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Abstract This paper presents an improved continuous genetic algorithm (CGA) to
optimize the reliability redundancy allocation problem (RRAP) which determines the
best redundancy strategies, the number of components, and levels of each subsystem to
maximize the system reliability. In this system, both active and cold-standby redun-
dancies can be chosen for individual subsystems. The RRAP belongs to NP-hard
problems in the computational complexity theory that is the main reason for employing
CGA to solve it. In addition, the response surface methodology (RSM) is used to
increase the performance of CGA considering the design of experiments. This algo-
rithm employs a new chromosome so that frees offspring to repair during the evolution
process. Considering several numerical examples, the proposed algorithm presents
better solutions than the previous studies based on the system reliability. Finally, the
conclusion and future research are considered.
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1 Introduction

System reliability is one of the most important issues to design various types of
electrical and mechanical systems. In the reliability theory, redundancy is applied to
improve system reliability. In addition, reliability redundancy allocation problem
(RRAP) is an important class in modeling reliability systems so that belongs to NP-
hard problems. In the RRAP literature, there are several considered RRAPs such as
series, parallel, series–parallel [1–4], and k-out-of-n [5]. Hence, Fig. 1 shows a series–
parallel system in which includes s subsystems and n redundant machines.

There are two categories of RRAPs. The first class is a system including component
mixing. The second category is a system without component mixing, which meant that
the components allocated in the same subsystem in which should be the same type [6].
Furthermore, active and standby approaches are two main classifications for the redun-
dancy strategies. The situation that all components are operated simultaneously from the
time zero is called active redundancy versus standby redundancy that the redundant
components are used sequentially during component failure times [7]. Moreover, standby
redundancy is categorized into three different types, namely, cold [8–10], hot [11, 12],
and warm [13–15] so that frees the component to fail before it operates in the cold
standby redundancy versus warm standby that components are more likely to be failed
before operating. Further, the failure pattern of components is freed from the idleness or
the operation of the components with respect to the hot standby redundancy. In the
majority of studies in the RRAP literature, it is assumed that only one type of redundancy
can be used to investigate systems: active or cold standby. In the real world, both the
redundancy strategies are applied simultaneously in the design of systems. Therefore, this
paper studies redundancy strategy with respect to active and cold standby components.

In system-reliability optimization, Kuo and Prasad [16] provided a good overview.
However, there are several studies in the scope of cold standby redundancy so that

Fig. 1 Graphical representation of series–parallel system
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Tillman et al. [17] evidenced in their research; on the other hand, they investigate 100
papers relating to the reliability optimization researches with different types of redun-
dancy. According to strictly cold standby redundancy, Coit [5] discussed a problem that
considered imperfect switching and k-Erlang distributed time-to-failures, and then
presented an integer programming solution to optimize the RRAP. To consider prob-
lems of active and cold standby redundancy is near to real-world situations in which
there are few studies because of its computational complexity. Considering multiple k-
out-of-n subsystems in the series, Coit and Liu [18] provided a solution methodology to
optimize a RRAP for systems so that they assumed that the redundancy strategy is
predetermined for each subsystem. Regarding zero–one integer programming method,
Coit [19] extended another methodology to maximize system reliability with respect to
either active or cold-standby redundancy can be selectively chosen for individual
subsystems. Thus, he developed the previous solution methodology by adding several
decision variables. Next, Tavakkoli-Moghaddam et al. [20] improved the system
reliability the RRAP [19] by employing the genetic algorithm (GA). Tian, et al. [21]
extended an approach to optimize systems with multi-sate components with respect to
the factors that influence system reliability and system life cycle cost. Moreover,
Sharma, et al. [22] proposed an efficient algorithm to find a near-optimal solution to
minimize the configuration cost of heterogeneous multistate series–parallel systems
while a desired reliability index should be satisfied.

With these explanations, the purpose of this article is to develop a better
solution methodology to improve the RRAP optimization. In other words, this
paper illustrates a continuous GA (CGA) for series–parallel RRAP used in
Tavakkoli-Moghaddam et al. [20]. Since the meta-heuristics are impressed by
their parameters, we utilize the response surface methodology (RSM) in the
design of experiments to tune parameters of the proposed algorithm. As inno-
vations, we can point to CGA that applies a new chromosome so that free
offspring from reparation during the generation; in addition, employing RSM to
calibrate parameters of CGA is another contribution. Table 1 provides several
studies relevant to GA in the literature.

