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Abstract The notion of weak efficiency of higher order for multiobjective fractional
variational problem has been introduced. Examples are presented to illustrate this
new solution concept. ρ-invexity is extended to ρ-invexity of higher order. Four gen-
eralizations of ρ-invexity of higher order are given. It is shown with the help of
examples that this new class of ρ-invex functionals of higher order is larger than the
existing class of functionals. Sufficient optimality conditions are proved under newly
defined generalized ρ−invexity assumptions on the functionals involved. Paramet-
ric dual for multiobjective fractional variational problem is proposed for which weak
duality theorem is proved. Further, we introduce weighted variational parametric
problem to prove strong duality theorem.
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1 Introduction

Its a matter of enduring interest in the theory of optimization, to define and character-
ize its solutions. One may come across several variants of solution concepts of vector
optimization problems while browsing the literature. However, there has been more
concern with the situation where the solution is described in terms of weak efficiency
[1, 2] / efficiency / proper efficiency. The concept of local minimizer of higher order
was introduced by Auslender [3]. Ward [4] presented the notion of strict local min-
imizer of order m for scalar minimization problem which was further extended to
the notion of strict local minimizer of order m for vector minimization problem by
Jimenez [5]. Recently Bhatia [6] extended the notion of Ward [4] to define a global
strict minimizer of order m for a multi-objective optimization problem.

All these authors worked for static problems in the sense that time does not enter
into consideration. Whereas in practical problems we come across situations where
time plays an important role and hence cannot be neglected. Variational problems [7,
8] where optimization is done over an interval of time is more general and applicable.
We, in this article extend the notion of weak efficiency of higher order to multi-
objective fractional variational problem.

Invexity plays a vital role in many aspects of mathematical programming and
hence in calculus of variation. Invex functions were defined by Hanson [9]. To relax
invexity assumption imposed on the functions involved, various generalized con-
cepts have been proposed in literature. One of the useful generalizations is ρ-invexity
[10, 11]. Invexity was extended for variational problems by Mond, Chandra and
Husain [12] while Bhatia and Kumar [13] defined B-vexity for variational problems.
Bhatia and Sahay [14] introduced higher order strong invexity for multi-objective
optimization problem but for the static case.

In this article we define a class of ρ-invex functionals of higher order and utilize
these functionals to establish sufficient optimality and duality results for multiobjec-
tive fractional variational problem. The significance of this new notion of invexity
of higher order is two folds. It not only allows us to relax the notion of con-
vexity/invexity associated with optimality and duality results for an optimization
problem but also enable us to derive the various requisite results associated with the
new solution concept of weak efficiency of higher order.

The paper is organized as follows: In Section 2 some basis definitions and pre-
liminaries are given. In Section 3 sufficient optimality conditions are established for
vector fractional variational problem (MFVP) using the concept of weak efficiency
of higher order. In Section 4, parametric dual for (MFVP) are considered and duality
results are obtained under assumptions of generalized ρ-invexity of higher order.

2 Definitions and preliminaries

Let r, n and p be three positive integers. For a given real interval I = [a, b], let
x : I → R

n be a piecewise smooth state function with its derivative ẋ. For notational
convenience x(t)will be written as x. Let f i : I ×R

n×R
n → R, ki : I ×R

n×R
n →
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R, i = 1, 2, . . . , r and gi : I × R
n × R

n → R, i = 1, 2, . . . , p are continu-
ously differentiable functions with respect to each of their argument. Let us denote
the partial derivative of f i, i = 1, 2, . . . , r with respect to t, x and ẋ by f i

t , f i
x , f i

ẋ

respectively. Analogously, write the partial derivative of ki, i = 1, 2, . . . , r and
gi, i = 1, 2, . . . , p. Here Rn denotes an n-dimensional Euclidean space,

R
n+ = {(x1, x2, . . . , xn)T ∈ R

n| xi ≥ 0, i = 1, 2, . . . , n} and intRn+ denote
interior ofRn+ that is intRn+ = {(x1, x2, . . . , xn)T ∈ R

n| xi > 0, i = 1, 2, . . . , n}.
For any x = (x1, x2, . . . , xn)

T
, y = (y1, y2, . . . , yn)

T ∈ R
n. Define

(i) x = y ⇔ xi = yi for all i = 1, 2, . . . , n.

(ii) x < y ⇔ xi < yi for all i = 1, 2, . . . , n.

(iii) x � y ⇔ xi ≤ yi for all i = 1, 2, . . . , n.

(iv) x ≤ y ⇔ x � y and x �= y.

Let X be the space of piecewise smooth state functions x : I → R
n equipped with

the norm ‖x‖ = ‖x‖∞ + ‖Dx‖∞ where the differential operator D is given by
u = Dx ⇔ x(t) = x(a) + ∫ t

a
u(s)ds. Therefore, D = d

dt
except at discontinuities.

