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Abstract In this paper, we establish the sufficient Karush-Kuhn-Tucker (KKT)
optimality conditions for the set-valued fractional programming problem (FP) via
contingent epiderivative under ρ-cone convexity. We also study the duality results of
parametric (PD), Mond-Weir (MWD), Wolfe (WD) and mixed (MD) types for the
problem (FP).
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1 Introduction

In the past few years, the set-valued optimization theory has attracted the attention
of many researchers towards this expanding branch of optimization. Many optimiza-
tion problems in mathematical economics, optimal control, differential inclusions,
image processing, viability theory and many more are set-valued optimization prob-
lems (SVOP) that involve set-valued maps as objective functions and constraints.
Various types of differentiability notions of set-valued maps have been introduced
in (SVOP). The notion of contingent epiderivative of set-valued maps, introduced
by Jahn and Rauh [8], has a significant role to establish optimality conditions of
(SVOP). The notion of cone convexity of set-valued maps, introduced by Borwein
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[6], also plays a vital role in this case. An important class of (SVOP) is set-valued
fractional programming problems. In 1997, Bhatia and Mehra [4] introduced the
notion of cone preinvexity for set-valued maps and obtained the Lagrangian duality
results for the set-valued fractional programming problems. Later, they [5] proved
the duality results for Geoffrion efficient solutions of the set-valued fractional pro-
gramming problems under cone convexity assumptions. In 2013, Gadhi and Jawhar
[7] established the necessary optimality conditions of the set-valued fractional pro-
gramming problems without any convex separation approach. Many authors like
Kaul and Lyall [9], Bhatia and Garg [3], Suneja and Gupta [11], Suneja and Lalitha
[12] and Lee and Ho [10] established the optimality conditions and proved the dual-
ity theorems for vector-valued fractional programming problems under generalized
convexity assumptions.

This paper is organized as follows. In Section 2, we recall some definitions and
preliminary concepts of the set-valued optimization theory. In Section 3, we establish
the sufficient optimality conditions for weak efficiency of the set-valued fractional
programming problems under generalized cone convexity assumptions. We also
establish the duality results of various types.

2 Definitions and preliminaries

Let Y be a real normed space and K be a nonempty subset of Y. Then K is called a
cone if λy ∈ K , for all y ∈ K and λ ≥ 0. Further, the cone K is called pointed if
K ∩ (−K ) = {0Y }, solid if int(K ) �= ∅, closed if K = K and convex if

λK + (1 − λ)K ⊆ K , ∀λ ∈ [0, 1],

where int(K) and K denote the interior and closure of K, respectively and 0Y is the
zero element of Y.

The positive orthant Rm+ of Rm , defined by

R
m+ = {

y = (y1, ..., ym) ∈ R
m : yi ≥ 0, ∀i = 1, ...,m

}
,

is a solid pointed closed convex cone of Rm .
Various types of minimal points can be defined with respect to a solid pointed

convex cone in a normed space.

Definition 2.1 Let B be a nonempty subset of a normed space Y, K be a solid pointed
convex cone in Y and y′ ∈ B. Then,

(i) y′ is an ideal minimal point of B if y′ − y ∈ −K , for all y ∈ B.
(ii) y′ is a minimal point of B if there is no y ∈ B \ {y′} such that y − y′ ∈ K .
(iii) y′ is a weakly minimal point of B if there is no y ∈ B such that y−y′ ∈ int(K ).

The contingent epiderivative of set-valued map is defined with the help of
contingent cone. Aubin [1, 2] introduced the contingent cone in normed spaces.
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Definition 2.2 [1, 2] Let B be a nonempty subset of a normed space Y and y′ ∈ B.
Then, the contingent cone to B at y′, denoted by T (B, y′), is defined as:

y ∈ T (B, y′) if there exist sequences {λn} in R, with λn → 0+ and {yn} in Y, with
yn → y, such that

y′ + λn yn ∈ B, ∀n ∈ N,

or, there exist sequences {tn} in R, with tn > 0 and {y′
n} in B, with y′

n → y′, such that
tn(y

′
n − y′) → y, as n → ∞.

Let X and Y be real normed spaces, 2Y be the set of all subsets of Y and K be a
solid pointed convex cone in Y. Let F : X → 2Y be a set-valued map from X to Y
i.e., F(x) ⊆ Y , for all x ∈ X .
The effective domain, graph and epigraph of the set-valued map F are defined by:

dom(F) = {x ∈ X : F(x) �= ∅} ,

gr(F) = {(x, y) ∈ X × Y : y ∈ F(x)}
and

epi(F) = {(x, y) ∈ X × Y : y ∈ F(x) + K } .

In 1997, Jahn and Rauh [8] introduced the notion of contingent epiderivative of
set-valued maps.

Definition 2.3 [8] Let F : X → 2Y be a set-valued map and (x ′, y′) ∈ gr(F). Then
the single-valued map D↑F(x ′, y′) : X → Y is called the contingent epiderivative
of F at (x ′, y′) if

epi
(
D↑F(x ′, y′)

) = T
(
epi(F), (x ′, y′)

)
.

Jahn and Rauh [8] also showed that when f : X → R is a real-valued map, being
continuous at the point x ′ ∈ X and f is convex, then

D↑ f
(
x ′, f (x ′)

)
(u) = f ′(x ′)(u),∀u ∈ X,

where f ′(x ′)(u) is the directional derivative of f at x ′ in the direction u.
Borwein [6] introduced cone convexity of set-valued maps. Later, Jahn and Rauh

[8] characterized cone convex set-valued maps in terms of contingent epiderivative.

Definition 2.4 [6] Let A be a nonempty convex subset of X. A set-valued map F :
X → 2Y , with A ⊆ dom(F), is called K-convex on A if ∀x1, x2 ∈ A and λ ∈ [0, 1],

λF(x1) + (1 − λ)F(x2) ⊆ F(λx1 + (1 − λ)x2) + K .

It is clear that if the set-valued map F : X → 2Y is K-convex on A, then epi(F) is
a convex subset of X × Y .

Lemma 2.1 [8] Let F : X → 2Y be K-convex on a nonempty convex subset A of
X. Let x ′ ∈ A and y′ ∈ F(x ′). Assume that F is contingent epiderivable at (x ′, y′).
Then, for all x ∈ A,

F(x) − y′ ⊆ D↑F(x ′, y′)(x − x ′) + K .
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Let X be a real normed space and A be a nonempty subset of X. Let F : X → 2R
m
,

G : X → 2R
m
and H : X → 2R

k
be set-valued maps, with

A ⊆ dom(F) ∩ dom(G) ∩ dom(H).

