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Abstract We study a batch arrival Poisson input, k phases heterogeneous services
with randomly feedback in services. The first phase of service is essential for all
customers, but with probability γ1 a tagged customer chose second phase, with prob-
ability α1 feedback to tail of original queue or with probability β1 = 1 − γ1 − α1
leave the system. Also, after completion of the second phase, with probability γ2 the
customer leads to the third service, or with probability α2 feedback to tail of orig-
inal queue, or leaves the system with probability β2 = 1 − γ2 − α2. Like that, in
kth phase feedback with probability αk or leaves the system with probability 1− αk .
After completion of each phases, the server either goes for a vacation with proba-
bility θ(0 ≤ θ ≤ 1), or may continue to serve the next unit with probability 1 − θ ,
if any. Otherwise, it remains in the system until a customer arrives, which is single
vacation policy. We assume restricted admissibility of arriving batches in which not
all batches are allowed to join the system at all times. In this paper we derive the
steady- state equations, PGF’s of the system, and measures of sysytem.

Keywords M/G/1 queue · Multi phases of heterogeneous service · Feedback ·
Admissibility restricted · Single vacation · Mean queue size · Mean response time

1 Introduction

In modern Qeueing theory it is often assumed that a customer’s service may have k

phases and also be incredible, so he/she/it must repeated the service. This events was
studied for the first time in Shahkar and Badamchizah [17]. Moreover vacation and
restricted admissibility are usual events that occur in queueing systems.
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For example, in communication networks a packet which is transmitted from the
source is returned to the transmitter until it is successfully received at destination
and in production system each defective item is sent back to the server for rework
by the quality control desk. Unlike most of the other single server queues in which
the server provides only one kind of service, the server provides k types of het-
erogeneous services and a customer may choose either type of service under single
vacation policy. In the analysis of this model, steady state results for the probability
generating functions of the queue size and the system size, the expected number of
customers and the expected waiting time of customer in the queue and the system are
obtained.

In general, queueing theory is an important subject in computers and operations
research. Buffers /queues are used to store information that can not be transmitted
instantaneously. Classical queueing systems assume that customers are in continuous
contact with the server, that is, they can see whether or not the server is busy and thus
commence service immediately whenever the service station becomes idle. However,
queueing systems with elapse differ in that customers do not know the server state
and consequently must verify if the server is idle from time to time. It is natural for
telephone callers to break contact when the line is occupied and re-apply for connec-
tion later as a vacation. Madan [10], Madan and Choudhury [14] studied the M/G/1
queueing system with two phases of heterogeneous services such that the first phase
of service follows by the second phase of service, under a Bernoulli vacationr sched-
ule. An MX/G/1 queue system with an additional service channel were analyzed
by Choudhury [8]. Furthermore, a similar work can be found in Artalejo [2] and
Ke [9].

Madan and Choudhury [13] proposed an MX/G/1 queueing system, assuming
batch arrivals with restricted admissibility of arriving batches and Bernoulli schedule
server vacation. Earlier, Madan and Abu-Dayyeh [11, 12] dealt with this type of
model and studied some aspects of batch arrivals Bernoulli vacation models with
restricted admissibility, where all arriving batches are not allowed into the system
at all time. Furtheremore in Chaudhry [5] and Alnowibet [1] the M/G/1 queueing
systems with optional service are analyzed.

Recently in Badamchizadeh and Shahkar [3], Badamchizadeh [4], Salehirad and
Badamchizadeh [16] has extended this models.

In many applications such as hospital services, production systems, bank services,
computer and communication networks, there is many phases of services such that
after completion of services, customers may leave the system or may immediately go
for the next phase of service, or the services must be repeated.