The paper is organized as follows. Section 2 defines the assumptions and the
mathematical model. The proposed algorithm is presented in Section 3.
Parameter tuning and the comparison of CGA are elaborated in Sections 4
and 5, respectively. Finally, Section 6 provides the conclusion and future
research.

Table 1 Several studies relevant to genetic algorithm

Study Solution algorithm Tuning parameters

Pasandideh, et al. [23] GA No

Sadeghi, et al. [24] GA RSM

Nachiappan and Jawahar [25] GA No

Tavakkoli-Moghaddam et al. [20] GA No

The Proposed algorithm Tuned-Hybrid GA RSM
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2 Mathematical model

This section presents a RRAP without component mixing for the series–
parallel redundant reliability system considering S subsystem so that individ-
ual subsystems can select either active or cold standby redundancy strategy.
In addition, two separable linear constraints are considered. Several typical
assumptions are,

a. The failed components, which are not repaired, do not damage to the system.
b. Failures of individual components are statistically-independent.
c. The states of the elements and the system are either good or have failed (and no

other states are considered).

Nomenclatures used in this paper are as follows.

S Number of subsystems
i An index used for a subsystem; i=1,2,3,…,S
ni Number of components used in subsystem; ni∈{1,2,…,nmax,i}
n (n1,n2,…,ns)
mi Number of available component choices for a subsystem i
zi Index of component choice used for a subsystem i; zi∈{1,2,…,mi}
Z (z1,z2,…,zS)
A Set of all subsystems using active redundancy
CS Set of all subsystems using cold standby redundancy
nmax,i Upper bound for ni(ni≤nmax,i)
rizi tð Þ Reliability at time t for zi

th available component for subsystem i
λizi ; kizi Scale and shape parameters the Gamma distribution for zi

th available
component for subsystem i

f izi
jð Þ tð Þ

pdf of zi
th failure arrival for subsystem i, where is the sum of jiid component

failure times
W System-level constraint limit for weight
cij,wij Cost and weight of the jth available component for the subsystem i,

respectively
ρi(t) Failure-detection / switching reliability at time t (scenario 1; continual

sensing)
ρi Failure-detection/switching reliability success probability (scenario 2;

active only in response to a failure state)
R(t;z,n) System reliability at time t for designing vectors z and n
~R t; z; nð Þ Approximation of R(t;z,n)
t Mission time (fixed)

Where the decision variables are: redundancy strategies, selected components, and
the number of components for each subsystem.

According to the mentioned nomenclature, the mathematical model of RRAP can be
written as follows.

Max z ¼ R t; z; nð Þ ð1Þ
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s.t, X
i

cizini≤C ð2Þ

X
i

wiziwi≤W ð3Þ

ni∈ 1; 2;…; nmax;i

� � ð4Þ

zi∈ 1; 2;…;mif g ð5Þ

Equation (3) presents the overall reliability system; in addition, Eqs. (4) and (5)
satisfy the constraints on the available cost and weight, respectively. Then, Eqs. (7) and
(8) obtain the system reliability as two scenarios [5]:

Scenario 1: continual detector/switch operation,
Scenario 2: switch active only in response to a failure,

R t; z; nð Þ ¼ ∏
i∈A

1− 1−rizi tð Þð Þnið Þ � ∏
i∈CS

rizi tð Þ þ
Xni−1

j¼1

Z t

0
ρi uð Þ f jð Þ

izi uð Þrizi t−uð Þdu
 !

ð6aÞ

R t; z; nð Þ ¼ ∏
i∈A

1− 1−rizi tð Þð Þnið Þ � ∏
i∈CS

rizi tð Þ þ
Xni−1

j¼1

ρ j
i

Z t

0
f jð Þ
izi uð Þrizi t−uð Þdu

 !
ð6bÞ

In the CS, the subsystem reliability is the sum of the ni mutually exclusive proba-
bilities. Just after the product for CS, the first term in Eq. (6) is rizi tð Þ that represents the
probability that no cold standby redundant components are required during the mission
interval. Other subsequent terms represent ni−1 mutually exclusion probabilities that
there are between one and ni−1 failures. Note that the switch is available to perform its
function at the time of the failure, and a redundant component is always operating at
time t.