Throughout the paper, denote

0Rm = (0, ..., 0) ∈ R
m

and
1Rm = (1, ..., 1) ∈ R

m .

Let F = (F1, F2, ..., Fm),G = (G1,G2, ...,Gm) and H = (H1, H2, ..., Hk),
where the set-valued maps Fi : X → 2R, Gi : X → 2R, i = 1, 2, ...,m and
Hj : X → 2R, j = 1, 2, ..., k, are defined by:

dom(Fi ) = dom(F), dom(Gi ) = dom(G) and dom(Hj ) = dom(H),

x ∈ A, y = (y1, y2, ..., ym) ∈ F(x) ⇐⇒ yi ∈ Fi (x),∀i = 1, 2, ...,m,

z = (z1, z2, ..., zm) ∈ G(x) ⇐⇒ zi ∈ Gi (x),∀i = 1, 2, ...,m

and
w = (w1, w2, ..., wm) ∈ H(x) ⇐⇒ w j ∈ Hj (x),∀ j = 1, 2, ..., k.

Assume that Fi (x) ⊆ R+ and Gi (x) ⊆ int(R+),∀i = 1, 2, ...,m and x ∈ A.
Let λ′ = (λ′

1, λ
′
2, ..., λ

′
m) ∈ R

m+.
Define y

z ∈ R
m and λ′z ∈ R

m by:

y

z
=

(
y1
z1

,
y2
z2

, ...,
ym
zm

)

and
λ′z = (λ′

1z1, λ
′
1z2, ..., λ

′
mzm).

For x ∈ A, define the subset F(x)
G(x) of R

m by:

F(x)

G(x)
=

{
y

z
=

(
y1
z1

,
y2
z2

, ...,
ym
zm

)
: yi ∈ Fi (x), zi ∈ Gi (x), i = 1, 2, ...,m

}
.

Consider the set-valued fractional programming problem:

minimize
x∈A

F(x)
G(x) =

(
F1(x)
G1(x)

,
F2(x)
G2(x)

, ...,
Fm (x)
Gm (x)

)

subject to, H(x) ∩ (−R
k+
) �= ∅.

(FP)

The feasible set of the problem (FP) is

S =
{
x ∈ A : H(x) ∩

(
−R

k+
)

�= ∅
}

.

Definition 2.5 A point
(
x ′, y′

z′
)

∈ X ×R
m , with x ′ ∈ S, y′ ∈ F(x ′) and z′ ∈ G(x ′),

is called a minimizer of the problem (FP) if there exist no x ∈ S, y ∈ F(x) and
z ∈ G(x) such that

y

z
− y′

z′
∈ −R

m+ \ {0Rm }.
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Definition 2.6 A point
(
x ′, y′

z′
)

∈ X ×R
m , with x ′ ∈ S, y′ ∈ F(x ′) and z′ ∈ G(x ′),

is called a weak minimizer of the problem (FP) if there exist no x ∈ S, y ∈ F(x) and
z ∈ G(x) such that

y

z
− y′

z′
∈ −int

(
R
m+
)
.

Consider the parametric problem (FPλ′ ) associated with the set-valued fractional
programming problem (FP):

Definition 2.7 A point (x ′, y′ − λ′z′) ∈ X × R
m , with x ′ ∈ S, y′ ∈ F(x ′) and

z′ ∈ G(x ′), is called a minimizer of the problem (FPλ′ ), if there exist no x ∈ S,
y ∈ F(x) and z ∈ G(x) such that

(y − λ′z) − (y′ − λ′z′) ∈ −R
m+ \ {0Rm }.

Definition 2.8 A point (x ′, y′ − λ′z′) ∈ X × R
m , with x ′ ∈ S, y′ ∈ F(x ′) and

z′ ∈ G(x ′), is called a weak minimizer of the problem (FPλ′), if there exist no x ∈ S,
y ∈ F(x) and z ∈ G(x) such that

(y − λ′z) − (y′ − λ′z′) ∈ −int
(
R
m+
)
.

Gadhi and Jawhar [7] proved the relation between the solutions of the problems
(FP) and (FPλ′) in the following theorem.

Lemma 2.2 [7] A point
(
x ′, y′

z′
)

∈ X ×R
m is a weak minimizer of the problem (FP)

if and only if (x ′, 0Rm ) is a weak minimizer of the problem (FPλ′), where λ′ = y′
z′ .

Lemma 2.3 [13] Let x1, x2 ∈ R
n and λ ∈ [0, 1].

Then,

‖λx1 + (1 − λ)x2‖2 = λ‖x1‖2 + (1 − λ)‖x2‖2 − λ(1 − λ)‖x1 − x2‖2.

3 Main results

We introduce the notion of ρ-cone convexity of set-valued maps. For ρ = 0, we have
the usual notion of cone convexity of set-valued maps.

Definition 3.1 Let X, Y be real normed spaces, A be a nonempty convex subset of X,
K be a solid pointed convex cone in Y, e ∈ int(K ) and F : X → 2Y be a set-valued
map, with A ⊆ dom(F).
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Then F is called ρ-K-convex with respect to e on A if there exists ρ ∈ R such that

λF(x1) + (1 − λ)F(x2) ⊆ F(λx1 + (1 − λ)x2) + ρλ(1 − λ)‖x1 − x2‖2e + K ,

∀x1, x2 ∈ A and ∀λ ∈ [0, 1].

In the following theorem, we characterize ρ-cone convexity for contingent
epiderivable set-valued maps.

Theorem 3.1 Let A be a nonempty convex subset of X, e ∈ int(K ) and F : X → 2Y

be ρ-K-convex with respect to e on A. Let x ′ ∈ A and y′ ∈ F(x ′). Assume that F is
contingent epiderivable at (x ′, y′).
Then,

F(x) − y′ ⊆ D↑F(x ′, y′)(x − x ′) + ρ‖x − x ′‖2e + K , ∀x ∈ A.

