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Abstract An error in an algorithm, in Jahanshahloo et al. (Asia Pacific Journal of
Operational Research 21(1):127–139, 2004), to generate efficient solutions to a 0-1
multi objective linear programming problems is detected and a modified algorithm is
suggested. Further, an erroneous conclusion in the proof of the theorem, which states
that at least one optimal solution among the optimal solutions of an individual 0-1
linear program is an efficient solution, is also corrected.
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1 Introduction

A 0-1 multi-objective linear programming problem(0-1 MOLP) is defined as:

Max{C1W,C2W, . . . , CrW }, subject to AW ≤ b, W ∈ {0, 1}n (1.1)

where Ci = (ci1, ci2, . . . , cin), i = 1, 2, . . . , r , A is m × n matrix, W =
(w1, w2, . . . , wn), a column vector and b is a m component vector. Let C be a matrix
whose rows are Ci . Let X be the set all feasible solutions of the 0-1 MOLP i.e.,

X = {W |AW ≤ b,wj ∈ {0, 1}, j = 1, 2, . . . , n}
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Consider the example given in [1] and in [2]:

Max 3w1 + 6w2 + 5w3 − 2w4 + 3w5
Max 6w1 + 7w2 + 4w3 + 3w4 − 8w5
Max 5w1 − 3w2 + 8w3 − 4w4 + 3w5

Subject to −2w1 + 3w2 + 8w3 − w4 + 5w5 ≤ 13
6w1 + 2w2 + 4w3 + 4w4 − 3w5 ≤ 15
4w1 − 2w2 + 6w3 − 2w4 + w5 ≤ 11
w1, w2, w3, w4, w5 ∈ {0, 1}

(1.2)

Simple calculations show that the example has one more efficient solution W ∗
5 =

(1, 0, 1, 1, 1). The efficient solutions calculated using the algorithm in [1] are W ∗
1 =

(1, 1, 1, 0, 0), W ∗
2 = (1, 0, 1, 0, 1), W ∗

3 = (1, 1, 1, 1, 1), W ∗
4 = (1, 0, 1, 0, 0). In

fact, the optimal solution of the first objective function is (1, 1, 1, 1, 1) with optimum
value 15 but in [1] the optimal solution is taken as (1, 1, 1, 0, 0).

Definition 1.1 W ∗ ∈ X is an efficient solution of the problem (1.1) if and only if
there does not exist a point point W ∈ X, such that

(C1W, C2W, . . . , CrW) ≥ (C1W
∗, C2W

∗, . . . , CrW
∗)

and the inequality holds strictly for at least one index i.e., for any pointW ∈ X, either

(C1W, C2W, . . . , CrW) ≤ (C1W
∗, C2W

∗, . . . , CrW
∗) (1.3)

or there are indices i1, i2 (i1 �= i2),

Ci1W > Ci1W
∗ and Ci2W < Ci2W

∗ (1.4)

Remark 1.2 In case (1.4), we say that W and W ∗ are not comparable with respect to
C and in case (1.3), we say W ∗ dominates W with respect to C.

If W ∗ is an efficient solution and for a W ∈ X, CW = CW ∗ then we shall
consider W also an efficient solution.

Denote by Pi the 0-1 linear program with ith objective function (ith row of C)
subject to X with the set of optimal solutions Oi . Let Oi1i2...it (i1 < i2 < · · · < it )
be the set of all common optimal feasible solutions of Pi1 , Pi2 , . . ., Pit . Clearly,

Oi1i2...it =
it⋂

k=i1

Ok

There are 2r − 1 such sets. The following lemma is immediate.

Lemma 1.3 If O12···r is non-empty then O12···r is the set of all efficient solutions.

Remark 1.4 In view of above lemma, henceforth, we shall assume that O12···r = φ.