Now, consider the following multiobjective fractional variational problem:

(MFVP) Minimize

(∫ b

a
f 1(t, x, ẋ)dt

∫ b

a
k1(t, x, ẋ)dt

,

∫ b

a
f 2(t, x, ẋ)dt

∫ b

a
k2(t, x, ẋ)dt

, . . . ,

∫ b

a
f r(t, x, ẋ)dt

∫ b

a
kr (t, x, ẋ)dt

)

subject to

g(t, x, ẋ) = (g1(t, x, ẋ), g2(t, x, ẋ), . . . , gp(t, x, ẋ)) � 0, t ∈ I, (1)

x(a) = α, x(b) = β, α, β ∈ R
n. (2)

Assume that
∫ b

a
f i(t, x, ẋ)dt ≥ 0 and

∫ b

a
ki(t, x, ẋ)dt > 0 for all i ∈

{1, 2, . . . , r} and for all x ∈ X. Let X0 be the set of feasible solutions of (MFVP),
that is, X0 = {x ∈ X | g(t, x, ẋ) � 0, t ∈ I, x(a) = α, x(b) = β}.

Bector et al. [15] defined weak efficient solution for multiobjective variational
problem. A class of fractional programming problem, in which objective function
is the ratio of two functions, has received considerable importance during past few
decades. Because of its ratio structure, it finds its application in various fields like
economics, informational theory, engineering, heat exchange networking and numer-
ical analysis. This perhaps was the reason for this class to dominate the research.
Hence we are motivated to extend the notion of weak efficiency to a fractional case.

Definition 1 x̄ ∈ X0 is said to be a weak efficient solution for (MFVP) if there is no
other x ∈ X0 such that

∫ b

a
f i(t, x, ẋ)dt

∫ b

a
ki(t, x, ẋ)dt

<

∫ b

a
f i(t, x̄, ˙̄x)dt

∫ b

a
ki(t, x̄, ˙̄x)dt

, for all i ∈ {1, 2, . . . , r}.

Motivated by strict efficiency of higher order [14] for multiobjective programing
problem, we propose the notion of weak efficiency of higher order for (MFVP). This
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may be considered as the dynamic generalization of the concept of strict efficiency
of higher order.

Let m ≥ 1 be an integer and ξ : I × R
n × R

n → R
n be a piecewise smooth

function.

Definition 2 x̄ ∈ X0 is said to be a weak efficient solution of order m with respect to
ξ for (MFVP) if there exist c = (c1, . . . , cr ) ∈ intRr+ and d = (d1, . . . , dr ) ∈ intRr+
such that for no other x ∈ X0

∫ b

a
{f i(t, x, ẋ) − ci‖ξ(t, x, x̄)‖m}dt

∫ b

a
{ki(t, x, ẋ) + di‖ξ(t, x, x̄)‖m}dt

<

∫ b

a
f i(t, x̄, ˙̄x)dt

∫ b

a
ki(t, x̄, ˙̄x)dt

, for all i ∈{1, 2, . . . , r}.

Remark 1 (a) Let k ≥ m be an integer, then a weak efficient solution of order m with
respect to ξ for (MFVP) is a weak efficient solution of order k with respect to same
ξ for (MFVP), but converse may not be true, as illustrates in the following example.

Consider the following (MFVP):

Minimize

(∫ 1
0 {x2(t) + ẋ2(t)

10 }dt
∫ 1
0 {ẋ2(t) + 1}dt

,

∫ 1
0 {2x2(t)}dt

∫ 1
0 {x2(t) + 1}dt

)

subject to

x(t) ≤ 0, t ∈ I = [0, 1], x : I → R

x(0) = 0, x(1) = 0.

Then x̄(t) = 0, t ∈ I is a weak efficient solution of order 2 with respect to ξ , for
given (MFVP) where ξ defined by

ξ(t, x, x̄) = x(t) + x̄(t).

As there exist c = (c1, c2) = (1, 1) ∈ intR2+ and d = (d1, d2) = (1, 1) ∈ intR2+
such that for no other x ∈ X0

∫ 1
0 {x2(t) + ẋ2(t)

10 − c1‖ξ(t, x, x̄)‖2}dt
∫ 1
0 {ẋ2(t) + 1 + d1‖ξ(t, x, x̄)‖2}dt

=
∫ 1
0 { ẋ2(t)

10 }dt
∫ 1
0 {ẋ2(t) + x2(t) + 1}dt

< 0

=
∫ b

a
f 1(t, x̄, ˙̄x)dt

∫ b

a
k1(t, x̄, ˙̄x)dt

,

∫ 1
0 {2x2(t) − c2‖ξ(t, x, x̄)‖2}dt

∫ 1
0 {x2(t) + 1 + d2‖ξ(t, x, x̄)‖2}dt

=
∫ 1
0 {x2(t)}dt

∫ 1
0 {2x2(t) + 1}dt

< 0 =
∫ b

a
f 2(t, x̄, ˙̄x)dt

∫ b

a
k2(t, x̄, ˙̄x)dt

.