Proof Let x ∈ A and y ∈ F(x).
As F is ρ-K-convex with respect to e on A,

λF(x) + (1 − λ)F(x ′) ⊆ F(x ′ + λ(x − x ′)) + ρλ(1 − λ)‖x − x ′‖2e + K ,

∀λ ∈ [0, 1].
Let {λn} be a sequence in R such that λn ∈ (0, 1) and λn → 0, as n → ∞.
Consider two sequences {xn} in X and {yn} in Y, defined by:

xn = x ′ + λn(x − x ′)
and

yn = λn y + (1 − λn)y
′ − ρλn(1 − λn)‖x − x ′‖2e.

Therefore,
yn ∈ F(xn) + K .

It is clear that

xn → x ′, yn → y′, xn − x ′

λn
→ x − x ′, when n → ∞

and

yn − y′

λn
= y − y′ − ρ(1− λn)‖x − x ′‖2e → y − y′ − ρ‖x − x ′‖2e, when n → ∞.

Therefore,

(x − x ′, y − y′ − ρ‖x − x ′‖2e) ∈ T
(
epi(F), (x ′, y′)

) = epi
(
D↑F(x ′, y′)

)
.

Consequently,

y − y′ − ρ‖x − x ′‖2e ∈ D↑F(x ′, y′)(x − x ′) + K ,

which is true for all y ∈ F(x).
Therefore,

F(x) − y′ ⊆ D↑F(x ′, y′)(x − x ′) + ρ‖x − x ′‖2e + K .
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We also establish a relation between the notions of cone convexity and ρ-cone
convexity of set-valued maps, when X = R

n .

Theorem 3.2 Let A be a nonempty convex subset of Rn, e ∈ int(K ) and F : Rn →
2Y be a set-valued map, with A ⊆ dom(F). Then F : Rn → 2Y is ρ-K-convex with
respect to e on A if and only if there exists a K-convex set-valued map F̃ : Rn → 2Y

on A, such that
F(x) = F̃(x) + ρ‖x‖2e, ∀x ∈ dom(F). (3.1)

Proof Suppose that there exists a K-convex set-valued map F̃ : Rn → 2Y on A such
that Eq. 3.1 holds.
We show that F : R

n → 2Y is ρ-K-convex with respect to e on A, i.e., for all
x1, x2 ∈ A and λ ∈ [0, 1],

λF(x1) + (1 − λ)F(x2) ⊆ F(λx1 + (1 − λ)x2) + ρλ(1 − λ)‖x1 − x2‖2e + K .

Let y1 ∈ F(x1) and y2 ∈ F(x2).
Then,

y1 = z1 + ρ‖x1‖2e
and

y2 = z2 + ρ‖x2‖2e,
for some z1 ∈ F̃(x1) and z2 ∈ F̃(x2).
As F̃ : Rn → 2Y is K-convex on A, we have

λF̃(x1) + (1 − λ)F̃(x2) ⊆ F̃(λx1 + (1 − λ)x2) + K .

Therefore,
λz1 + (1 − λ)z2 ∈ F̃(λx1 + (1 − λ)x2) + K .

Again, from Lemma 2.3, we have

‖λx1 + (1 − λ)x2‖2 = λ‖x1‖2 + (1 − λ)‖x2‖2 − λ(1 − λ)‖x1 − x2‖2.
Hence,

λ(z1 + ρ‖x1‖2e) + (1 − λ)(z2 + ρ‖x2‖2e)
∈ F̃(λx1 + (1 − λ)x2) + ρ‖λx1 + (1 − λ)x2‖2e + ρλ(1 − λ)‖x1 − x2‖2e + K .

It follows that

λy1 + (1 − λ)y2 ∈ F(λx1 + (1 − λ)x2) + ρλ(1 − λ)‖x1 − x2‖2e + K .

Therefore, F : Rn → 2Y is ρ-K-convex with respect to e on A.
Conversely, let F : Rn → 2Y be ρ-K-convex with respect to e on A.

Consider the set-valued map F̃ : Rn → 2Y defined by

F̃(x) = F(x) − ρ‖x‖2e, ∀x ∈ dom(F). (3.2)

To show that F̃ is K-convex on A, let x ′
1, x

′
2 ∈ A, z′1 ∈ F̃(x ′

1) and z′2 ∈ F̃
(
x ′
2

)
.

Then,
z′1 = y′

1 − ρ‖x ′
1‖2e

and
z′2 = y′

2 − ρ‖x ′
2‖2e,
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for some y′
1 ∈ F

(
x ′
1

)
and y′

2 ∈ F
(
x ′
2

)
.

Therefore,

λy′
1 + (1 − λ)y′

2 ∈ F
(
λx ′

1 + (1 − λ)x ′
2

) + ρλ(1 − λ)‖x ′
1 − x ′

2‖2e + K .

Hence,

λz′1 + (1 − λ)z′2
= λ

(
y′
1 − ρ‖x ′

1‖2e
) + (1 − λ)

(
y′
2 − ρ‖x ′

2‖2e
)

∈ F
(
λx ′

1 + (1 − λ)x ′
2

) − ρ
(
λ‖x ′

1‖2 + (1 − λ)‖x ′
2‖2

)
e + ρλ(1 − λ)‖x ′

1 − x ′
2‖2e + K

= F
(
λx ′

1 + (1 − λ)x ′
2

) − ρ
∥∥λx ′

1 + (1 − λ)x ′
2

∥∥2 e + K (From Lemma 2.3)

= F̃
(
λx ′

1 + (1 − λ)x ′
2

) + K .

Consequently, F̃ is a K-convex set-valued map on A.

When ρ = 0, ρ-cone convex set-valued map becomes cone convex. We construct
an example of ρ-cone convex set-valued map, which is not cone convex.

Example 3.1 Consider the set-valued map F : [−1, 1] ⊆ R → 2R
2
defined by:

F(t) =
{ {(

x − 2t2, x2 − 2t2
) : x ≥ 0

}
, i f 0 ≤ t ≤ 1,{(

x − 2t2, x − 2t2
) : x ≤ 0

}
, i f − 1 ≤ t < 0.

Let t1 = −1, t2 = 1 and λ = 1
2 .

So, λt1 + (1 − λ)t2 = 0.
Therefore,

F(λt1 + (1 − λ)t2) + R
m+ = R

m+.

It is clear that

(−2, −2) ∈ F(t1) ∩ F(t2) but, (−2, −2) /∈ R
m+.

So,

λ(−2, −2) + (1 − λ)(−2, −2) = (−2, −2) /∈ F(λt1 + (1 − λ)t2) + R
m+.

