THEORETICAL ARTICLE

On efficient solutions of 0-1 multi-objective linear programming problems

Mahesh N. Dumaldar¹

Accepted: 13 April 2015 / Published online: 29 April 2015 © Operational Research Society of India 2015

Abstract An error in an algorithm, in Jahanshahloo et al. (Asia Pacific Journal of Operational Research 21(1):127–139, [2004\)](#page-8-0), to generate efficient solutions to a 0-1 multi objective linear programming problems is detected and a modified algorithm is suggested. Further, an erroneous conclusion in the proof of the theorem, which states that at least one optimal solution among the optimal solutions of an individual 0-1 linear program is an efficient solution, is also corrected.

Keywords 0-1 multi objective linear programming · Efficient solution

1 Introduction

A 0-1 multi-objective linear programming problem(0-1 MOLP) is defined as:

 $\text{Max}\{C_1W, C_2W, \ldots, C_rW\}, \text{ subject to } AW \leq b, \quad W \in \{0, 1\}^n$ (1.1)

where $C_i = (c_{i1}, c_{i2}, \ldots, c_{in}), i = 1, 2, \ldots, r, A$ is $m \times n$ matrix, $W =$ (w_1, w_2, \ldots, w_n) , a column vector and *b* is a *m* component vector. Let *C* be a matrix whose rows are C_i . Let *X* be the set all feasible solutions of the 0-1 MOLP i.e.,

$$
X = \{W|AW \le b, w_j \in \{0, 1\}, j = 1, 2, \dots, n\}
$$

⁻ Mahesh N. Dumaldar mn [dumaldar@yahoo.com;dumaldar.math@dauniv.ac.in](mailto:mn_dumaldar@yahoo.com; dumaldar.math@dauniv.ac.in)

¹ School of Mathematics, Vigyan Bhawan, Devi Ahilya University, Indore, M.P. India

Consider the example given in [\[1\]](#page-8-0) and in [\[2\]](#page-8-1):

$$
\begin{aligned}\n\text{Max } 3w_1 + 6w_2 + 5w_3 - 2w_4 + 3w_5 \\
\text{Max } 6w_1 + 7w_2 + 4w_3 + 3w_4 - 8w_5 \\
\text{Max } 5w_1 - 3w_2 + 8w_3 - 4w_4 + 3w_5 \\
\text{Subject to } -2w_1 + 3w_2 + 8w_3 - w_4 + 5w_5 &\le 13 \\
6w_1 + 2w_2 + 4w_3 + 4w_4 - 3w_5 &\le 15 \\
4w_1 - 2w_2 + 6w_3 - 2w_4 + w_5 &\le 11 \\
w_1, w_2, w_3, w_4, w_5 &\in \{0, 1\}\n\end{aligned}
$$
\n(1.2)

Simple calculations show that the example has one more efficient solution $W_5^* =$ $(1, 0, 1, 1, 1)$. The efficient solutions calculated using the algorithm in [\[1\]](#page-8-0) are $W_1^* =$ $(1, 1, 1, 0, 0), W_2^* = (1, 0, 1, 0, 1), W_3^* = (1, 1, 1, 1, 1), W_4^* = (1, 0, 1, 0, 0).$ In fact, the optimal solution of the first objective function is *(*1*,* 1*,* 1*,* 1*,* 1*)* with optimum value 15 but in [\[1\]](#page-8-0) the optimal solution is taken as *(*1*,* 1*,* 1*,* 0*,* 0*)*.