But not a weak efficient solution of order 1 with respect to same ξ, for given
(MFVP).
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Since for each c = (c1, c2) ∈ intR2+ and d = (d1, d2) ∈ intR2+, we can take
x̂(t) = q(t2 − t) ∈ X0, t ∈ I where q = min{c1, c2} ( To get the requisite results,
it is required to assume q = min{c1, c2}) such that

∫ 1
0 {x̂2(t) + ˙̂x2(t)

10 − c1‖ξ(t, x̂, x̄)‖1}dt
∫ 1
0 { ˙̂x2

(t) + 1 + d1‖ξ(t, x̂, x̄)‖1}dt
= q(2q − 5c1)

5(6 + qd1 + 2q2)
< 0=

∫ b

a
f 1(t, x̄, ˙̄x)dt

∫ b

a
k1(t, x̄, ˙̄x)dt

,

∫ 1
0 {2x̂2(t) − c2‖ξ(t, x̂, x̄)‖1}dt

∫ 1
0 {x̂2(t) + 1 + d2‖ξ(t, x̂, x̄)‖1}dt

= q(2q − 5c2)

q2 + 30 + 5qd2
< 0 =

∫ b

a
f 2(t, x̄, ˙̄x)dt

∫ b

a
k2(t, x̄, ˙̄x)dt

.

(b) It can easily be proved that a weak efficient solution of order m with respect to ξ

for (MFVP) is a weak efficient solution for (MFVP), whereas the converse may not
be true, as illustrates in the following example.

Consider the following (MFVP):

Minimize

(∫ 1
0 {(ẋ(t) − 2t)(x(t) − t)}2dt

∫ 1
0 {x2(t) + 1}dt

,

∫ 1
0 {(x(t) − t2)(ẋ(t) − 1)}2dt

∫ 1
0 {ẋ2(t) + 1}dt

)

subject to

x(t) ≥ 0, t ∈ I = [0, 1], x : I → R

x(0) = 0, x(1) = 1.

Then x̄(t) = t, t ∈ I is a weak efficient solution but not a weak efficient solution
of order m with respect to ξ, for given (MFVP) where ξ defined by

ξ(t, x, x̄) = x(t) − x̄(t).

Since for each c = (c1, c2) ∈ intR2+ and d = (d1, d2) ∈ intR2+ and for each
positive integer m, we can take x̂(t) = t2 ∈ X0, t ∈ I such that

∫ 1
0 {f 1(t, x̂, ˙̂x) − c1‖ξ(t, x̂, x̄)‖m}dt

∫ 1
0 {k1(t, x̂, ˙̂x) + d1‖ξ(t, x̂, x̄)‖m}dt

= −c1K

6
5 + d1K

< 0 =
∫ 1
0 f 1(t, x̄, ˙̄x)dt

∫ 1
0 k1(t, x̄, ˙̄x)dt

,

∫ 1
0 {f 2(t, x̂, ˙̂x) − c2‖ξ(t, x̂, x̄)‖m}dt

∫ 1
0 {k2(t, x̂, ˙̂x) + d2‖ξ(t, x̂, x̄)‖m}dt

= −c2K

7
3 + d2K

< 0 =
∫ 1
0 f 2(t, x̄, ˙̄x)dt

∫ 1
0 k2(t, x̄, ˙̄x)dt

,

where K =
∫ 1

0
{‖ξ(t, x̂, x̄)‖m}dt =

∫ 1

0
{tm(1 − t)m}dt = (m !)2

(2m + 1) ! .

For the sake of convenience we write f i
x (t) for f i

x (t, x(t), ẋ(t)) and f i
ẋ (t) for

f i
ẋ (t, x(t), ẋ(t)) for i = 1, 2, . . . , r.

Following Arana-Jimenez et al. [1, 2], we now define vector Kuhn Tucker point
for multiobjective fractional variational problem.
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Definition 3 x̄ ∈ X0 is said to be a vector Kuhn Tucker point for (MFVP) if there
exist λ̄ = (λ̄1, . . . , λ̄r ) ∈ R

r , v̄ = (v̄1, v̄2, . . . , v̄r ) ∈ R
r+ and a piecewise smooth

function ȳ : I → R
p such that

r∑

i=1

λ̄i (f i
x̄ (t) − v̄iki

x̄ (t)) + ȳ(t)T gx̄(t)= d

dt

[
r∑

i=1

λ̄i (f i˙̄x (t)−v̄iki˙̄x(t))

+ȳ(t)T g ˙̄x(t)
]

, t ∈I, (3)

ȳ(t)T g(t, x̄, ˙̄x) = 0, t ∈ I (4)

λ̄ ≥ 0,
r∑

i=1

λ̄i = 1, ȳ(t) � 0, t ∈ I, v̄i =
∫ b

a
f i(t, x̄, ˙̄x)dt

∫ b

a
ki(t, x̄, ˙̄x)dt

, i = 1, 2, . . . , r. (5)

In order to study weak efficient solutions of higher order for (MFVP), the existing
class of functionals is insufficient. Therefore it requires some sort of extension, the
notion of ρ−invexity of higher order and its generalizations introduced in this paper,
solves the purpose.

Let � : X → R defined by �(x) = ∫ b

a
φ(t, x, ẋ)dt be Frechet differentiable,

where φ(t, x, ẋ) is a scalar function with continuous derivatives upto and including
second order with respect to each of its arguments. Let there exist a real number ρ

and a differentiable vector function η : I × R
n × R

n → R
n with

η(t, x, x̄) = 0 at t if x(t) = x̄(t) (6)

Definition 4 A functional �(x) is said to be ρ-invex of order m at x̄ with respect to
η and ξ if

�(x)−�(x̄)≥
∫ b

a

{η(t,x,x̄)φx̄(t)+[dη(t, x, x̄)

dt
]φ ˙̄x(t)+ρ‖ξ(t, x, x̄)‖m}dt,forall x ∈ X.