Hence, F is not R2+-convex on [−1, 1].
Assume that ρ = −2.
Then the set-valued map F̃ : [−1, 1] ⊆ R → 2R

2
, defined by Eq. 3.2, is given by

F̃(t) =
{ {(x, x2) : x ≥ 0}, i f 0 ≤ t ≤ 1,

{(x, x) : x ≤ 0}, i f − 1 ≤ t < 0.

We can easily prove that F̃ is R2+-convex on [−1, 1].
Hence, F is (−2)-R2+-convex with respect to e = (1, 1) on [−1, 1].

3.1 Optimality conditions

We establish the sufficient optimality conditions for the problem (FP), assuming that
the objective and constraint set-valued maps are ρ-cone convex as well as contingent
epiderivable.
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Theorem 3.3 (Sufficient optimality conditions) Let A be a nonempty convex subset
of X, x ′ be an element of the feasible set S of the problem (FP), y′ ∈ F(x ′), z′ ∈
G(x ′), λ′ = y′

z′ and w′ ∈ H(x ′)∩ (−L). Assume that F is ρ1-Rm+-convex with respect
to 1Rm , −λ′G is ρ2-Rm+-convex with respect to 1Rm and H is ρ3-Rk+-convex with
respect to 1Rk , on A. Let F be contingent epiderivable at (x ′, y′), −λ′G be contingent
epiderivable at (x ′, −λ′z′) and H be contingent epiderivable at (x ′, w′). Suppose
that there exists (y∗, z∗) ∈ R

m+ × R
k+, with y∗ �= 0Rm , and

(ρ1 + ρ2)〈y∗, 1Rm 〉 + ρ2〈z∗, 1Rk 〉 ≥ 0, (3.3)

such that
〈
y∗, D↑F(x ′, y′)(x − x ′) + D↑(−λ′G)(x ′, −λ′z′)(x − x ′)

〉

+ 〈
z∗, D↑H(x ′, w′)(x − x ′)

〉 ≥ 0, ∀x ∈ A,
(3.4)

y′ − λ′z′ = 0 (3.5)

and

〈z∗, w′〉 = 0. (3.6)

Then
(
x ′, y′

z′
)
is a weak minimizer of the problem (FP).

Proof We prove the theorem by the method of contradiction.

Let
(
x ′, y′

z′
)
be not a weak minimzer of the problem (FP).

Then there exist x ∈ S, y ∈ F(x) and z ∈ G(x) such that

y

z
<

y′

z′
.

As y′ − λ′z′ = 0, we have
y

z
< λ′.

So,
y − λ′z < 0.

Hence,
〈y∗, y − λ′z〉 < 0, since 0Rm �= y∗ ∈ R

m+.

Again, as y′ − λ′z′ = 0, we have

〈y∗, y′ − λ′z′〉 = 0.

Since x ∈ S, there exists an element w ∈ H(x) ∩ (−R
k+
)
.

Therefore,
〈z∗, w〉 ≤ 0.

So,
〈z∗, w − w′〉 ≤ 0, as 〈z∗, w′〉 = 0.

Hence,
〈y∗, y − λ′z − (y′ − λ′z′)〉 + 〈z∗, w − w′〉 < 0. (3.7)
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As F is ρ1-Rm+-convex with respect to 1Rm , −λ′G is ρ2-Rm+-convex with respect to
1Rm and H is ρ3-Rk+-convex with respect to 1Rk , on A, we have

F(x) − y′ ⊆ D↑F(x ′, y′)(x − x ′) + ρ1‖x − x ′‖21Rm + R
m+,

(−λ′G)(x) + λ′z ⊆ D↑(−λ′G)(x ′, −λ′z′)(x − x ′) + ρ2‖x − x ′‖21Rm + R
m+

and

H(x) − w′ ⊆ D↑H(x ′, w′)(x − x ′) + ρ3‖x − x ′‖21Rk + R
k+.

Hence,

y − y′ ∈ D↑F(x ′, y′)(x − x ′) + ρ1‖x − x ′‖21Rm + R
m+,

−λ′z + λ′z′ ∈ D↑(−λ′G)(x ′, −λ′z′)(x − x ′) + ρ2‖x − x ′‖21Rm + R
m+

and

w − w′ ∈ D↑H(x ′, w′)(x − x ′) + ρ3‖x − x ′‖21Rk + R
k+.

Hence, from Eqs. 3.3 and 3.4, we have

〈y∗, y − λ′z − (y′ − λ′z′)〉 + 〈z∗, w − w′〉 ≥ 0,

which contradicts Eq. 3.7.
Consequently, (x ′, y′) is a weak minimizer of the problem (FP).

We can also prove the following theorem by the above approach.

Theorem 3.4 (Sufficient optimality conditions) Let A be a nonempty convex subset
of X, x ′ be an element of the feasible set S of the problem (FP), y′ ∈ F(x ′), z′ ∈ G(x ′)
andw′ ∈ H(x ′)∩(−L). Assume that z′F is ρ1-Rm+-convex with respect to 1Rm , −y′G
is ρ2-Rm+-convex with respect to 1Rm and H is ρ3-Rk+-convex with respect to 1Rk , on
A. Suppose that there exists (y∗, z∗) ∈ R

m+ × R
k+, with y∗ �= 0Rm , and Eqs. 3.3 and

3.6 are satisfied, with

〈
y∗, D↑(z′F)(x ′, y′z′)(x − x ′) + D↑(−y′G)(x ′, −y′z′)(x − x ′)

〉

+ 〈
z∗, D↑H(x ′, w′)(x − x ′)

〉 ≥ 0, ∀x ∈ A. (3.8)

Then
(
x ′, y′

z′
)
is a weak minimizer of the problem (FP).

Now, we formulate the duals of parametric (PD), Mond-Weir (MWD), Wolfe
(WD) and mixed (MD) types for the problem (FP) and study the corresponding dual-
ity theorems. We give the proofs of the duality theorems of parametric (PD) and
Mond-Weir (MWD) types. We state the duality theorems of Wolfe (WD) and mixed
(MD) types whose proofs are very similar to the former ones, hence omitted.