Definition 1.1 $W^* \in X$ is an efficient solution of the problem [\(1.1\)](#page-0-0) if and only if there does not exist a point point $W \in X$, such that

$$
(C_1W, C_2W, \ldots, C_rW) \ge (C_1W^*, C_2W^*, \ldots, C_rW^*)
$$

and the inequality holds strictly for at least one index i.e., for any point $W \in X$, either

$$
(C_1 W, C_2 W, \dots, C_r W) \le (C_1 W^*, C_2 W^*, \dots, C_r W^*)
$$
 (1.3)

or there are indices i_1 , i_2 $(i_1 \neq i_2)$,

$$
C_{i_1} W > C_{i_1} W^* \text{ and } C_{i_2} W < C_{i_2} W^* \tag{1.4}
$$

Remark 1.2 In case [\(1.4\)](#page-1-0), we say that *W* and *W*[∗] are *not comparable* with respect to *C* and in case (1.3) , we say W^* dominates *W* with respect to *C*.

If W^* is an efficient solution and for a $W \in X$, $CW = CW^*$ then we shall consider *W* also an efficient solution.

Denote by P_i the 0-1 linear program with i^{th} objective function $(i^{th}$ row of *C*) subject to *X* with the set of optimal solutions \mathcal{O}_i . Let $\mathcal{O}_{i_1i_2...i_t}$ $(i_1 < i_2 < \cdots < i_t)$ be the set of all common optimal feasible solutions of $P_{i_1}, P_{i_2}, \ldots, P_{i_t}$. Clearly,

$$
\mathcal{O}_{i_1i_2...i_t} = \bigcap_{k=i_1}^{i_t} \mathcal{O}_k
$$

There are $2^r - 1$ such sets. The following lemma is immediate.

Lemma 1.3 *If* $\mathcal{O}_{12\cdots r}$ *is non-empty then* $\mathcal{O}_{12\cdots r}$ *is the set of all efficient solutions.*

Remark 1.4 In view of above lemma, henceforth, we shall assume that $\mathcal{O}_{12\cdots r} = \phi$.

Remark 1.5 In the example [\(1.2\)](#page-1-2), the vector $W_5^* = (1, 0, 1, 1, 1)$ gives $CW_5^* =$ *(*9*,* 5*,* 12*)* which is not comparable with $CW_1^* = (14, 17, 10)$, $CW_2^* = (11, 2, 16)$,

 $CW_3^* = (15, 12, 9)$ and $CW_4^* = (8, 10, 13)$. Hence it is also an efficient solution. Hence the algorithm in [\[1\]](#page-8-0) does not find all efficient solutions. The proposed algorithm also finds this efficient solution.

2 Some basic results

The statement of the theorem 2.1 in [\[1\]](#page-8-0):

Theorem 2.1 *If* \mathcal{O}_l = $\left\{W_{1l}^*, W_{2l}^*, \ldots, W_{fl}^*\right\}$ be the set of optimal solutions of P_l *then at least one vector in* \mathcal{O}_l *is an efficient solution of the problem* [\(1.1\)](#page-0-0)*.*

First, we prove the case $|O_l| = 1$ which is also proved in [\[1\]](#page-8-0).

Lemma 2.2 *Suppose* $\mathcal{O}_{12\cdots r} = \phi$ *. If* $|\mathcal{O}_i| = 1$ *then the vector in* \mathcal{O}_i *is an efficient solution of the problem* [\(1.1\)](#page-0-0)*.*

Proof Let $\mathcal{O}_i = \{W^*\}\$. Hence for any $W \in X - \{W^*\}\$,

$$
C_i W < C_i W^*
$$

and for $k \neq i$,

$$
C_k W \leq C_k W^* \text{ or } C_k W > C_k W^*
$$

If $C_k W \leq C_k W^*$ for all $k \neq i$, then W^* dominates W with respect to C. If there is $k(\neq i)$, such that $C_kW > C_kW^*$ then W^* and *W* are not comparable with respect to *C*. In both cases, W^* is an efficient solution of the problem (1.1). *C*. In both cases, W^* is an efficient solution of the problem (1.1) .

While proving the theorem we must also consider a case whether $\mathcal{O}_l \cap \mathcal{O}_i = \phi$ for each \mathcal{O}_i , $|\mathcal{O}_i| = 1$, other wise elements in these intersections are efficient solutions by above lemma. The following statement is also proved in the proof of the theorem 2.1 in [\[1\]](#page-8-0).