Remark 2 (a) If ξ(t, x, x̄) = 0, definition 4 reduces to the classical definition of
Invexity [16, 17].

(b) For m = 2, definition 4 reduces to ρ − (η, ξ)− Invexity [11].

Definition 5 A functional �(x) is said to be ρ-pseudoinvex type 1 of order m at x̄

with respect to η and ξ if
∫ b

a

{η(t, x, x̄)φx̄(t)+[dη(t, x, x̄)

dt
]φ ˙̄x(t)+ρ‖ξ(t, x, x̄)‖m}dt ≥ 0 ⇒ �(x) ≥ �(x̄),

for all x ∈ X.

Or equivalently

�(x)<�(x̄) ⇒
∫ b

a

{

η(t, x, x̄)φx̄(t) +
[
dη(t, x, x̄)

dt

]

φ ˙̄x(t)+ρ‖ξ(t, x, x̄)‖m

}

dt <0,

for all x ∈ X.
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Definition 6 A functional �(x) is said to be ρ-pseudoinvex type 2 of order m at x̄

with respect to η and ξ if
∫ b

a

{

η(t, x, x̄)φx̄(t) +
[
dη(t, x, x̄)

dt

]

φ ˙̄x(t)
}

dt ≥ 0 ⇒ �(x) ≥ �(x̄)

+ρ

∫ b

a

{‖ξ(t, x, x̄)‖m}dt,

for all x ∈ X.

Or equivalently

�(x) < �(x̄) + ρ

∫ b

a

{‖ξ(t, x, x̄)‖m}dt ⇒
∫ b

a

{

η(t, x, x̄)φx̄(t)

+
[
dη(t, x, x̄)

dt

]

φ ˙̄x(t)
}

dt < 0,

for all x ∈ X.

Definition 7 A functional �(x) is said to be ρ-quasiinvex type 1 of order m at x̄

with respect to η and ξ if

�(x)≤�(x̄)⇒
∫ b

a

{

η(t, x, x̄)φx̄(t)+
[
dη(t, x, x̄)

dt

]

φ ˙̄x(t)+ρ‖ξ(t, x, x̄)‖m

}

dt ≤ 0,

for all x ∈ X.

Or equivalently
∫ b

a

{

η(t, x, x̄)φx̄(t)+
[
dη(t, x, x̄)

dt

]

φ ˙̄x(t)+ρ‖ξ(t, x, x̄)‖m

}

dt >0⇒�(x)>�(x̄),

for all x ∈ X.

Definition 8 A functional �(x) is said to be ρ-quasiinvex type 2 of order m at x̄

with respect to η and ξ if

�(x) ≤ �(x̄) + ρ

∫ b

a

{‖ξ(t, x, x̄)‖m}dt ⇒
∫ b

a

{

η(t, x, x̄)φx̄(t) +
[
dη(t, x, x̄)

dt

]

×φ ˙̄x(t)
}

dt ≤ 0,

for all x ∈ X.

Or equivalently
∫ b

a

{

η(t, x, x̄)φx̄(t) +
[
dη(t, x, x̄)

dt

]

φ ˙̄x(t)
}

dt > 0 ⇒ �(x)

> �(x̄) + ρ

∫ b

a

{‖ξ(t, x, x̄)‖m}dt,

for all x ∈ X.
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Definition 9 A functional �(x) is said to be strictly ρ-quasiinvex type 1 of order m

at x̄ with respect to η and ξ if

�(x)≤�(x̄)⇒
∫ b

a

{

η(t, x, x̄)φx̄(t)+
[
dη(t, x, x̄)

dt

]

φ ˙̄x(t) + ρ‖ξ(t, x, x̄)‖m

}

dt <0,

for all x ∈ X − {x̄}.
Or equivalently

∫ b

a

{

η(t, x, x̄)φx̄(t)+
[
dη(t, x, x̄)

dt

]

φ ˙̄x(t)+ρ‖ξ(t, x, x̄)‖m

}

dt ≥0⇒ �(x)>�(x̄),

for all x ∈ X − {x̄}.

Remark 3 Through the following example, it is evident that class of above defined
functionals is larger than the class of functionals that already exists in the literature
[11, 16].

In the following examples x : I → R is assume to be a piecewise smooth function.

(a) The functional �(x) = ∫ 1
0 {x6(t) − x4(t)}dt is ρ-invex of order 4 for ρ = −1,

at x̄(t) = 0, t ∈ I = [0, 1], with respect to η and ξ , defined as

η(t, x, x̄) = x2(t) − x̄2(t),

ξ(t, x, x̄) = x(t) − x̄(t).

But it is not invex at x̄(t) = 0, t ∈ I = [0, 1] since

�(x̂)−�(x̄)<0=
∫ 1

0

{

η(t, x̂, x̄)φx̄(t)+
[
dη(t, x̂, x̄)

dt

]

φ ˙̄x(t)
}

dt, for x̂(t)= t, t ∈ I.

