be

observed that PBL and Lq initially decreases as ρ increases up to 0.2 and then
increases as ρ increases. Also, PBL and Lq both are higher in MV as com-
pare to SV . Finally they converge to the same value. This is due to the fact
that in both SV and MV policies, the system becomes full when the traffic load
is high.

7 Conclusion

This paper analyzed a BMAP/GY /1/N vacation (single and multiple) queueing
system, where customers are served by the single server in batches of random
capacity to be decided at the beginning of the service. With the help of the supple-
mentary variable and the embedded Markov chain techniques, we obtain the queue
length distributions at various epochs and other performance measures. The model
presented in this paper may be useful in manufacturing system where production
orders arrive at the system in batches of random size and form a single queue based
on the order of their arrival. Items are manufactured in batches of random size which
is decided at the beginning of the production process according to batch service rule
discussed above.
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Appendix A

Theorem A.1 If S(x) follows a PH -distribution with irreducible representation
(β, S), where β and S are of dimension γ , then the matrices An, 0 ≤ n ≤ N − 1,
and Ân, 1 ≤ n ≤ N , are given by

An = Cn(Im ⊗ S0), 0 ≤ n ≤ N − 1,

Ân = Ĉn(Im ⊗ S0), 1 ≤ n ≤ N,

where

C0 = −(Im ⊗ β)[D0 ⊗ Iγ + Im ⊗ S]−1,

Cn = −
n−1∑

k=0

Ck(Dn−k ⊗ Iγ )[D0 ⊗ Iγ + Im ⊗ S]−1, 1 ≤ n ≤ N − 1,

Ĉn = −
n−1∑

k=0

Ck(D̂n−k ⊗ Iγ )[D ⊗ Iγ + Im ⊗ S]−1, 1 ≤ n ≤ N,

with S0 = −Se and the symbol ⊗ denotes the Kronecker product of two matrices.

Proof Proof is the straightforward extension of Neuts [6, p. 67-70], and Gupta and
Laxmi [36]. We present it here for the sake of completeness and better readabil-
ity. As S(x) follows a PH - distribution with representation (β, S), its probability
distribution and density functions are, respectively, given by

S(x) = 1 − βeSxe,

s(x) = βeSxS0, x ≥ 0.

The matrices An, 0 ≤ n ≤ N − 1, as defined in Eq. 3 are given by

An =
∫ ∞

0
P(n, x) ⊗ βeSxS0 dx,

= Cn

(
Im ⊗ S0

)
,

where

Cn =
∫ ∞

0
P(n, x) ⊗ βeSxdx. (50)

Integration by parts of the right hand side of Cn gives

Cn =
[
P(n, x) ⊗ βeSxS−1

]∞
0

−
∫ ∞

0

d

dx
P(n, x) ⊗ βeSxS−1dx,

Cn (Im ⊗ S) = −P(n, 0) ⊗ β −
∫ ∞

0

d

dx
P(n, x) ⊗ βeSxdx. (51)
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From Eq. 51, for n = 0, we have

C0 (Im ⊗ S) = − (Im ⊗ β) −
∫ ∞

0
P(0, x)D0 ⊗ βeSxdx, [using (1)]

= − (Im ⊗ β) − C0(D0 ⊗ Iγ ),

C0 = − (Im ⊗ β) [D0 ⊗ Iγ + Im ⊗ S]−1.

From Eq. 51, for 1 ≤ n ≤ N − 1, we have

Cn (Im ⊗ S) = −
∫ ∞

0

[

P(n, x)D0 +
n−1∑

k=0

P(k, x)Dn−k

]

⊗ βeSxdx, [using (2)]

= −Cn(D0 ⊗ Iγ ) −
n−1∑

k=0

Ck(Dn−k ⊗ Iγ ),

Cn = −
n−1∑

k=0

Ck(Dn−k ⊗ Iγ )[D0 ⊗ Iγ + Im ⊗ S]−1. (52)

Now, the matrices Ĉn = ∑∞
k=n Ck , 1 ≤ n ≤ N , can be obtained from Eq. 52 as

∞∑

k=n

Ck(D0 ⊗ Iγ + Im ⊗ S) = −
∞∑

k=n

k−1∑

i=0

Ci (Dk−i ⊗ Iγ ),

= −
∞∑

k=n

Ck(D̂1 ⊗ Iγ ) −
n−1∑

k=0

Ck(D̂n−k ⊗ Iγ ),

Ĉn = −
n−1∑

k=0

Ck(D̂n−k ⊗ Iγ )[D ⊗ Iγ + Im ⊗ S]−1.