Remark 1.5 In the example (1.2), the vector W ∗
5 = (1, 0, 1, 1, 1) gives CW ∗

5 =
(9, 5, 12) which is not comparable with CW ∗

1 = (14, 17, 10), CW ∗
2 = (11, 2, 16),
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CW ∗
3 = (15, 12, 9) and CW ∗

4 = (8, 10, 13). Hence it is also an efficient solu-
tion. Hence the algorithm in [1] does not find all efficient solutions. The proposed
algorithm also finds this efficient solution.

2 Some basic results

The statement of the theorem 2.1 in [1]:

Theorem 2.1 If Ol =
{
W ∗

1l , W
∗
2l , . . . , W

∗
f l

}
be the set of optimal solutions of Pl

then at least one vector in Ol is an efficient solution of the problem (1.1).

First, we prove the case |Ol | = 1 which is also proved in [1].

Lemma 2.2 Suppose O12···r = φ. If |Oi | = 1 then the vector in Oi is an efficient
solution of the problem (1.1).

Proof Let Oi = {W ∗}. Hence for any W ∈ X − {W ∗},
CiW < CiW

∗

and for k �= i,
CkW ≤ CkW

∗ or CkW > CkW
∗

If CkW ≤ CkW
∗ for all k �= i, then W ∗ dominates W with respect to C. If there is

k(�= i), such that CkW > CkW
∗ then W ∗ and W are not comparable with respect to

C. In both cases, W ∗ is an efficient solution of the problem (1.1).

While proving the theorem we must also consider a case whetherOl ∩Oi = φ for
each Oi , |Oi | = 1, other wise elements in these intersections are efficient solutions
by above lemma. The following statement is also proved in the proof of the theorem
2.1 in [1].

Lemma 2.3 No vector in X − Ol dominates vectors in Ol .

Proof Let W 0 ∈ X − Ol and W ∗
ql be such that

CiW
0 ≥ CiW

∗
ql, i = 1, 2, . . . , r and there exists k, CkW

0 > CkW
∗
ql .

Clearly k �= l as W ∗
ql is optimal. At i = l, we must have ClW

0 = ClW
∗
ql i.e.,

W 0 ∈ Ol which is not true.

Corollary 2.4 If the vector in X − Ol is not dominated by vectors in Ol then it is
non-comparable with vectors in Ol .

Proof At i = l, we must have ClW
0 < ClW

∗
ql . Since the vector is not dominated

by vectors in Ol there is k �= l such that CkW
0 > CkW

∗
ql . i.e., W

0 and W ∗
ql are not

comparable.
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Remark 2.5 For the case |Ol | > 1 the proof in [1] uses the relation ≤ on vectors
which is a partial order and not a linear. The conclusion drawn: Ykl ≤ Ykl and Ykl �=
Ykl is because of the assumption that the relation ≤ is linear. It may happen that for
some vectors W ∗

i1l
, W ∗

i2l
, . . . , W ∗

it l
in Ol ,

CW ∗
i1l

= CW ∗
i2l

= · · · = CW ∗
it l

Hence the correction in the proof is required.

Proof [Theorem (2.1)] when |Ol | > 1:
Define a mapping C : Ol −→ IRr such that W 	−→ CW . Consider, the range of

the map

R(C) = {CW |W ∈ Ol} .

Suppose

R(C) = {K1, K2, . . . , Kz}
We have Ki �= Kj for all i �= j . Now, we define a directed graph onR(C) using the
partial ordering ≤ on the vectors. We say there is a directed edge between Ki to Kj

if and only if Ki ≤ Kj . Since all Ki’s are distinct there are no directed cycles. (A
directed cycle means a few Ki’s are equal.)

Therefore, a component of the graph of R(C) is a directed tree. Hence there is at
least one vertex, say Kt with out-degree zero. Clearly, in view of the lemma (2.3),
inverse image of this Kt contains efficient solutions as image of no vector in Ol

dominates Kt .

Remark 2.6 Note that above proof also works for |Oi | = 1. Further we can also
define a directed graph(Hasse diagram [3]) on Ol using the partial ordering ≤ on the
vectors.