2.1 Approximation of reliability

Regarding Eqs. (7) and (9) obtains the system reliability approximation in which only
one difference can be seen in the product term for CS.

~R t; z; nð Þ ¼ ∏
i∈A

1− 1−rizi tð Þð Þnið Þ � ∏
i∈CS

rizi tð Þ þ δi t; nið Þ
Xni−1

j¼1

Z t

0
f jð Þ
izi uð Þrizi t−uð Þdu

 !

ð7Þ

Where δi t; nið Þ ¼ ρi tð Þf ρni−1i , as a probability function to determine the probability
of the switch at hours for each subsystem, which it is considered 0.99 in this paper.
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A specified form of Eq. (9) shall be determined if k-Erlang distribution is considered
for component time-to-failure. The k-Erlang distribution as a special form of Gama
distribution can model diverse constant and increase hazard functions. According to k-
Erlang distribution, the approximation of the system reliability can be calculated as
follows.

~R t; z; nð Þ ¼ ∏
i∈A

1− 1−e−λizi t
Xkizi−1

l¼0

λizi tð Þl
l!

0
@

1
A

ni0
@

1
A� ∏

i∈CS
e−λizi t

Xkizi−1

l¼0

λizi tð Þl
l!

þ ρi tð Þ
Xkizi ni−1

l¼kizi

λizi tð Þl
l!

0
@

1
A

2
4

3
5

ð8Þ

3 Solution algorithm: Continuous genetic algorithm (CGA)

There are several methods to optimize NP-hard problems such as dynamic program-
ming [26], integer programming [27], and meta-heuristics like GA [20, 28–30], particle
swarm optimization [31–33], the cuckoo search (CS) algorithm [34], the bee algorithm
[35]. Thus, we employ an improved meta-heuristic to optimize the model.

GA has been developed as a robust and powerful stochastic search algorithm and
works based on Darwin’s theory of evolution [36]. CGA or real-coded GA, which its
chromosomes are considered as a floating point number, is a special forming of GAs so
that acts better than GA based on a binary method for function optimization problems
[37]. There are several superior features of CGAversus the binary GA such as working
quickly because of the designed chromosomes, and storing computational less space to
run the algorithm. Figure 2 shows the flowchart of the proposed algorithm, which is
described as follows.

Initialization

Encoding

Decoding

Evaluation

Stopping
criteria

Selection strategy

NO

Crossover operator

Mutation operator

Out put

YES

Fig. 2 The flowchart of the CGA
algorithm

OPSEARCH (2016) 53:426–442 431



3.1 Initialization

To begin the CGA, the parameters of the algorithm should be assigned an
initial value. The parameters that have important roles in CGA are: (i) It:
Number of iterations of CGA or the number of the generations; (ii) Npop:
Number of the individual population; (iii) Pc: Crossover operator ratio; (iv) Pm:
Mutation operator ratio. Where these parameters are tuned by RSM in
Section 4.

3.2 Encoding structure

Encoding solution is the vital component to effective search in the solution area;
therefore, we present a new encoding to CGA. Note that a possible solution consists
of redundancy strategies, selected components, and the number of components for each
subsystem. The proposed encoding presents a feasible solution that does not need to
repair during the CGA process. There are three parts in the encoding of solution in
which showed in Fig. 3.

Here, the rows, which are a random number between (0∼1), are a 1×S vector so that
S denotes number of the subsystem. Thus, these rows obtain a feasible solution after
decoding process. The initial population is created randomly considering Npop.

3.3 Decoding structure

In order to evaluate the fitness function, it is necessary to decode the encoded solutions.
Thus, the decoding process is elaborated considering an example with these
explanations:

S Number of subsystem (S=6)
mi Number of available component for a subsystem (mi=3)
nmax,i Constraint on the number of components used in each subsystem (nmax,i=6)
ai Two redundancy strategies including active and cold standby for each subsystem

(ai=2)
The following steps describe decoding process.