OPSEARCH (Jan–Mar 2016) 53(1):157–177 167

3.2 Parametric type dual

We consider the parametric type dual (PD) associated the problem (FP).

maximize λ′,
subject to,

〈y∗, D↑F(x ′, y′)(x − x ′) + D↑(−λ′G)(x ′, −λ′z′)(x − x ′)〉
+〈z∗, D↑H(x ′, w′)(x − x ′)〉 ≥ 0, ∀x ∈ A,

y′
i − λ′

i z
′
i ≥ 0, ∀i = 1, ...,m,

x ′ ∈ A, y′ ∈ F(x ′), z′ ∈ G(x ′), λ′ ∈ F(x)
G(x) , w

′ ∈ H(x),

y∗ ∈ R
m+, z∗ ∈ R

k+, 〈z∗, w′〉 ≥ 0 and 〈y∗, 1Rm 〉 = 1.

(PD)

A point (x ′, y′, z′, λ′, w′, y∗, z∗) satisfying all the constraints of the problem (PD) is
called a feasible point of (PD).

Definition 3.2 A feasible point (x ′, y′, z′, λ′, w′, y∗, z∗) of the problem (PD)
is called a weak maximizer of (PD) if there exists no feasible point(
x, y, z, λ, w, y∗

1 , z
∗
1

)
of (PD) such that

λ − λ′ ∈ int
(
R
m+
)
.

Theorem 3.5 (Weak Duality) Let A be a nonempty convex subset of X, x be an ele-
ment of the feasible set S of the problem (FP) and (x ′, y′, z′, λ′, y∗, z∗) be a feasible
point of the problem (PD). Assume that F is ρ1-Rm+-convex with respect to 1Rm ,−λ′G
is ρ2-Rm+-convex with respect to 1Rm and H is ρ3-Rk+-convex with respect to 1Rk , on
A, such that

(ρ1 + ρ2) + ρ3
〈
z∗, 1Rk

〉 ≥ 0. (3.9)

Then,
F(x)

G(x)
− λ′ ⊆ R

m \ −int
(
R
m+
)
.

Proof We prove the theorem by the method of contradiction.
Suppose that for some y ∈ F(x) and z ∈ G(x),

y

z
− λ′ ∈ −int

(
R
m+
)
.

Therefore,
y

z
< λ′.

Hence,
yi
zi

< λ′
i , ∀i = 1, ...,m.

So,
yi − λ′

i zi < 0, ∀i = 1, ...,m.

Therefore,
〈y∗, y − λ′z〉 < 0, since 0Rm �= y∗ ∈ R

m+.
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Again, from the constraints of (PD),

y′
i − λ′

i z
′
i ≥ 0, ∀i = 1, ...,m.

Therefore,
〈y∗, y′ − λ′z′〉 ≥ 0.

Again, since x ∈ S, we have

H(x) ∩
(
−R

k+
)

�= ∅.

We choose w ∈ H(x) ∩ (−R
k+
)
.

So,
〈z∗, w〉 ≤ 0.

Again, from the constraints of (PD), we have

〈z∗, w′〉 ≥ 0.

So,
〈z∗, w − w′〉 = 〈z∗, w〉 − 〈z∗, w′〉 ≤ 0.

Hence,
〈y∗, y − λ′z − (y′ − λ′z′)〉 + 〈z∗, w − w′〉 < 0. (3.10)

As F is ρ1-Rm+-convex with respect to 1Rm , −λ′G is ρ2-Rm+-convex with respect
to 1Rm and H is ρ3-Rk+-convex with respect to 1Rk , on A, we have

F(x) − y′ ⊆ D↑F(x ′, y′)(x − x ′) + ρ1‖x − x ′‖21Rm + R
m+,

(−λ′G)(x) + λ′z′ ⊆ D↑(−λ′G)(x ′, −λ′z′)(x − x ′) + ρ2‖x − x ′‖21Rm + R
m+

and
H(x) − w′ ⊆ D↑H(x ′, w′)(x − x ′) + ρ3‖x − x ′‖21Rk + R

k+.

Hence,

y − y′ ∈ D↑F(x ′, y′)(x − x ′) + ρ1‖x − x ′‖21Rm + R
m+,

−λ′z + λ′z′ ∈ D↑(−λ′G)(x ′, −λ′z′)(x − x ′) + ρ2‖x − x ′‖21Rm + R
m+

and
w − w′ ∈ D↑H(x ′, w′)(x − x ′) + ρ3‖x − x ′‖21Rk + R

k+.

Hence, from the constraints of (PD) and Eq. 3.9, we have

〈y∗, y − λ′z − (y′ − λ′z′)〉 + 〈z∗, w − w′〉 ≥ 0,

which contradicts Eq. 3.10.
Therefore,

y

z
− λ′ /∈ −int

(
R
m+
)
.

Since y ∈ F(x) is arbitrary, we have

F(x)

G(x)
− λ′ ⊆ R

m \ −int
(
R
m+
)
.



OPSEARCH (Jan–Mar 2016) 53(1):157–177 169

Theorem 3.6 (Strong Duality) Let (x ′, y′
z′ ) be a weak minimizer of the prob-

lem (FP) and w′ ∈ H(x ′) ∩ (−R
k+
)
. Assume that for some (y∗, z∗) ∈ R

m+ ×
R
k+, with 〈y∗, 1Rm 〉 = 1 and λ′ ∈ R

m, Eqs. 3.4, 3.5 and 3.6 are satisfied at
(x ′, y′, z′, λ′, y∗, z∗). Then (x ′, y′, z′, λ′, y∗, z∗) is a feasible solution of the problem
(PD). Further, if the weak duality Theorem 3.5 between (FP) and (PD) holds, then
(x ′, y′, z′, λ′, y∗, z∗) is a weak maximizer of (PD).

Proof As the Eqs. 3.4, 3.5 and 3.6 are satisfied at (x ′, y′, z′, λ′, y∗, z∗), we have
〈y∗, D↑F(x ′, y′)(x − x ′) + D↑(−λ′G)(x ′, −λ′z′)(x − x ′)〉

+〈z∗, D↑H(x ′, w′)(x − x ′)〉 ≥ 0,∀x ∈ A,

y′ − λ′z′ = 0

and
〈z∗, w′〉 = 0.

Hence (x ′, y′, z′, λ′, y∗, z∗) is a feasible solution of (PD).
Suppose that the weak duality Theorem 3.5 between (FP) and (PD) holds and
(x ′, y′, z′, λ′, y∗, z∗) is not a weak maximizer of (PD).
Then there exits a feasible point (x, y, z, λ, y∗

1 , z
∗
1) of (PD) such that

λ − λ′ ∈ int
(
R
m+
)
.