(b) The functional �(x) = ∫ 1
0

x4(t)
2 dt is ρ-invex of order 4 for ρ = 1

2 , at x̄(t) =
0, t ∈ I, with respect to η and ξ , defined as

η(t, x, x̄) = x2(t) − x̄2(t),

ξ(t, x, x̄) = x(t) − x̄(t).

But it is not ρ − (η, ξ)− Invex at x̄(t) = 0, t ∈ I = [0, 1], since

�(x̂) − �(x̄) <

∫ 1

0

{

η(t, x̂, x̄)φx̄(t) +
[
dη(t, x̂, x̄)

dt

]

φ ˙̄x(t)

+1

2
‖ξ(t, x̂, x̄)‖2

}

dt, for x̂(t) = t, t ∈ I.

(c) The functional�(x) = ∫ 1
0 x(t)dt is ρ-pseudoinvex type 1 of order 3 for ρ = 27,

at x̄(t) = −2t, t ∈ I = [0, 1] with respect to η and ξ , defined as

η(t, x, x̄) = x(t) + x̄(t)

ξ(t, x, x̄) = (x̄(t) + 2t)x(t) + 1

3
.
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But it is not ρ − (η, ξ)− pseudoinvex at x̄(t) = −2t, t ∈ I = [0, 1], as
∫ 1

0

{

η(t, x̂, x̄)φx̄(t) +
[
dη(t, x̂, x̄)

dt

]

φ ˙̄x(t) + ρ‖ξ(t, x̂, x̄)‖2
}

dt ≥ 0,

but �(x̂) < �(x̄), for x̂(t) = −3t, t ∈ I.

(d) The functional �(x) = ∫ 1
0 {3x(t) + 1}dt is ρ-quasiinvex type 1 of order 3 for

ρ = 16, at x̄(t) = −t2, t ∈ I = [0, 1] with respect to η and ξ , defined as

η(t, x, x̄) = x(t) + x̄(t)

ξ(t, x, x̄) = x̄(t) + t2 + 1

2
.

But it is not ρ − (η, ξ)− quasiinvex at x̄(t) = −t2, t ∈ I = [0, 1], as �(x̂) ≤
�(x̄), but

∫ 1
0 {η(t, x̂, x̄)φx̄(t) + [ dη(t,x̂,x̄)

dt
]φ ˙̄x(t) + ρ‖ξ(t, x̂, x̄)‖2}dt > 0, for x̂(t) =

−1
2 , t ∈ I.

(e) The functional �(x) = ∫ 1
0 {−x(t)}dt is ρ-pseudoinvex type 2 of order 3 for

ρ = 1, at x̄(t) = 0, t ∈ I = [0, 1] with respect to η and ξ , defined as

η(t, x, x̄) = x̄(t) + 1

ξ(t, x, x̄) = x(t) − x̄(t).

But it is not ρ − (η, ξ)− pseudoinvex at x̄(t) = 0, t ∈ I = [0, 1] as
∫ 1

0
{η(t, x̂, x̄)φx̄(t) + [dη(t, x̂, x̄)

dt
]φ ˙̄x(t) + ρ‖ξ(t, x̂, x̄)‖2}dt ≥ 0,

but �(x̂) < �(x̄), for x̂(t) = 2t, t ∈ I.

(f) The functional �(x) = ∫ 1
0 {−x2(t)}dt is ρ-quasiinvex type 2 of order 3 for

ρ = 1, at x̄(t) = 0, t ∈ I = [0, 1] with respect to η and ξ , defined as

η(t, x, x̄) = x(t) − x̄(t)

ξ(t, x, x̄) = x(t) − x̄(t).

But it is not ρ − (η, ξ)− quasiinvex at x̄(t) = 0, t ∈ I = [0, 1], as �(x̂) ≤ �(x̄),

but
∫ 1
0 {η(t, x̂, x̄)φx̄(t) + [ dη(t,x̂,x̄)

dt
]φ ˙̄x(t) + ρ‖ξ(t, x̂, x̄)‖2}dt > 0, for x̂(t) =

t, t ∈ I.

3 Optimality conditions

Theorem 1 (Sufficient optimality conditions) Let x̄ ∈ X0 be a vector Kuhn Tucker
point for (MFVP). Let us write θi(x) = ∫ b

a
{f i(t, x, ẋ) − v̄iki(t, x, ẋ)}dt, i =
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1, 2, . . . , r and G(x) = ∫ b

a
{ȳ(t)T g(t, x, ẋ)}dt. Further suppose that any one of the

following holds:

(a) θi(x), for i = 1, 2, . . . , r are ρi-pseudoinvex type 2 of order m at x̄ with
respect to η and ξ and G(x) is ρ′-quasiinvex type 1 of order m at x̄ with respect
to η and ξ, where ρ′, ρi ∈ int R+, for i = 1, 2, . . . , r.

(b) θi(x), for i = 1, 2, . . . , r are ρi-quasiinvex type 2 of order m at x̄ with respect
to η and ξ and G(x) is strict ρ′-quasiinvex type 1 of order m at x̄ with respect
to η and ξ, where ρ′, ρi ∈ int R+, for i = 1, 2, . . . , r.

Then x̄ is a weak efficient solution of order m with respect to ξ for (MFVP).