Remark 2.7 The observation in above corollary 2.4 is used in the proposed algorithm
to find efficient solutions. Consider P0 as the 0-1 LP:

Max
r∑

i=1

CiW, subject to AW ≤ b, W ∈ {0, 1}n (2.1)

It is proved in [1] (Theorem 2.3) that each optimal solution of the problem (2.1) is
an efficient solution for the problem (1.1). Thus, in view of corollary 2.4, in order
to find efficient solutions other than optimal solutions of P0 and the unique optimal
solutions of Pi , we must find non-comparable vectors with respect to these vectors.

Let G̃0 be the set of optimal feasible solutions of the problem (2.1). Let optimal
value of P0 be z∗. Put

G0 = G̃0 ∪ (∪t
α=1Oiα

)
where

∣∣Oiα

∣∣ = 1. (2.2)

In [1], in the beginning of the algorithm, in order to find other efficient solutions
of the problem (1.1), not in G0, it has been observed that following inequalities

CiW ≤ CiW
∗
j i = 1, 2, . . . , r
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are not satisfied simultaneously. The conclusion deducted is that for each W ∗
j ∈ G0

there is k such that
CkW > CkW

∗
j

But, if CiW = CiW
∗
j for all i �= k, we get

CiW ≥ CiW
∗
j i = 1, 2, . . . , r

This is not expected as W ∗
j is an efficient solution. Therefore, we must ensure that

for each W ∗
j ∈ G0 there are t, i, t �= i such that

CiW > CiW
∗
j and CtW < CtW

∗
j

i.e., W would be non comparable with each vector in G0.

3 The algorithm

We shall find efficient solutions of the problem (1.1) in X − G0 when O12···r = φ.
Suppose

G0 = {W ∗
1 , W ∗

2 , . . . , W ∗
p}.

Obviously for any W ∈ X − G0

r∑

i=1

CiW < z∗

As a first step we add a constraint in the problem (2.1),
r∑

i=1

CiW < z∗ − ε (3.1)

where ε ∈ (0, 1). We denote this new 0-1 LP by P0(ε). We take ε such that optimal
feasible solutions of P0(ε) are not in G̃0. To get a new vector non-comparable with
all vectors in G0, in view of remark 2.7, we add following constraints to P0(ε) to get
an extended version of P0, denoted by PE

0 (ε).

CiW > CiW
∗
j − Mtij

CiW − Msij < CiW
∗
j

tij + sij ≤ 1 (3.2)

t1j + t2j + · · · + trj ≤ r − 1

s1j + s2j + · · · + srj ≤ r − 1

s1j + s2j + · · · + srj > 0

where i = 1, 2, . . . , r , j = 1, 2, . . . , p, tij , sij ∈ {0, 1} and M is a positive large
number.

We solve PE
0 (ε) to get all optimal feasible solutions W ∗

p+l , l = 1, 2, . . . , p1. Put

O′′
0 =

{
W ∗

p+1, W
∗
p+2, . . . , W

∗
p+p1

}
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Let z∗
0 be an optimum value of PE

0 (ε). If PE
0 (ε) is infeasible we stop. Otherwise, since

z∗
0 < z∗, we modify the constraint (3.1) as

r∑

i=1

CiW < z∗
0 − ε (3.3)

where ε ∈ (0, 1). Choose ε such that optimal feasible solutions are not in G1 =
G0 ∪ O′′

0 . Denote the problem by P1(ε). To get PE
1 (ε) add constraints like Eq. 3.2 in

P1(ε) for j = p + 1, . . . , p + p1. Let O′′
1 be the set of optimal solutions to PE

1 (ε)

with optimum value z∗
1. Write G2 = G1 ∪ O′′

1 . In general, P
E
k (ε) is

Max
r∑

i=1

CiW,

subject to AW ≤ b,
r∑

i=1

CiW < z∗
k−1 − ε

CiW > CiW
∗
j − Mtij (3.4)