Step 1: Generate randomly a chromosome, (see Fig. 4).
Step 2: Select the redundancy strategy for each subsystem between active or cold

standby by rounding numbers obtained from the first row to nearest integer

Fig. 4 A graphical representation
of the chromosome

Fig. 3 The proposed chromosome
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like this ⌊ri×ai+1⌋. Such, active and cold strategies are chosen by 1 and 2,
respectively, (see the first row in Fig. 5).

Step 3: Calculate ⌊mi×ci+1⌋ to allocate available component for subsystem i so that
1, 2, and 3 are their number, (see the second row in Fig. 5).

Step 4: Obtain ⌊nmax,i×ni+1⌋ to select the number of the components used in
subsystem i, (see the third row in Fig. 5).

3.4 CGA operators

In order to satisfy the constraints described in Eqs. (4) and (5), we employ one of the
penalty methods, called the death penalty [36]. Moreover, individuals with higher
qualification should have a greater chance of selection than those with lower fitness.
Hence, we apply the roulette wheel selection to select the chromosomes. GA generates
a new population with crossover and mutation operators. This paper utilizes a specific
version of the continuous uniform crossover used by Radcliffe [38] as follows. Two
chromosomes, which called parents, are selected between the populations. Next, a row
similar to one of the parent is generated, namely β (with values between zero and one).
Afterwards, offspring are created considering Eqs. (11) and (12). Figure 6 elaborates
the process of the crossover operator for the 1th row of chromosomes.

offspring1 ¼ β � parent1 þ 1−βð Þparent2 ð9Þ

offspring2 ¼ β � parent2 þ 1−βð Þparent1 ð10Þ

The second operator in GA, which called mutation, prevents the algorithm to
converge on a local optimal solution. The uniform mutation operator of Radcliff [38]
is used in this paper. Figure 7 explains mutation operator; such, a chromosome is
selected randomly, and then exchanged one of its cells with a random number between
zero and one.

4 Parameter tuning: Response Surface Methodology

There are two main approaches to calibrate the parameters used in meta-heuristics: a
trial-and-error procedure, and the statistical methods. The parameters of meta-heuristics

Fig. 6 An example of crossover
operator

Fig. 5 Decoded the chromosome
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impress the quality of the solutions; hence, we employ one of the statistical methods in
design of experiments, called the Response Surface Methodology (RSM). The RSM
uses a collection of useful mathematical and statistical techniques to model and analysis
of problems [39]. Considering a response that here is the system reliability, the RSM
determines the best levels of variables in a problem. There are four variables in which
are presented in Table 2 that shows their levels and coded factor.

In the beginning of RSM, a trial-and-error procedure is used to initialize the
variables. Considering the obtained responses, a first-order model is fitted; and per-
formed a test of lack of fit so that this test determines the sufficiency; otherwise, a
second-order model is tested [40]. There are several the designs to fit a second-order
model such as the central composite design (CCD) in which includes 2k factorial points,
nc central points, and 2k axial points. The second-order model of CCD can be written
as,

E Yð Þ ¼ β0 þ
X k

i¼1
βiX i þ

X k

i¼1
βiX

2
i þ

X k

i< j

X k

i< j
βi jX iX j ð11Þ

Where E(Y) is the expected value of the response variable in which is the system
reliability, and β0,βi and βij are fixed coefficients of the second-order model. In
addition, Xi and Xj are the input variables in k number.

4.1 Experiments

To perform RSM, we run 33 test problems in which have 14 subsystems with varying
decreasingly weightsW from 191 to 159, and the available budget restricted to 130 (C=
130).