Proof (a) If possible, suppose x̄ is not a weak efficient solution of order m with
respect to ξ for (MFVP). Then for any c = (c1, c2, . . . , cr ) ∈ intRr+ and d =
(d1, d2, . . . , dr ) ∈ intRr+, there exist x̂ ∈ X0 such that
∫ b

a
{f i(t, x̂, ˙̂x) − ci‖ξ(t, x̂, x̄)‖m}dt

∫ b

a
{ki(t, x̂, ˙̂x) + di‖ξ(t, x̂, x̄)‖m}dt

<

∫ b

a
f i(t, x̄, ˙̄x)dt

∫ b

a
ki(t, x̄, ˙̄x)dt

= v̄i , for all i ∈{1, 2, . . . , r}.

That is,
∫ b

a

{f i(t, x̂, ˙̂x) − v̄iki(t, x̂, ˙̂x)}dt < (ci + di v̄i)

∫ b

a

{‖ξ(t, x̂, x̄)‖m}dt,

for all i ∈ {1, 2, . . . , r}.
Choose ρi = ci + di v̄i , for i = 1, 2, . . . , r and using Eq. (5), we get

∫ b

a

{f i(t, x̂, ˙̂x)−v̄iki(t, x̂, ˙̂x)}dt <

∫ b

a

{f i(t, x̄, ˙̄x)−v̄iki(t, x̄, ˙̄x)+ρi‖ξ(t, x̂, x̄)‖m}dt,

for all i ∈ {1, 2, . . . , r}.
Since θi(x), for i = 1, 2, . . . , r are ρi-pseudoinvex type 2 of order m at x̄ with

respect to η and ξ , we obtain
∫ b

a

{η(t, x̂, x̄)[f i
x̄ (t) − v̄iki

x̄ (t)] + dη(t, x̂, x̄)

dt
[f i˙̄x (t) − v̄iki˙̄x(t)]}dt < 0, (7)

for all i ∈ {1, 2, . . . , r}.
Multiplying each inequality (7) by λ̄i , i = 1, 2, . . . , r and then adding, we get

∫ b

a

{

η(t, x̂, x̄)

[
r∑

i=1

λ̄i (f i
x̄ (t) − v̄iki

x̄ (t))

]

+ dη(t, x̂, x̄)

dt

×
[

r∑

i=1

λ̄i (f i˙̄x (t) − v̄iki˙̄x(t))
]}

dt < 0. (8)

Since ȳ(t) � 0, t ∈ I, x̂ ∈ X0 and using Eq. (4), we obtain
∫ b

a

ȳ(t)T g(t, x̂, ˙̂x)dt ≤ 0 =
∫ b

a

ȳ(t)T g(t, x̄, ˙̄x)dt. (9)



548 OPSEARCH (2016) 53:538–552

Since G(x) is ρ′-quasiinvex type 1 of order m at x̄ with respect to η and ξ, Eq. (9)
yields
∫ b

a

{

η(t, x̂, x̄)[ȳ(t)T gx̄(t)] + dη(t, x̂, x̄)

dt
[ȳ(t)T g ˙̄x(t)] + ρ′‖ξ(t, x̂, x̄)‖m

}

dt ≤ 0.

(10)
Adding both sides of the inequalities (8), (10) and using (3), we get

∫ b

a

{
d

dt

{

η(t, x̂, x̄)

[
r∑

i=1

λ̄i (f i˙̄x (t) − v̄iki˙̄x(t)) + ȳ(t)T g ˙̄x(t)
]}}

×dt +
∫ b

a

{ρ′‖ξ(t, x̂, x̄)‖m}dt < 0,

⇒
{

η(t, x̂, x̄)

[
r∑

i=1

λ̄i (f i˙̄x (t) − v̄iki˙̄x(t)) + ȳ(t)T g ˙̄x(t)
]}

|ba

+
∫ b

a

{ρ′‖ξ(t, x̂, x̄)‖m}dt < 0.

Since x̂, x̄ ∈ X0 and (6), we get
∫ b

a

{ρ′‖ξ(t, x̂, x̄)‖m}dt < 0.

This is a contradiction as ρ′ > 0, ‖ξ(t, x̂, x̄)‖m ≥ 0, for all positive integer m.

This completes the proof.
(b) Proof runs on the same lines as the proof of part (a) and is hence omitted.

Corollary 1 Let x̄ ∈ X0 be a vector Kuhn Tucker point for (MFVP). Let
θi(x), for i = 1, 2, . . . , r are ρi-invex of order m at x̄ with respect to η and ξ

and G(x) is ρ′-invex of order m at x̄ with respect to η and ξ, where ρ ′, ρi ∈
int R+, for i = 1, 2, . . . , r. Then x̄ is a weak efficient solution of order m with
respect to ξ for (MFVP).

4 Duality results

In this section a parametric dual (MFVDP) to (MFVP) is proposed following the
approach of Bector et al. [18]. Weak and strong duality results are established to
relate weak efficient solutions of higher order for primal and dual problem.