Theorem A.2 If V (x) follows a PH -distribution with irreducible representation
(α, T), that is, V (x) = 1 − αeTxe, x ≥ 0, where α and T are of dimension δ, then
the matricesMn, 0 ≤ n ≤ N −1, and M̂N can be obtained using the same procedure
discussed in Theorem A.1 as

Mn = Rn(Im ⊗ T0), 0 ≤ n ≤ N − 1,

M̂N = R̂N(Im ⊗ T0),

where
R0 = −(Im ⊗ α)[D0 ⊗ Iδ + Im ⊗ T]−1,

Rn = −
n−1∑

k=0

Rk(Dn−k ⊗ Iδ)[D0 ⊗ Iδ + Im ⊗ T]−1, 1 ≤ n ≤ N − 1,

R̂N = −
N−1∑

k=0

Rk(D̂N−k ⊗ Iδ)[D ⊗ Iδ + Im ⊗ T]−1,

with T0 = −Te.
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Appendix B

Theorem B.1 If the service time distribution S(t) is deterministic with mean d =
E[S], that is,

s(t) =
{
1, t = d;
0, t �= d,

then

An =
∞∑

k=0

dk

k! A
(k)
n , 0 ≤ n ≤ N − 1,

Ân = eDd −
n−1∑

k=0

Ak, 1 ≤ n ≤ N,

where

A(k)
n =

n∑

i=0

DiA
(k−1)
n−i , k ≥ 1, n ≥ 0,

with A(0)
0 = Im, A

(0)
n = 0, n ≥ 1.

Proof Proof is the straightforward extension of Samanta [37]. We present it here for
the sake of completeness and better readability. Let us define the matrix-generating
function P∗(z, t) as

P∗(z, t) =
∞∑

n=0

P(n, t)zn, |z| ≤ 1, t ≥ 0. (53)

Multiplying Eq. 1 by z0 and Eq. 2 by zn, and summing from n = 0 to ∞, we get

d

dt
P∗(z, t) = P∗(z, t)D(z),

with P∗(z, 0) = Im, where D(z) = ∑∞
n=0 Dnz

n, |z| ≤ 1.
Solving the above matrix-differential equations, we get

P∗(z, t) = eD(z)t , |z| ≤ 1, t ≥ 0, (54)

which can be written as
∞∑

n=0

P(n, t)zn =
∞∑

k=0

tk[D(z)]k
k!

=
∞∑

k=0

tk

k!
∞∑

n=0

A(k)
n zn

=
∞∑

n=0

( ∞∑

k=0

tk

k!A
(k)
n

)

zn, |z| ≤ 1, t ≥ 0. (55)
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Now, collecting the coefficient of zn from both sides of Eq. 55, we obtain

P(n, t) =
∞∑

k=0

tk

k!A
(k)
n , n ≥ 0, t ≥ 0. (56)

Using the property
∫∞
0 G(t)s(t)dt = G(d), for any continuous function G(t), we

can evaluate An, using Eq. 56 in Eq. 3, as

An =
∞∑

k=0

dk

k! A
(k)
n , 0 ≤ n ≤ N − 1.

Now, the matrices Ân, 1 ≤ n ≤ N , can be obtained as

Ân =
∞∑

k=0

Ak −
n−1∑

k=0

Ak

= eDd −
n−1∑

k=0

Ak, [using z = 1 and t = d in (54)].

Theorem B.2 If V (t) follows a deterministic distribution with mean h = E[V ], that
is,

v(t) =
{
1, t = h;
0, t �= h,

then the matrices Mn, 0 ≤ n ≤ N − 1, and M̂N can be obtained using the same
procedure discussed in Theorem B.1 as

Mn =
∞∑

k=0

hk

k! A
(k)
n , 0 ≤ n ≤ N − 1,

M̂N = eDh −
N−1∑

k=0

Mk.
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