Note that the values of −1, 0, and 1 are low, middle, and high levels of parameters,
respectively. To remove the influence of results obtained from the test problems with
different size, the mean ratio of the CGA solution (Y as the response) is defined as the
performance index of the CGA. Table 3 shows the CCD that consists of eight factorial

Table 2 The parameters and their levels as the input variables of RSM

Parameters Coded factor Range Levels

Low Middle High

Npop X1 20–70 20 45 70

Pc X2 0.7–0.95 0.7 0.82 0.95

Pm X3 0.01–0.3 0.01 0.15 0.3

It X4 100–400 100 250 400

Fig. 7 An example of mutation
operator
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points, eight axial points, and four central points in twenty experiments. Considering
the CCD, we run CGA to obtain the responses (Y). Since the proposed model belongs
to the maximization models, a response (Y) with higher values presents better perfor-
mances of the CGA. Regarding the analysis of variance (ANOVA) test for the response

Table 4 Analysis of variance for the accuracy performance index (Y)

Source DF Seq SS Adj SS Adj MS F P-value

Regression 11 0.040605 0.040605 0.003691 41.87 0

Linear 4 0.029778 0.029778 0.007444 84.44 0

Square 4 0.004183 0.004183 0.001046 11.86 0.002

Interaction 3 0.006644 0.006644 0.002215 25.12 0

Residual Error 8 0.000705 0.000705 0.000088

Lack-of-Fit 5 0.000702 0.000702 0.00014 145.73 0.001

PureError 3 0.000003 0.000003 0.000001

Total 19 0.04131

S=0.009389; R-Sq=98.3 %; R-Sq(adj)=95.9 %

Table 3 The central composite design (CCD) with the responses

Runs Input variable Responses

X1 X2 X3 X4 Y

1 0 0 0 0 0.94

2 0 0 0 −1 0.9

3 0 0 1 0 0.94

4 1 1 1 1 0.96

5 0 1 0 0 0.95

6 1 −1 −1 1 0.98

7 −1 1 −1 1 0.95

8 1 −1 1 −1 0.93

9 −1 1 −1 −1 0.85

10 −1 1 1 −1 0.78

11 −1 0 0 0 0.91

12 1 0 0 0 0.96

13 0 0 0 0 0.94

14 0 0 0 0 0.94

15 0 0 0 1 0.95

16 0 0 0 0 0.94

17 0 −1 0 0 0.95

18 0 0 −1 0 0.97

19 1 1 −1 −1 0.97

20 −1 −1 1 1 0.92
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in Table 4, there is a statistically significant curvature on the response surfaces;
therefore, a second order model is employed to analysis experiments. The responses
in Table 3 are used to estimate the second order models.

The best values of parameters are given by solving a single objective problem in
Eq. (12), which is obtained by the estimated regression coefficients in the second-order
model.

Y ¼ 0:95þ 0:039X 1−0:0015X 2−0:021X 3 þ 0:032X 4−0:0149X 2
1 þ 0:0027X 2

2þ
0:0084X 2

3−0:0244X
2
4 þ 0:007X 1X 2 þ 0:007X 1X 3−0:0271X 1X 4

ð12Þ

Finally, the optimal values of parameters are illustrated in Table 5.

5 Numerical example

In this section, an example [5] is used to evaluate the performance of the proposed
algorithm. There are 14 subsystems with three or four component selections; in

Table 6 Component data for example

Choice 1(j=1) Choice 2(j=2) Choice 3(j=3) Choice 4(j=4)