CiW − Msij < CiW
∗
j

tij + sij ≤ 1

t1j + t2j + · · · + trj ≤ r − 1

s1j + s2j + · · · + srj ≤ r − 1

s1j + s2j + · · · + srj > 0

where i = 1, 2, . . . , r; j = 1, 2, . . . , p, p + 1, . . . , p + p1, . . . , p + p1 + p2
+ · · · + pk−1 and wj , tij , sij ∈ {0, 1}. Observe that

· · · < z∗
k < z∗

k−1 < · · · z∗
1 < z∗

0 < z∗. (3.5)

Put
Gk = Gk−1 ∪ O′′

k (3.6)

Theorem 3.1 An optimum solution of Eq. 3.4 is an efficient solution of the problem
(1.1). In particular, an optimal solution of Eq. 3.4 is not comparable with vectors in
Gk−1.

Proof Let W ∗ be an optimal solution of PE
k (ε). Let W ∗

j ∈ Gk−1. If for all i, tij = 0
then

CiW
∗ > CiW

∗
j for all i

⇒ ∑r
i=1 CiW

∗ >
∑r

i=1 CiW
∗
j = z∗

t for some t ∈ {0, 1, . . . , k − 1} or z∗ (3.6)

which is not true, because
∑r

i=1 CiW
∗ < z∗

k−1 < z∗
0 < z∗. Hence there is i1 such

that
ti1j = 1

⇒ si1j = 0
⇒ Ci1W

∗ < Ci1W
∗
j
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Now, Since
∑r

i=1 sij > 0, there is i2 such that si2j = 1(⇒ ti2j = 0). Clearly i1 �= i2,
otherwise ti1j + si1j > 1. Thus, for i1 �= i2,

Ci1W
∗ < Ci1W

∗
j and Ci2W

∗ > Ci2W
∗
j

i.e., W ∗ is not comparable with vectors in Gk−1.

Theorem 3.2 (Theorem 2.5 [1]) Each efficient solution of the problem (1.1) not in
G0 is an optimal solution of PE

k (ε) for some k.

Proof Suppose algorithm stops at k = N i.e, PE
N(ε) is infeasible. This means there

is no vector left in X − GN−1 which is non-comparable with vectors in GN−1. Let
W ∗ be an efficient solution of the problem (1.1) not in G0 and let z = ∑r

i=1 CiW
∗.

Since W ∗ is an efficient solution, it is non-comparable with vectors in GN−1. If
z < z∗

N−1 then in view of Eq. 3.4, W ∗ would satisfy constraints of PE
N(ε), but PE

N(ε)

is infeasible. Therefore, z ≥ z∗
N−1. Suppose

z∗
k ≤ z ≤ z∗

k−1 for some k = 1, 2 . . . , N − 1

Since W ∗ is an efficient solution, it is not comparable with vectors in Gk i.e.,
constraints of PE

k (ε) are satisfied by W ∗. This implies z = z∗ and hence W ∗
∈ Gk .

Remark 3.3 The constraints

t1j + t2j + · · · + trj ≤ r − 1 and s1j + s2j + · · · + srj ≤ r − 1

are redundant.
We have

tij + sij ≤ 1
⇒ ∑r

i=1(tij + sij ) ≤ r

Since s1j +s2j +· · ·+srj > 0 there is at least one sij > 0, hence
∑r

i=1 sij ≥ 1. Thus

r∑

i=1

tij ≤ r −
r∑

i=1

sij ≤ r − 1

If sij = 1 for all i, tij = 0 for all i. We get

CiW > CiW
∗
j for all i (3.7)

Note that W ∗
j ∈ Gk . If W ∗

j ∈ ∪r
i=1Oi then W ∗

j ∈ Ok for some k such that |Ok| = 1.