Lemma 2.3 *No vector in* $X - \mathcal{O}_l$ *dominates vectors in* \mathcal{O}_l *.*

Proof Let $W^0 \in X - \mathcal{O}_l$ and W_{ql}^* be such that

 $C_i W^0 \ge C_i W_{ql}^*, i = 1, 2, ..., r$ and there exists $k, C_k W^0 > C_k W_{ql}^*$.

Clearly $k \neq l$ as W_{ql}^* is optimal. At $i = l$, we must have $C_l W^0 = C_l W_{ql}^*$ i.e., $W^0 \in \mathcal{O}_l$ which is not true. \Box

Corollary 2.4 *If the vector in* $X - \mathcal{O}_l$ *is not dominated by vectors in* \mathcal{O}_l *then it is non-comparable with vectors in* O_l .

Proof At *i* = *l*, we must have $C_l W^0 < C_l W^*_{ql}$. Since the vector is not dominated by vectors in O_l there is $k \neq l$ such that $C_k W^0 > C_k W^*_{ql}$. i.e., W^0 and W^*_{ql} are not comparable.

Remark 2.5 For the case $|O_l| > 1$ the proof in [\[1\]](#page-8-0) uses the relation \leq on vectors which is a partial order and not a linear. The conclusion drawn: $Y_{kl} \leq Y_{kl}$ and $Y_{kl} \neq$ *Y_{kl}* is because of the assumption that the relation \leq is linear. It may happen that for some vectors $W_{i_1l}^*$, $W_{i_2l}^*$, ..., $W_{i_l}^*$ in \mathcal{O}_l ,

$$
CW_{i_1l}^* = CW_{i_2l}^* = \cdots = CW_{i_ll}^*
$$

Hence the correction in the proof is required.

Proof [**Theorem** (2.1)] when $|O_l| > 1$:

Define a mapping $C: \mathcal{O}_l \longrightarrow \mathbb{R}^r$ such that $W \longmapsto CW$. Consider, the range of the map

$$
\mathcal{R}(C) = \{CW | W \in \mathcal{O}_l\}.
$$

Suppose

$$
\mathcal{R}(C) = \{K_1, K_2, \ldots, K_z\}
$$

We have $K_i \neq K_j$ for all $i \neq j$. Now, we define a directed graph on $\mathcal{R}(C)$ using the partial ordering \leq on the vectors. We say there is a directed edge between K_i to K_j if and only if $K_i \leq K_j$. Since all K_i 's are distinct there are no directed cycles. (A directed cycle means a few K_i 's are equal.)

Therefore, a component of the graph of $\mathcal{R}(C)$ is a directed tree. Hence there is at least one vertex, say K_t with out-degree zero. Clearly, in view of the lemma (2.3), inverse image of this K_t contains efficient solutions as image of no vector in \mathcal{O}_l dominates K_t . dominates K_t .

Remark 2.6 Note that above proof also works for $|O_i| = 1$. Further we can also define a directed graph(Hasse diagram [\[3\]](#page-8-2)) on \mathcal{O}_l using the partial ordering \leq on the vectors.

Remark 2.7 The observation in above corollary 2.4 is used in the proposed algorithm to find efficient solutions. Consider P_0 as the 0-1 LP:

$$
\text{Max} \sum_{i=1}^{r} C_i W, \quad \text{subject to } AW \le b, \quad W \in \{0, 1\}^n \tag{2.1}
$$

It is proved in $[1]$ (Theorem 2.3) that each optimal solution of the problem (2.1) is an efficient solution for the problem (1.1) . Thus, in view of corollary 2.4, in order to find efficient solutions other than optimal solutions of P_0 and the unique optimal solutions of P_i , we must find non-comparable vectors with respect to these vectors.