As y′ − λ′z′ = 0,

λ − y′

z′
∈ int

(
R
m+
)
.

which contradicts the weak duality Theorem 3.5 between (FP) and (PD).
Consequently, (x ′, y′, z′, λ′, y∗, z∗) is a weak maximizer of (PD).

Theorem 3.7 (Converse Duality) Let A be a nonempty convex subset of X and
(x ′, y′, z′, λ′, y∗, z∗) be a feasible point of the problem (PD), where λ′ = y′

z′ . Assume
that F is ρ1-Rm+-convex with respect to 1Rm , −λ′G is ρ2-Rm+-convex with respect to
1Rm and H is ρ3-Rk+-convex with respect to 1Rk , on A, satisfying Eq. 3.9. If x ′ is an
element of the feasible set S of the problem (FP), then

(
x ′, y′

z′
)
is a weak minimizer

of the problem (FP).

Proof We prove the theorem by the method of contradiction.

Suppose
(
x ′, y′

z′
)
is not a weak minimzer of the problem (FP).

Therefore there exist x ∈ S, y ∈ F(x) and z ∈ G(x) such that

y

z
<

y′

z′
.

As λ′ = y′
z′ , we have

y

z
< λ′.

So,
y − λ′z < 0.



170 OPSEARCH (Jan–Mar 2016) 53(1):157–177

Hence,

〈y∗, y − λ′z〉 < 0, since 0Rm �= y∗ ∈ R
m+.

Again, from the constraints of (PD),

y′
i − λ′

i z
′
i ≥ 0, ∀i = 1, ...,m.

Therefore,

〈y∗, y′ − λ′z′〉 ≥ 0.

Since x ∈ S, there exists an element

w ∈ H(x) ∩
(
−R

k+
)

.

Therefore,

〈z∗, w〉 ≤ 0.

We have

〈z∗, w − w′〉 ≤ 0, as 〈z∗, w′〉 = 0.

Hence,

〈y∗, y − λ′z − (y′ − λ′z′)〉 + 〈z∗, w − w′〉 < 0. (3.11)

As F is ρ1-Rm+-convex with respect to 1Rm , −λ′G is ρ2-Rm+-convex with respect to
1Rm and H is ρ3-Rk+-convex with respect to 1Rk , on A, we have

F(x) − y′ ⊆ D↑F(x ′, y′)(x − x ′) + ρ1‖x − x ′‖21Rm + R
m+,

(−λ′G)(x) + λ′z ⊆ D↑(−λ′G)(x ′, −λ′z′)(x − x ′) + ρ2‖x − x ′‖21Rm + R
m+

and

H(x) − w′ ⊆ D↑H(x ′, w′)(x − x ′) + ρ3‖x − x ′‖21Rk + R
k+.

Hence,

y − y′ ∈ D↑F(x ′, y′)(x − x ′) + ρ1‖x − x ′‖21Rm + R
m+,

−λ′z + λ′z′ ∈ D↑(−λ′G)(x ′, −λ′z′)(x − x ′) + ρ2‖x − x ′‖21Rm + R
m+

and

w − w′ ∈ D↑H(x ′, w′)(x − x ′) + ρ3‖x − x ′‖21Rk + R
k+.

Hence, from the constraints of (PD) and Eq. 3.9, we have

〈y∗, y − λ′z − (y′ − λ′z′)〉 + 〈z∗, w − w′〉 ≥ 0,

which contradicts Eq. 3.11.

Consequently,
(
x ′, y′

z′
)
is a weak minimizer of the problem (FP).
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3.3 Mond-Weir type dual

We consider the Mond-Weir type dual (MWD) associated the problem (FP).

maximize y′
z′ ,

subject to,
〈
y∗, D↑(z′F)(x ′, y′z′)(x − x ′) + D↑(−y′G)(x ′, −y′z′)(x − x ′)

〉

+ 〈
z∗, D↑H(x ′, w′)(x − x ′)

〉 ≥ 0, ∀x ∈ A,

〈z∗, w′〉 ≥ 0,

x ′ ∈ A, y′ ∈ F(x ′), z′ ∈ G(x ′), y∗ ∈ R
m+, z∗ ∈ R

k+ and 〈y∗, 1Rm 〉 = 1.
(MWD)

A point (x ′, y′, z′, w′, y∗, z∗) which satisfies all the constraints of the problem
(MWD) is called a feasible point of (MWD).

Definition 3.3 A feasible point (x ′, y′, z′, w′, y∗, z∗) of the problem (MWD)
is called a weak maximizer of (MWD) if there exists no feasible point
(x, y, z, w, y∗

1 , z
∗
1) of (MWD) such that

y

z
− y′

z′
∈ int

(
R
m+
)
.

Theorem 3.8 (Weak Duality) Let A be a nonempty convex subset of X, x be an
element of the feasible set S of the problem (FP) and (x ′, y′, z′, w′, y∗, z∗) be a
feasible point of the problem (MWD). Assume that z′F is ρ1-Rm+-convex with respect
to 1Rm , −y′G is ρ2-Rm+-convex with respect to 1Rm , and H is ρ3-Rk+-convex with
respect to 1Rk , on A, satisfying Eq. 3.9.
Then,

F(x)

G(x)
− y′

z′
⊆ R

m \ −int
(
R
m+
)
.

Proof We prove the theorem by the method of contradiction.
Suppose that for some y ∈ F(x) and z ∈ G(x),

y

z
− y′

z′
∈ −int

(
R
m+
)
.

Therefore,
y

z
<

y′

z′
.

So,
yz′ − y′z < 0.

Hence,
〈y∗, yz′ − y′z〉 < 0, since 0Rm �= y∗ ∈ R

m+.

As x ∈ S, we have

H(x) ∩
(
−R

k+
)

�= ∅.
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We choose w ∈ H(x) ∩ (−R
k+
)
.

So,
〈z∗, w〉 ≤ 0.

Again, from the constraints of (MWD), we have

〈z∗, w′〉 ≥ 0.

So,
〈z∗, w − w′〉 = 〈z∗, w〉 − 〈z∗, w′〉 ≤ 0.

Hence,
〈y∗, yz′ − y′z〉 + 〈z∗, w − w′〉 < 0. (3.12)

As z′F is ρ1-Rm+-convex with respect to 1Rm , −y′G is ρ2-Rm+-convex with respect to
1Rm and H is ρ3-Rk+-convex with respect to 1Rk , on A, we have

z′F(x) − y′z′ ⊆ D↑F(x ′, y′)(x − x ′) + ρ1‖x − x ′‖21Rm + R
m+,

(−y′G)(x) + y′z′ ⊆ D↑(−y′G)(x ′, −y′z′)(x − x ′) + ρ2‖x − x ′‖21Rm + R
m+

and
H(x) − w′ ⊆ D↑H(x ′, w′)(x − x ′) + ρ3‖x − x ′‖21Rk + R

k+.