Clearly Eq. 3.7 is not true for i = k. Further, if W ∗
j ∈ Gk − (∪r

i=1Oi

)
, then Eq. 3.7

implies

z∗
k−1 >

r∑

i=1

CiW >

r∑

i=1

CiW
∗
j = z∗

t for some t ∈ {0, 1, . . . , k − 1} or z∗

which is not true in view of Eq. 3.5.
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4 The example

Now, we consider the example (1.2) which originally from [2]. Note that, in this
example C1 = (3, 6, 5, −2, 3), C2 = (6, 7, 4, 3, −8), C3 = (5, −3, 8, −4, 3). The
unique optimum solutions of P1, P2, P3 areW ∗

1 = (1, 1, 1, 1, 1),W ∗
2 = (1, 1, 1, 0, 0),

W ∗
3 = (1, 0, 1, 0, 1) respectively. In this case, P0 is

Max 14w1 + 10w2 + 17w3 − 3w4 − 2w5
Subject to −2w1 + 3w2 + 8w3 − w4 + 5w5 ≤ 13

4w1 − 2w2 + 6w3 − 2w4 + w5 ≤ 11
6w1 + 2w2 + 4w3 + 4w4 − 3w5 ≤ 15

(4.1)

Further, also note that the optimum solution for P0 is W ∗
2 with optimum value 41.

Hence
G0 = {W ∗

1 , W ∗
2 , W ∗

3 }.
To get P0(ε) we add following constraint in P0

14w1 + 10w2 + 17w3 − 3w4 − 2w5 < 41 − ε (4.2)

Then, to get PE
0 (ε), we add following constraints

(C1W,C2W, C3W) > (15 − Mt11, 12 − Mt21, 9 − Mt31)

(C1W,C2W, C3W) > (14 − Mt11, 17 − Mt21, 10 − Mt31)

(C1W,C2W, C3W) > (11 − Mt11, 2 − Mt21, 16 − Mt31)

(C1W,C2W, C3W) < (15 + Ms11, 12 + Ms21, 9 + Ms31)

(C1W,C2W, C3W) < (14 + Ms12, 17 + Ms22, 10 + Ms32) (4.3)

(C1W,C2W, C3W) < (11 + Ms13, 2 + Ms23, 16 + Ms33)

tij + sij ≤ 1

t1j + t2j + t3j ≤ 2

s1j + s2j + s3j ≤ 2

s1j + s2j + s3j > 0

where i = 1, 2, 3, j = 1, 2, 3.
The unique optimum solution is W ∗

4 = (1, 0, 1, 0, 0) with optimum value 31.
Next, we modify the constraint (4.2) as

14w1 + 10w2 + 17w3 − 3w4 − 2w5 < 31 − ε (4.4)

and add the following constraints in Eq. 4.3 to get PE
1 (ε)

(C1W, C2W, C3W) > (8 − Mt14, 10 − Mt24, 13 − Mt34)

(C1W, C2W, C3W) < (8 + Ms14, 10 + Ms24, 13 + Ms34)

ti4 + si4 ≤ 1 (4.5)

t14 + t24 + t34 ≤ 2

s14 + s24 + s34 ≤ 2

s14 + s24 + s34 > 0
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The unique optimum solution of PE
1 (ε) is W ∗

5 = (1, 0, 1, 1, 1) with optimum value
26. now, we modify (4.4) as

14w1 + 10w2 + 17w3 − 3w4 − 2w5 < 26 − ε

and add again following constraints in Eq. 4.5 to get PE
2 (ε)

(C1W, C2W, C3W) > (9 − Mt14, 5 − Mt24, 12 − Mt34)

(C1W, C2W, C3W) < (9 + Ms14, 5 + Ms24, 12 + Ms34)

ti5 + si5 ≤ 1

t15 + t25 + t35 ≤ 2

s15 + s25 + s35 ≤ 2

s15 + s25 + s35 > 0

PE
2 (ε) is infeasible. Hence there are no efficient solutions left.
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