Let G_0 be the set of optimal feasible solutions of the problem [\(2.1\)](#page-3-0). Let optimal value of P0 be *z*∗. Put

$$
G_0 = \widetilde{G}_0 \cup \left(\cup_{\alpha=1}^t \mathcal{O}_{i_\alpha} \right) \text{ where } |\mathcal{O}_{i_\alpha}| = 1. \tag{2.2}
$$

In [\[1\]](#page-8-0), in the beginning of the algorithm, in order to find other efficient solutions of the problem (1.1) , not in G_0 , it has been observed that following inequalities

$$
C_i W \leq C_i W_j^* \quad i=1,2,\ldots,r
$$

are not satisfied simultaneously. The conclusion deducted is that for each $W_j^* \in G_0$ there is *k* such that

$$
C_k W > C_k W_j^*
$$

But, if $C_i W = C_i W_j^*$ for all $i \neq k$, we get

$$
C_i W \geq C_i W_j^* \quad i=1,2,\ldots,r
$$

This is not expected as *W*∗ *^j* is an efficient solution. Therefore, we must ensure that for each $W_j^* \in G_0$ there are *t*, *i*, *t* \neq *i* such that

 $C_i W > C_i W_j^*$ and $C_t W < C_t W_j^*$

i.e., *W* would be non comparable with each vector in G_0 .

3 The algorithm

We shall find efficient solutions of the problem [\(1.1\)](#page-0-0) in $X - G_0$ when $\mathcal{O}_{12 \cdots r} = \phi$. Suppose

$$
G_0 = \{W_1^*, W_2^*, \ldots, W_p^*\}.
$$

Obviously for any $W \in X - G_0$

$$
\sum_{i=1}^r C_i W < z^*
$$

As a first step we add a constraint in the problem (2.1) ,

$$
\sum_{i=1}^{r} C_i W < z^* - \epsilon \tag{3.1}
$$

where $\epsilon \in (0, 1)$. We denote this new 0-1 LP by $P_0(\epsilon)$. We take ϵ such that optimal feasible solutions of $P_0(\epsilon)$ are not in G_0 . To get a new vector non-comparable with all vectors in G_0 , in view of remark 2.7, we add following constraints to $P_0(\epsilon)$ to get an extended version of P₀, denoted by $P_0^E(\epsilon)$.

$$
C_i W > C_i W_j^* - Mt_{ij}
$$

\n
$$
C_i W - Ms_{ij} < C_i W_j^*
$$

\n
$$
t_{ij} + s_{ij} \le 1
$$

\n
$$
t_{1j} + t_{2j} + \dots + t_{rj} \le r - 1
$$

\n
$$
s_{1j} + s_{2j} + \dots + s_{rj} \le r - 1
$$

\n
$$
s_{1j} + s_{2j} + \dots + s_{rj} > 0
$$

where $i = 1, 2, \ldots, r$, $j = 1, 2, \ldots, p$, $t_{ij}, s_{ij} \in \{0, 1\}$ and *M* is a positive large number.

We solve $P_0^E(\epsilon)$ to get all optimal feasible solutions W_{p+l}^* , $l = 1, 2, ..., p_1$. Put

$$
\mathcal{O}_0'' = \left\{ W_{p+1}^*, W_{p+2}^*, \ldots, W_{p+p_1}^* \right\}
$$

Let z_0^* be an optimum value of $P_0^E(\epsilon)$. If $P_0^E(\epsilon)$ is infeasible we stop. Otherwise, since $z_0^* < z^*$, we modify the constraint (3.1) as

$$
\sum_{i=1}^{r} C_i W < z_0^* - \epsilon \tag{3.3}
$$

where $\epsilon \in (0, 1)$. Choose ϵ such that optimal feasible solutions are not in G_1 *G*₀ ∪ \mathcal{O}_0'' . Denote the problem by P₁(ϵ). To get P^{*E*}₁(ϵ) add constraints like Eq. [3.2](#page-4-1) in $P_1(\epsilon)$ for $j = p + 1, \ldots, p + p_1$. Let \mathcal{O}_1'' be the set of optimal solutions to $P_1^E(\epsilon)$ with optimum value z_1^* . Write $G_2 = G_1 \cup \mathcal{O}_1''$. In general, $P_k^E(\epsilon)$ is