i λij kij cij wij λij kij cij wij λij kij cij wij λij kij cij wij

1 0.00532 2 1 3 0.000726 1 1 4 0.00499 2 2 2 0.00818 3 2 5

2 0.00818 3 2 8 0.000619 1 1 10 0.00431 2 1 9 – – – –

3 0.0133 3 2 7 0.0110 3 3 5 0.0124 3 1 6 0.00466 2 4 4

4 0.00741 2 3 5 0.0124 3 4 6 0.00683 2 5 4 – – – –

5 0.00619 1 2 4 0.00413 2 2 3 0.00818 3 3 5 – – – –

6 0.00436 3 3 5 0.00567 3 3 4 0.00268 2 2 5 0.000408 1 2 4

7 0.0105 3 4 7 0.00466 2 4 8 0.00394 2 5 9 – – – –

8 0.0105 3 3 4 0.00105 1 5 7 0.0105 3 6 6 – – – –

9 0.00268 2 2 8 0.000101 1 3 9 0.00408 1 4 7 0.000943 1 3 8

10 0.0141 3 4 6 0.00683 2 4 5 0.00105 1 5 6 – – – –

11 0.00394 2 3 5 0.00355 2 4 6 0.00314 2 5 6 – – – –

12 0.00236 1 2 4 0.00769 2 3 5 0.0133 3 4 6 0.0110 3 5 7

13 0.00215 2 2 5 0.00536 3 3 5 0.00665 3 2 6 – – – –

14 0.0110 3 4 6 0.00834 1 4 7 0.00355 2 5 6 0.00436 3 6 9

Table 5 The optimal value of
input variables

Parameter Value

Npop 56

Pc 0.89

Pm 0.18

It 321
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addition, the maximum number of components is six (nmax,i=6). Moreover, it is
considered 0.99 as the reliability of a switch at 100 h for each subsystem.

Thus, Table 6 illustrates the component cost, the weight and k-Erlang distribution
parameters of the example. The aim of solving is to maximize system reliability

Fig. 8 Performance of CGA vs. Tavakkoli-Moghaddam et al. [20]

Table 7 The result of comparison the proposed algorithm

Fyffe et al. [6] Coit [5] Coit [19] Tavakkoli-Moghaddam et al. [20] Proposed algorithm

i zi ni R zi ni R zi ni R zi ni R zi ni R

1 3 3 A 3 3 C 3 4 A 1 2 C 3 4 A

2 1 2 A 1 2 C 1 2 C 1 2 A 1 2 C

3 4 3 A 4 3 C 4 3 A 4 3 A 4 3 A

4 3 3 A 3 3 C 3 3 C 3 3 C 3 3 C

5 2 3 A 2 3 C 2 3 A 2 2 A 2 3 A

6 2 2 A 2 2 C 2 2 C 2 2 A 2 2 C

7 1 2 A 1 2 C 1 2 C 1 2 C 1 2 C

8 1 4 A 3 2 C 3 2 C 1 3 C 1 3 C

9 3 2 A 2 2 C 1 2 C 1 2 A 1 2 C

10 2 3 A 2 3 C 2 3 C 1 2 C 2 3 C

11 1 2 A 3 2 C 3 2 C 1 4 C 3 2 C

12 1 4 A 4 2 C 4 2 C 1 3 C 4 2 C

13 2 2 A 2 2 C 2 2 A 3 2 C 2 2 A

14 3 2 A 3 2 C 3 2 C 3 2 A 3 2 C

Reliability 0.9700 0.9863 0.9875 0.9705 0.9872

Weight 170 170 170 170 170

Cost 119 123 123 104 120

* R=type of redundancy strategy
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considering two constraints of the system cost (C=130) and the weight (W=170) in
100 h. There are two redundancy strategies for each subsystem: active or cold standby.
The switch operates and fails similar to Scenario 1 in the cold standby redundancy
strategy. Therefore, a continuous decreasing function would be suggested for switch
reliability.

Table 7 makes a comparison between three solution approaches. The results explain
that the proposed algorithm optimizes better the problem versus four studies. The

Fig. 10 The normal probability plot of the best costs provided by GA [20]

Fig. 9 The normal probability plot of the best costs provided by the proposed CGA
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reliability (0.9872) presented by the proposed algorithm, for example, is better than the
one presented by Coit [5].

In the second part of comparison, we resolve 33 problems used in Tavakkoli-
Moghaddam et al. [20] considering varying the available weight from 191 to 159
and the constrained cost to 130. It can be understood from Table 8 that the proposed

Table 8 The result of comparison of the proposed algorithm with Tavakkoli-Moghaddam et al. [20]

Problem W C Proposed algorithm Tavakkoli- Moghaddam et al. [20]