Hence,

yz′ − y′z′ ∈ D↑(z′F)(x ′, y′z′)(x − x ′) + ρ1‖x − x ′‖21Rm + R
m+,

−z′z + y′z′ ∈ D↑(−y′G)(x ′, −y′z′)(x − x ′) + ρ2‖x − x ′‖21Rm + R
m+

and
w − w′ ∈ D↑H(x ′, w′)(x − x ′) + ρ3‖x − x ′‖21Rk + R

k+.

Hence, from the constraints of (MWD) and Eq. 3.9, we have

〈y∗, yz′ − y′z〉 + 〈z∗, w − w′〉 ≥ 0,

which contradicts Eq. 3.12.
Therefore,

y

z
− y′

z′
/∈ −int

(
R
m+
)
.

Since y ∈ F(x) is arbitrary, we have

F(x)

G(x)
− y′

z′
⊆ R

m \ −int
(
R
m+
)
.

Theorem 3.9 (Strong Duality) Let
(
x ′, y′

z′
)

be a weak minimizer of the prob-

lem (FP) and w′ ∈ H(x ′) ∩ (−R
k+
)
. Assume that for some (y∗, z∗) ∈ R

m+ ×
R
k+, with 〈y∗, 1Rm 〉 = 1, Eqs. 3.6 and 3.8 are satisfied at (x ′, y′, z′, w′, y∗, z∗).

Then (x ′, y′, z′, w′, y∗, z∗) is a feasible solution of the problem (MWD). Fur-
ther, if the weak duality Theorem 3.8 between (FP) and (MWD) holds, then
(x ′, y′, z′, w′, y∗, z∗) is a weak maximizer of (MWD).
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Proof As Eqs. 3.6 and 3.8 are satisfied at (x ′, y′, z′, w′, y∗, z∗), we have
〈
y∗, D↑(z′F)(x ′, y′z′)(x − x ′) + D↑(−y′G)(x ′, −y′z′)(x − x ′)

〉

+ 〈
z∗, D↑H(x ′, w′)(x − x ′)

〉 ≥ 0, ∀x ∈ A,

and
〈z∗, w′〉 = 0.

So, (x ′, y′, z′, w′, y∗, z∗) is a feasible solution of (MWD).
Suppose that the weak duality Theorem 3.8 between (FP) and (MWD) holds and
(x ′, y′, z′, w′, y∗, z∗) is not a weak maximizer of (MWD).
Then there exists a feasible point (x, y, z, w, y∗

1 , z
∗
1) of (MWD) such that

y′

z′
<

y

z
,

which contradicts the weak duality Theorem 3.8 between (FP) and (MWD).
Consequently, (x ′, y′, z′, λ′, y∗, z∗) is a weak maximizer of (MWD).

Theorem 3.10 (Converse Duality) Let A be a nonempty convex subset of X and
(x ′, y′, z′, w′, y∗, z∗) be a feasible point of the problem (MWD). Assume that z′F is
ρ1-Rm+-convex with respect to 1Rm , −y′G is ρ2-Rm+-convex with respect to 1Rm and
H is ρ3-Rk+-convex with respect to 1Rk , on A, satisfying Eq. 3.9. If x ′ is an element

of the feasible set S of the problem (FP), then
(
x ′, y′

z′
)
is a weak minimizer of the

problem (FP).

Proof We prove the theorem by the method of contradiction.

Suppose
(
x ′, y′

z′
)
is not a weak minimzer of the problem (FP).

Therefore there exist x ∈ S, y ∈ F(x) and z ∈ G(x) such that

y

z
<

y′

z′
.

So,
yz′ − y′z < 0.

Therefore,
〈y∗, yz′ − y′z〉 < 0, since 0Rm �= y∗ ∈ R

m+.

Again, since x ∈ S, we have

H(x) ∩
(
−R

k+
)

�= ∅.

We choose w ∈ H(x) ∩ (−R
k+
)
.

So,
〈z∗, w〉 ≤ 0.

From the constraints of (WD), we have

〈z∗, w′〉 ≥ 0.

So,
〈z∗, w − w′〉 = 〈z∗, w〉 − 〈z∗, w′〉 ≤ 0.
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Hence,
〈y∗, yz′ − y′z〉 + 〈z∗, w − w′〉 < 0. (3.13)

As z′F is ρ1-Rm+-convex with respect to 1Rm , −y′G is ρ2-Rm+-convex with respect to
1Rm and H is ρ3-Rk+-convex with respect to 1Rk , on A, we have

z′F(x) − y′z′ ⊆ D↑F(x ′, y′)(x − x ′) + ρ1‖x − x ′‖21Rm + R
m+,

(−y′G)(x) + y′z′ ⊆ D↑(−y′G)(x ′, −y′z′)(x − x ′) + ρ2‖x − x ′‖21Rm + R
m+

and
H(x) − w′ ⊆ D↑H(x ′, w′)(x − x ′) + ρ3‖x − x ′‖21Rk + R

k+.

Hence,

yz′ − y′z′ ∈ D↑(z′F)(x ′, y′z′)(x − x ′) + ρ1‖x − x ′‖21Rm + R
m+,

−z′z + y′z′ ∈ D↑(−y′G)(x ′, −y′z′)(x − x ′) + ρ2‖x − x ′‖21Rm + R
m+

and
w − w′ ∈ D↑H(x ′, w′)(x − x ′) + ρ3‖x − x ′‖21Rk + R

k+.

So, from the constraints of (WD) and Eq. 3.9, we have

〈y∗, yz′ − y′z〉 + 〈z∗, w − w′〉 ≥ 0,

which contradicts Eq. 3.13.

Therefore
(
x ′, y′

z′
)
is a weak minimizer of (FP).