$$
\begin{aligned}\n\text{Max} \qquad & \sum_{i=1}^{r} C_i W, \\
\text{subject to} \qquad & A W \le b, \\
& \sum_{i=1}^{r} C_i W < z_{k-1}^* - \epsilon \\
& C_i W > C_i W_j^* - M t_{ij} \\
& C_i W - M s_{ij} < C_i W_j^* \\
& t_{ij} + s_{ij} < 1 \\
& t_{1j} + t_{2j} + \dots + t_{rj} < r - 1 \\
& s_{1j} + s_{2j} + \dots + s_{rj} < r - 1 \\
& s_{1j} + s_{2j} + \dots + s_{rj} > 0\n\end{aligned} \tag{3.4}
$$

where $i = 1, 2, ..., r$; $j = 1, 2, ..., p, p + 1, ..., p + p_1, ..., p + p_1 + p_2$ $+ \cdots + p_{k-1}$ and $w_j, t_{ij}, s_{ij} \in \{0, 1\}$. Observe that

$$
\cdots < z_k^* < z_{k-1}^* < \cdots z_1^* < z_0^* < z^* \tag{3.5}
$$

Put

$$
G_k = G_{k-1} \cup \mathcal{O}_k'' \tag{3.6}
$$

Theorem 3.1 *An optimum solution of Eq.* [3.4](#page-5-0) *is an efficient solution of the problem (*[1.1](#page-0-0)*). In particular, an optimal solution of Eq.* [3.4](#page-5-0) *is not comparable with vectors in* G_{k-1} .

Proof Let W^* be an optimal solution of $P_k^E(\epsilon)$. Let $W_j^* \in G_{k-1}$. If for all *i*, $t_{ij} = 0$ then

$$
C_i W^* > C_i W_j^* \quad \text{for all } i
$$

\n
$$
\Rightarrow \sum_{i=1}^r C_i W^* > \sum_{i=1}^r C_i W_j^* = z_i^* \text{ for some } t \in \{0, 1, ..., k-1\} \text{ or } z^* \quad (3.6)
$$

which is not true, because $\sum_{i=1}^{r} C_i W^* < z_{k-1}^* < z_0^* < z^*$. Hence there is i_1 such that

$$
t_{i_1 j} = 1
$$

\n
$$
\Rightarrow s_{i_1 j} = 0
$$

\n
$$
\Rightarrow C_{i_1} W^* < C_{i_1} W_j^*
$$

 \mathcal{D} Springer

Now, Since $\sum_{i=1}^{r} s_{ij} > 0$, there is *i*₂ such that $s_{i_2j} = 1 (\Rightarrow t_{i_2j} = 0)$. Clearly $i_1 \neq i_2$, otherwise $t_{i_1j} + s_{i_1j} > 1$. Thus, for $i_1 \neq i_2$,

$$
C_{i_1}W^* < C_{i_1}W_j^*
$$
 and $C_{i_2}W^* > C_{i_2}W_j^*$

i.e., W^* is not comparable with vectors in G_{k-1} .

Theorem 3.2 *(Theorem 2.5* [\[1\]](#page-8-0)*) Each efficient solution of the problem* [\(1.1\)](#page-0-0) *not in G*⁰ *is an optimal solution of* $P_k^E(\epsilon)$ *for some k.*

Proof Suppose algorithm stops at $k = N$ i.e, $P_N^E(\epsilon)$ is infeasible. This means there is no vector left in $X - G_{N-1}$ which is non-comparable with vectors in G_{N-1} . Let *W*[∗] be an efficient solution of the problem [\(1.1\)](#page-0-0) not in *G*₀ and let $z = \sum_{i=1}^{r} C_i W^*$.