Reliability C W Reliability C W

1 191 130 0.9901 130 191 0.9856 123 189

2 190 130 0.9899 129 190 0.9863 128 190

3 189 130 0.9896 130 189 0.9861 120 189

4 188 130 0.9889 127 188 0.9771 112 187

5 187 130 0.9896 130 187 0.9815 115 187

6 186 130 0.9892 123 185 0.9821 116 186

7 185 130 0.9891 130 184 0.9844 120 184

8 184 130 0.9889 129 184 0.9804 105 184

9 183 130 0.9885 126 183 0.9737 112 183

10 182 130 0.9891 129 182 0.9797 102 178

11 181 130 0.9877 123 180 0.9741 106 180

12 180 130 0.9883 122 180 0.9834 113 179

13 179 130 0.9872 119 179 0.9756 100 176

14 178 130 0.9874 120 177 0.9734 107 178

15 177 130 0.9878 129 177 0.9738 114 177

16 176 130 0.9872 119 176 0.9703 102 176

17 175 130 0.9868 123 175 0.9681 105 174

18 174 130 0.9873 127 174 0.9707 109 174

19 173 130 0.9876 128 173 0.9717 102 172

20 172 130 0.9872 122 171 0.9608 107 172

21 171 130 0.9867 123 170 0.9639 98 171

22 170 130 0.9872 120 170 0.9705 104 170

23 169 130 0.9859 126 169 0.9602 102 168

24 168 130 0.9858 117 168 0.9669 92 166

25 167 130 0.9862 124 167 0.9614 91 167

26 166 130 0.9853 116 166 0.9647 100 165

27 165 130 0.9845 113 165 0.9454 97 164

28 164 130 0.9853 115 164 0.9619 96 164

29 163 130 0.9846 118 163 0.9675 104 163

30 162 130 0.9831 112 162 0.9564 93 162

31 161 130 0.9812 112 160 0.9636 95 161

32 160 130 0.9832 116 160 0.9629 93 159

33 159 130 0.9812 117 159 0.9641 95 159
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algorithm acts better than the solution algorithm of Tavakkoli-Moghaddam et al. [20]
for all the problems. Figure 8 shows the domination of the proposed algorithm versus
solution algorithm Tavakkoli-Moghaddam et al. [20].

Figures 9 and 10 shows normal probability plots of the best results obtained
(Table 8) using the proposed CGA and the GA [20], respectively, to statistically
compare the results obtained. Table 9 presents the result of a t-test for the
alternative BThe proposed CGA<The GA [20]^ as the null hypothesis. As a
significant difference is not shown (p-value=0.000<0.5), there is no presumption
against the null hypothesis. Thus, the proposed CGA provides the better solution
than the GA [20] on the average. Table 9 shows more details, in which SE Mean
and StDev abbreviate the standard error of the mean and the standard deviation,
respectively. Moreover, Fig. 11 presents the boxplot of comparison between the
two methods, in which the reliability provided by the proposed algorithm is better
than GA [20]. Note that the obtained solutions are the best among 20 runs of the
algorithm. Notice also that a PC with 2.2 GHz Intel Core 2 Duo CPU, and 4 GB
of RAM memory calculates all calculations in this paper; moreover, CGA is run in
MATLAB 2009a.

Fig. 11 The Boxplot of Proposed Algorithm and GA [18]

Table 9 T-Test for the best costs

Number Mean StDev SE Mean

The proposed CGA 33 0.98690 0.00235 0.00041

GA [20] 33 0.97116 0.00977 0.00170

T-Test of difference=0 (vs>): P-Value=0.000.
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6 Conclusion

This paper has considered the optimization of a series–parallel reliability redundancy
allocation problem (RRAP) in which subsystems can select active or cold standby
strategies. The aim of this problem was to choose the best redundancy strategies,
components, and levels for each subsystem for maximizing the system reliability.
Since the RRAP is an NP-hard problem, we employed a continuous genetic algorithm
(CGA), which applied a new method in the production of chromosomes, to solve the
model. In addition, the performance of CGA was improved by parameter tuning that
one of statistical methods namely the response surface methodology (RSM) was used.
According to the comparison of the proposed algorithm with the last solution algo-
rithms, it can be concluded that the CGA has an efficient performance to optimize the
RRAP problems. In other words, the presented method can probably be the best
available algorithms in the literature to solve the considered problem. Finally, the future
works of this study are as follows. (1) Investigate fuzzy condition in modeling. (2)
Develop the objectives to consider the cost. (3) Study other redundancy strategies as
decision variables.
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