(MFVDP) Maximize v̄ = (v̄1, v̄2, . . . , v̄r )

subject to

r∑

i=1

λ̄i (f i
x̄ (t) − v̄iki

x̄ (t)) + ȳ(t)T gx̄(t) = d

dt

[
r∑

i=1

λ̄i (f i˙̄x (t) − v̄iki˙̄x(t)) + ȳ(t)T g ˙̄x(t)

]

, t ∈ I,

(11)
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∫ b

a

ȳ(t)T g(t, x̄, ˙̄x)dt ≥ 0, (12)
∫ b

a

{f i(t, x̄, ˙̄x) − v̄iki(t, x̄, ˙̄x)}dt ≥ 0, i = 1, 2, . . . , r (13)

x̄ ∈X,λ̄≥0, λ̄T e=1, ȳ(t)�0,t ∈I, v̄i ≥ 0, i = 1, 2, . . . , r where e = (1, 1, . . . , 1).
(14)

x̄(a) = α, x̄(b) = β. (15)
Let Y1 be the set of feasible solutions of (MFVDP).

Theorem 2 (Weak duality) Let x ∈ X0, (x̄, λ̄, v̄, ȳ) ∈ Y1. Let us write
θi(x) = ∫ b

a
{f i(t, x, ẋ) − v̄iki(t, x, ẋ)}dt, i = 1, 2, . . . , r and G(x) =

∫ b

a
{ȳ(t)T g(t, x, ẋ)}dt. Further suppose that any one of the following holds:

(a) θi(x), for i = 1, 2, . . . , r are ρi-pseudoinvex type 2 of order m at x̄ with
respect to η and ξ and G(x) is ρ′-quasiinvex type 1 of order m at x̄ with respect
to η and ξ, where ρ′, ρi ∈ int R+, for i = 1, 2, . . . , r.

(b) θi(x), for i = 1, 2, . . . , r are ρi-quasiinvex type 2 of order m at x̄ with respect
to η and ξ and G(x) is strict ρ′-quasiinvex type 1 of order m at x̄ with respect
to η and ξ, where ρ′, ρi ∈ int R+, for i = 1, 2, . . . , r.

Then there exist c = (c1, c2, . . . , cr ) ∈ intRr+ and d = (d1, d2, . . . , dr ) ∈ intRr+
such that following cannot hold:

∫ b

a
{f i(t, x, ẋ) − ci‖ξ(t, x, x̄)‖m}dt

∫ b

a
{ki(t, x, ẋ) + di‖ξ(t, x, x̄)‖m}dt

< v̄i, for all i ∈ {1, 2, . . . , r}.

Proof (a) Contrary to the results, assume that for any c = (c1, c2, . . . , cr ) ∈ intRr+
and d = (d1, d2, . . . , dr ) ∈ intRr+

∫ b

a
{f i(t, x, ẋ) − ci‖ξ(t, x, x̄)‖m}dt

∫ b

a
{ki(t, x, ẋ) + di‖ξ(t, x, x̄)‖m}dt

< v̄i, for all i ∈ {1, 2, . . . , r}.

That is,

∫ b

a

{f i(t, x, ẋ)− v̄iki (t, x, ẋ)}dt < (ci +di v̄i )

∫ b

a

{‖ξ(t, x, x̄)‖m}dt, for all i ∈ {1, 2, . . . , r}.

Using the hypotheses and proceeding as in the proof of Theorem 1, we arrive at

∫ b

a

{ d

dt
{η(t, x, x̄)

[
r∑

i=1

λ̄i (f i˙̄x (t) − v̄iki˙̄x(t)) + ȳ(t)T g ˙̄x(t)

]

}}dt +
∫ b

a

{ρ′‖ξ(t, x, x̄)‖m}dt < 0,

⇒ {η(t, x, x̄)

[
r∑

i=1

λ̄i (f i˙̄x (t) − v̄iki˙̄x(t)) + ȳ(t)T g ˙̄x(t)

]

}
∣
∣
∣
∣
∣

b

a

+
∫ b

a

{ρ′‖ξ(t, x, x̄)‖m}dt < 0.
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This leads to a contradiction on using Eqs. (2), (6) and (15). Hence result follows.
(b) Proof runs on the same lines as the proof of part (a) and is hence omitted.

Adopting the approach of Arana-Jimenez et al. [2], consider the following weight-
ing variational problem (MFPv̄λ), for each v̄ = (v̄1, v̄2, . . . , v̄r ) ∈ R

r+. This
facilitates us to establish strong duality theorem.

(MFPv̄λ) Minimize

(
r∑

i=1

λi

∫ b

a

{f i(t, x, ẋ) − v̄iki(t, x, ẋ)}dt

)

subject to

g(t, x, ẋ) � 0, t ∈ I, x(a) = α, x(b) = β.

where λ = (λ1, λ2, . . . , λr ) ∈ R
r+ − {0} is a fixed vector.

Lemma 1 Let x̄ ∈ X0 be an optimal solution of order m with respect to ξ for
(MFPv̄λ̄) which is normal, for some λ̄ ∈ R

r , λ̄ ≥ 0, λ̄T e = 1, t ∈ I, v̄i =
∫ b
a f i (t,x̄, ˙̄x)dt

∫ b
a ki (t,x̄, ˙̄x)dt

. Then x̄ is a vector Kuhn Tucker point for (MFVP).