Since W^* is an efficient solution, it is non-comparable with vectors in G_{N-1} . If $z < z_{N-1}^*$ then in view of Eq. [3.4,](#page-5-0) W^* would satisfy constraints of $P_N^E(\epsilon)$, but $P_N^E(\epsilon)$ is infeasible. Therefore, $z \geq z_{N-1}^*$. Suppose

$$
z_k^* \le z \le z_{k-1}^*
$$
 for some $k = 1, 2, ..., N - 1$

Since W^* is an efficient solution, it is not comparable with vectors in G_k i.e., constraints of $P_k^E(\epsilon)$ are satisfied by *W*^{*}. This implies $z = z^*$ and hence *W*^{*} $\in G_k$.

Remark 3.3 The constraints

$$
t_{1j} + t_{2j} + \cdots + t_{rj} \le r - 1
$$
 and $s_{1j} + s_{2j} + \cdots + s_{rj} \le r - 1$

are redundant.

We have

$$
t_{ij} + s_{ij} \le 1
$$

\n
$$
\Rightarrow \sum_{i=1}^r (t_{ij} + s_{ij}) \le r
$$

Since $s_{1j} + s_{2j} + \cdots + s_{rj} > 0$ there is at least one $s_{ij} > 0$, hence $\sum_{i=1}^{r} s_{ij} \ge 1$. Thus

$$
\sum_{i=1}^{r} t_{ij} \le r - \sum_{i=1}^{r} s_{ij} \le r - 1
$$

If $s_{ij} = 1$ for all *i*, $t_{ij} = 0$ for all *i*. We get

$$
C_i W > C_i W_j^* \quad \text{for all } i \tag{3.7}
$$

Note that $W_j^* \in G_k$. If $W_j^* \in \bigcup_{i=1}^r \mathcal{O}_i$ then $W_j^* \in \mathcal{O}_k$ for some *k* such that $|\mathcal{O}_k| = 1$. Clearly Eq. [3.7](#page-6-0) is not true for $i = k$. Further, if $W_j^* \in G_k - (\cup_{i=1}^r \mathcal{O}_i)$, then Eq. 3.7 implies

$$
z_{k-1}^* > \sum_{i=1}^r C_i W > \sum_{i=1}^r C_i W_j^* = z_t^* \text{ for some } t \in \{0, 1, \dots, k-1\} \text{ or } z^*
$$

which is not true in view of Eq. [3.5.](#page-5-1)

 \Box

 $\textcircled{2}$ Springer

4 The example

Now, we consider the example (1.2) which originally from [\[2\]](#page-8-1). Note that, in this example $C_1 = (3, 6, 5, -2, 3), C_2 = (6, 7, 4, 3, -8), C_3 = (5, -3, 8, -4, 3)$. The unique optimum solutions of P_1 , P_2 , P_3 are $W_1^* = (1, 1, 1, 1, 1)$, $W_2^* = (1, 1, 1, 0, 0)$, $W_3^* = (1, 0, 1, 0, 1)$ respectively. In this case, P₀ is

$$
\begin{array}{ll}\n\text{Max } 14w_1 + 10w_2 + 17w_3 - 3w_4 - 2w_5 \\
\text{Subject to } -2w_1 + 3w_2 + 8w_3 - w_4 + 5w_5 \le 13 \\
& 4w_1 - 2w_2 + 6w_3 - 2w_4 + w_5 \le 11 \\
& 6w_1 + 2w_2 + 4w_3 + 4w_4 - 3w_5 \le 15\n\end{array} \tag{4.1}
$$