3.4 Wolfe type dual

We consider the Wolfe type dual (WD) associated the problem (FP).

maximize y′+〈z∗,w′〉1Rm
z′ ,

subject to,
〈
y∗, D↑(z′F)(x ′, y′z′)(x − x ′) + D↑(−y′G)(x ′, −y′z′)(x − x ′)

〉

+ 〈
z∗, D↑H(x ′, w′)(x − x ′)

〉 ≥ 0, ∀x ∈ A,

x ′ ∈ A, y′ ∈ F(x ′), z′ ∈ G(x ′), y∗ ∈ R
m+, z∗ ∈ R

k+ and 〈y∗, 1Rm 〉 = 1.
(WD)

A point (x ′, y′, z′, w′, y∗, z∗) which satisfies all the constraints of the problem (WD)
is called a feasible point of (WD).

Definition 3.4 A feasible point (x ′, y′, z′, w′, y∗, z∗) of the problem (WD) is called
a weak maximizer of (WD) if there exists no feasible point (x, y, z, w, y∗

1 , z
∗
1) of

(WD) such that

y + 〈z∗1, w〉1Rm

z
− y′ + 〈z∗, w′〉1Rm

z′
∈ int

(
R
m+
)
.

Theorem 3.11 (Weak Duality) Let A be a nonempty convex subset of X, x be an
element of the feasible set S of the problem (FP) and (x ′, y′, z′, w′, y∗, z∗) be a
feasible point of the problem (WD). Assume that z′F is ρ1-Rm+-convex with respect to
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1Rm , −y′G is ρ2-Rm+-convex with respect to 1Rm and H is ρ3-Rk+-convex with respect
to 1Rk , on A, satisfying Eq. 3.9.
Then,

F(x)

G(x)
− y′ + 〈z∗, w′〉1Rm

z′
⊆ R

m \ −int
(
R
m+
)
.

Theorem 3.12 (Strong Duality) Let (x ′, y′
z′ ) be a weak minimizer of the problem

(FP) and w′ ∈ H(x ′) ∩ (−R
k+
)
. Assume that for some (y∗, z∗) ∈ R

m+ × R
k+,

with 〈y∗, 1Rm 〉 = 1, Eqs. 3.6 and 3.8 are satisfied at (x ′, y′, z′, w′, y∗, z∗). Then
(x ′, y′, z′, w′, y∗, z∗) is a feasible solution of the problem (WD). Further, if the weak
duality Theorem 3.11 between (FP) and (WD) holds, then (x ′, y′, z′, w′, y∗, z∗) is a
weak maximizer of (WD).

Theorem 3.13 (Converse Duality) Let A be a nonempty convex subset of X,
(x ′, y′, z′, w′, y∗, z∗) be a feasible point of the problem (WD) and 〈z∗, w′〉 ≥ 0.
Assume that z′F is ρ1-Rm+-convex with respect to 1Rm , −y′G is ρ2-Rm+-convex with
respect to 1Rm and H is ρ3-Rk+-convex with respect to 1Rk , on A, satisfying Eq. 3.9.

If x ′ is an element of the feasible set S of the problem (FP), then (x ′, y′
z′ ) is a weak

minimizer of the problem (FP).

3.5 Mixed type dual

We consider the mixed type dual (MD) associated the problem (FP).

maximize y′+〈z∗,w′〉1Rm
z′ ,

subject to,
〈
y∗, D↑(z′F)(x ′, y′z′)(x − x ′) + D↑(−y′G)(x ′, −y′z′)(x − x ′)

〉

+ 〈
z∗, D↑H(x ′, w′)(x − x ′)

〉 ≥ 0, ∀x ∈ A,

〈z∗, w′〉 ≥ 0,

x ′ ∈ A, y′ ∈ F(x ′), z′ ∈ G(x ′), y∗ ∈ R
m+, z∗ ∈ R

k+ and 〈y∗, 1Rm 〉 = 1.
(MD)

A point (x ′, y′, z′, w′, y∗, z∗) satisfying all the constraints of the problem (MD) is
called a feasible point of (MD).

Definition 3.5 A feasible point (x ′, y′, z′, w′, y∗, z∗) of the problem (MD) is called
a weak maximizer of (MD) if there exists no feasible point (x, y, z, w, y∗

1 , z
∗
1) of

(MD) such that

y + 〈z∗1, w〉1Rm

z
− y′ + 〈z∗, w′〉1Rm

z′
∈ int

(
R
m+
)
.

Theorem 3.14 (Weak Duality) Let A be a nonempty convex subset of X, x be an
element of the feasible set S of the problem (FP) and (x ′, y′, z′, w′, y∗, z∗) be a
feasible point of the problem (MD). Assume that z′F is ρ1 −R

m+-convex with respect
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to 1Rm , −y′G is ρ2 − R
m+-convex with respect to 1Rm and H is ρ3-Rk+-convex with

respect to 1Rk , on A, satisfying Eq. 3.9.
Then,

F(x)

G(x)
− y′ + 〈z∗, w′〉1Rm

z′
⊆ R

m \ −int
(
R
m+
)
.

Theorem 3.15 (Strong Duality) Let
(
x ′, y′

z′
)
be a weak minimizer of the problem

(FP) and w′ ∈ H(x ′) ∩ (−R
k+
)
. Assume that for some (y∗, z∗) ∈ R

m+ × R
k+,

with 〈y∗, 1Rm 〉 = 1, Eqs. 3.6 and 3.8 are satisfied at (x ′, y′, z′, w′, y∗, z∗). Then
(x ′, y′, z′, w′, y∗, z∗) is a feasible solution of the problem (MD). Further, if the weak
duality Theorem 3.14 between (FP) and (MD) holds, then (x ′, y′, z′, w′, y∗, z∗) is a
weak maximizer of (MD).

Theorem 3.16 (Converse Duality) Let A be a nonempty convex subset of X and
(x ′, y′, z′, w′, y∗, z∗) be a feasible point of the problem (MD). Assume that z′F is ρ1-
R
m+-convex with respect to 1Rm , −y′G is ρ2-Rm+-convex with respect to 1Rm and H is

ρ3-Rk+-convex with respect to 1Rk , on A, satisfying Eq. 3.9. If x ′ is an element of the

feasible set S of the problem (FP), then
(
x ′, y′

z′
)
is a weak minimizer of the problem

(FP).

4 Concluding remarks

In this paper, we establish the sufficient KKT conditions for the set-valued fractional
programming problem (FP) via the contingent epiderivative. We assume generalized
cone convexity assumptions on the objective and constraint set-valued maps. We also
introduce the duals of parametric (PD), Mond-Weir (MWD), Wolfe (WD) and mixed
(MD) types and prove the corresponding weak, strong and converse duality theorems
under cone convexity assumptions.
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