Proof Let x̄ ∈ X0 be an optimal solution of order m with respect to ξ for (MFPv̄λ̄)

which is normal, for some λ̄ ∈ R
r , λ̄ ≥ 0, λ̄T e = 1, t ∈ I, v̄i =

∫ b
a f i (t,x̄, ˙̄x)dt

∫ b
a ki (t,x̄, ˙̄x)dt

. It is

trivial that an optimal solution of order m with respect to ξ for (MFPv̄λ̄) is also an
optimal solution of (MFPv̄λ̄). Hence x̄ is a normal optimal solution for (MFPv̄λ̄). Now
result can be easily proved by using necessary optimality conditions [19, Theorem
3.1]

Theorem 3 (Strong duality) Let x̄ be a weak efficient solution of order m with
respect to ξ for (MFVP). Furthermore, if it is an optimal solution of order m with
respect to ξ for (MFPv̄λ̄) which is normal, for some λ̄ ∈ R

r , λ̄ ≥ 0, λ̄T e = 1, t ∈
I, v̄i =

∫ b
a f i (t,x̄, ˙̄x)dt

∫ b
a ki (t,x̄, ˙̄x)dt

. Then there exist a piecewise smooth function ȳ : I → R
p

such that (x̄, λ̄, v̄, ȳ) ∈ Y1. Further if weak duality theorem holds and ξ(t, x, x̄) =
ξ(t, x̄, x) for all x ∈ X. Then (x̄, λ̄, v̄, ȳ) is a weak efficient solution of order m with
respect to ξ for (MFVDP).

Proof Since x̄ is an optimal solution of order m with respect to ξ for (MFPv̄λ̄) which
is normal. By lemma 1, it is a vector Kuhn Tucker point for (MFVP), that is, there
exist a piecewise smooth function ȳ : I → R

p such that (x̄, λ̄, v̄, ȳ) ∈ Y1. Suppose
weak duality theorem holds and ξ(t, x, x̄) = ξ(t, x̄, x) for all x ∈ X.
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Let if possible, (x̄, λ̄, v̄, ȳ) is not a weak efficient solution of ordermwith respect to ξ

for (MFVDP). Then for any ρ = (ρ1, ρ2, . . . , ρr ) ∈ intRr+, there exist (x̂, λ̂, v̂, ŷ) ∈
Y1 such that

v̂i + ρi

∫ b

a

{‖ξ(t, x̂, x̄)‖m}dt > v̄i =
∫ b

a
f i(t, x̄, ˙̄x)dt

∫ b

a
ki(t, x̄, ˙̄x)dt

, for all i ∈ {1, 2, . . . , r}.
(16)

Case(i) If ‖ξ(t, x̂, x̄)‖m = 0. Then for any c = (c1, . . . , cr ) ∈ intRr+ and d =
(d1, . . . , dr ) ∈ intRr+,

∫ b

a
{f i(t, x̄, ˙̄x) − ci‖ξ(t, x̂, x̄)‖m}dt

∫ b

a
{ki(t, x̄, ˙̄x) + di‖ξ(t, x̂, x̄)‖m}dt

< v̂i for all i ∈ {1, 2, . . . , r},

which is contradiction to weak duality theorem.
Case(ii) If ‖ξ(t, x̂, x̄)‖m �= 0.

Assertion 1: for any c = (c1, c2, ..., cr ) ∈ intRr+ and d = (d1, d2, ..., dr ) ∈
intRr+, we have

∫ b

a
{f i(t, x̄, ˙̄x) − ci‖ξ(t, x̂, x̄)‖m}dt

∫ b

a
{ki(t, x̄, ˙̄x) + di‖ξ(t, x̂, x̄)‖m}dt

< v̂i, for all i ∈ {1, 2, ..., r}.

If possible assertion 1 is not true then there exist c = (c1, c2, . . . , cr ) ∈ intRr+ and
d = (d1, d2, . . . , dr ) ∈ intRr+, we have

∫ b

a
{f i(t, x̄, ˙̄x) − ci‖ξ(t, x̂, x̄)‖m}dt

∫ b

a
{ki(t, x̄, ˙̄x) + di‖ξ(t, x̂, x̄)‖m}dt

≮ v̂i , for some i ∈ {1, 2, . . . , r}, (17)

Taking ρi = ci
∫ b
a ki (t,x̄, ˙̄x)dt+di

∫ b
a f i (t,x̄, ˙̄x)dt

{∫ b
a {ki (t,x̄, ˙̄x)+di‖ξ(t,x̂,x̄)‖m}dt}∫ b

a ki (t,x̄, ˙̄x)dt
, i = 1, 2, . . . , r in Eq. (16)

∫ b

a
{f i(t, x̄, ˙̄x) − ci‖ξ(t, x̂, x̄)‖m}dt

∫ b

a
{ki(t, x̄, ˙̄x) + di‖ξ(t, x̂, x̄)‖m}dt

< v̂i, for all i ∈ {1, 2, . . . , r},

which is a contradiction to Eq. (17). Therefore assertion 1 holds which deny weak
duality theorem. Thus (x̄, λ̄, v̄, ȳ) is a weak efficient solution of order m with respect
to ξ for (MFVDP).
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