Further, also note that the optimum solution for P_0 is W_2^* with optimum value 41. Hence

$$
G_0 = \{W_1^*, W_2^*, W_3^*\}.
$$

To get $P_0(\epsilon)$ we add following constraint in P_0

$$
14w_1 + 10w_2 + 17w_3 - 3w_4 - 2w_5 < 41 - \epsilon \tag{4.2}
$$

Then, to get $P_0^E(\epsilon)$, we add following constraints

$$
(C_1W, C_2W, C_3W) > (15 - Mt_{11}, 12 - Mt_{21}, 9 - Mt_{31})
$$

\n
$$
(C_1W, C_2W, C_3W) > (14 - Mt_{11}, 17 - Mt_{21}, 10 - Mt_{31})
$$

\n
$$
(C_1W, C_2W, C_3W) > (11 - Mt_{11}, 2 - Mt_{21}, 16 - Mt_{31})
$$

\n
$$
(C_1W, C_2W, C_3W) < (15 + Ms_{11}, 12 + Ms_{21}, 9 + Ms_{31})
$$

\n
$$
(C_1W, C_2W, C_3W) < (14 + Ms_{12}, 17 + Ms_{22}, 10 + Ms_{32})
$$

\n
$$
(C_1W, C_2W, C_3W) < (11 + Ms_{13}, 2 + Ms_{23}, 16 + Ms_{33})
$$

\n
$$
t_{ij} + s_{ij} \le 1
$$

\n
$$
t_{1j} + t_{2j} + t_{3j} \le 2
$$

\n
$$
s_{1j} + s_{2j} + s_{3j} > 0
$$

\n(4.3)

where $i = 1, 2, 3, j = 1, 2, 3$.

The unique optimum solution is W^* = $(1, 0, 1, 0, 0)$ with optimum value 31. Next, we modify the constraint [\(4.2\)](#page-7-0) as

$$
14w_1 + 10w_2 + 17w_3 - 3w_4 - 2w_5 < 31 - \epsilon \tag{4.4}
$$

and add the following constraints in Eq. [4.3](#page-7-1) to get $P_1^E(\epsilon)$

$$
(C_1W, C_2W, C_3W) > (8 - Mt_{14}, 10 - Mt_{24}, 13 - Mt_{34})
$$

\n
$$
(C_1W, C_2W, C_3W) < (8 + Ms_{14}, 10 + Ms_{24}, 13 + Ms_{34})
$$

\n
$$
t_{i4} + s_{i4} \le 1
$$

\n
$$
t_{14} + t_{24} + t_{34} \le 2
$$

\n
$$
s_{14} + s_{24} + s_{34} \le 2
$$

\n
$$
s_{14} + s_{24} + s_{34} > 0
$$
\n(4.5)

The unique optimum solution of $P_1^E(\epsilon)$ is $W_5^* = (1, 0, 1, 1, 1)$ with optimum value 26. now, we modify [\(4.4\)](#page-7-2) as

$$
14w_1 + 10w_2 + 17w_3 - 3w_4 - 2w_5 < 26 - \epsilon
$$

and add again following constraints in Eq. [4.5](#page-7-3) to get $P_2^E(\epsilon)$

$$
(C_1W, C_2W, C_3W) > (9 - Mt_{14}, 5 - Mt_{24}, 12 - Mt_{34})
$$

\n
$$
(C_1W, C_2W, C_3W) < (9 + Ms_{14}, 5 + Ms_{24}, 12 + Ms_{34})
$$

\n
$$
t_1s + s_1s \le 1
$$

\n
$$
t_{15} + t_{25} + t_{35} \le 2
$$

\n
$$
s_{15} + s_{25} + s_{35} \le 2
$$

\n
$$
s_{15} + s_{25} + s_{35} > 0
$$

 $P_2^E(\epsilon)$ is infeasible. Hence there are no efficient solutions left.

References

- 1. Jahanshahloo, G.R., Lofti, F.H., et al.: A method for generating all the efficient solutions of a 0-1 multi-objective linear programming problem. Asia Pacific Journal of Operational Research **21**(1), 127–139 (2004)
- 2. Liu, F.H.F., Huang, C.C., Yen, Y.L.: Using DEA to obtain efficient solutions for multi-objective 0-1 linear programs. European Journal Of Operational Research **126**, 51–68 (2000)
- 3. Parthsarathy, K.R.: Basic Graph Theory. Tata Mc Graw Hill (1994)