In this paper the general case is study such that there are k phases of services,
vacation and restricted admissibility. Unlike the usual batch arrival queueing sys-
tems, the policy of restricted admissibility of batches in which not all batches are
allowed to join the system at all times, has been assumed in this model. In other
words, an arriving batch will be allowed to join the system during the server’s non-
vacation and vacation periods with constant probabilities. Also in this system for
overhauling or maintenance purposes of the system, or serving other customers, the
server being fatigue or for other reasons not mentioned here, the server may go to
vacation.
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In this paper the aim is the analyze of steady state conditon in a single server
queue with a batch arrival Poisson input, k phases of heterogeneous service, restricted
admissibility of batches, randomly feedback in services, and Bernoulli vacation for
server. In Section 2 we deal with the mathematical model and definitions. Steady-
State conditions and generating functions are discussed in Section 3. Mean queue size
and mean response time are computed in Section 4, where in Section 5 some special
cases are investigated. Finaly wiyh some numerical method the validity of model has
been examined.

2 Mathematical model and definitions

We consider a queueing system such that:

i) Customers arrive at the system in a compound Poisson process with a batch
of random size X and mean rate λ > 0. Size of succesive arriving batches
are X1, X2,. . . , where i.i.d random variables, distributed with probability mass
function(p.m.f) dn = Prob[Xi = n]; n � 1, probability genrerating func-
tion(PGF) d(z) = E[zX

1 ]. The first and second moments d(1) = E[X] and
d(2) = E[X2]; respectively, are assumed to be finite.

ii) The server provides k phases of heterogenous service in succession. The service
discipline is assumed to be on the basis of first come, first serve(FCFS). The
first phase of service is essential for all customers, but as soon as the essential
service is completed, a tagged customer moves for second phase with probabil-
ity γ1, feedback to tail of original queue with probability α1 or leaves the system
with probability β1 = 1 − α1 − γ1.

Similarly after completion of the second phase with probability γ2 the cus-
tomer leads to the third service or with probability α2 feedback to the tail of
original queue, or leaves the system with probability β2 = 1 − α2 − γ2. Like
that, in k’th phase he/she/it feedback with probability αk or leaves the system
with probability 1 − αk .

The service times for k phases are independent random variables, denoted
by Bi, i = 1, 2, . . . , k. Their Laplace-Stieltjes transform (LST)are B∗

i (s), i =
1, 2, . . . , k where we assume they have finite moments E(Bl

i ) for l � 1 and
i = 1, 2, . . . k.

iii) There is a policy restricted admissibility of batches in which not all batches are
allowed to join the system at all times. Let a(0 � a � 1) and b(0 � b � 1) be
the probability that an arriving batch will be allowed to join the system during
the period of the server’s non-vacation period(service time) and vacation period
respectively.

iv) As soon as each phase of a customer’s services is completed, the server may
go for a vacation of random length V with probability θ(0 ≤ θ ≤ 1) or
it may continue to serve the next customer, if any, with probability (1 − θ),
otherwise it remains in the system and waits for a new arrival. We denote
V (x), V ∗(s) and E(V l) for distribution function (DF), LST and l′th finite
moment of V,respectively, where l ≥ 1.

v) The random variables Bi and V are all independent variables.
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Definition 2.1 The modified service time or the time required by a customer to
complete the service cycle is given by:

B =
{

B1 + ∑k
i=2 γ1γ2 . . . γi−1Bi with probability(1 − θ)

B1 + ∑k
i=2 γ1γ2 . . . γi−1Bi + V with probability θ

(2.1)

then the LST B∗(s) of B is given by

B∗(s) = θB∗
1 (s)

k∏
i=2

γ1γ2 . . . γi−1B
∗
i (s)V ∗(s)+ (1− θ)B∗

1 (s)

k∏
i=2

γ1γ2 . . . γi−1B
∗
i (s)

(2.2)
Further, for i = 1, 2, . . . , k we assume that Bi(0) = 0, Bi(∞) = 1 and Bi(x)

are continuous at x = 0, so that

μi(x)dx = dBi(x)

1 − Bi(x)
(2.3)

is the first order differential equation(hazard rate functions) of Bi .
Also, V (0) = 0, V (∞) = 1 and V (x) is continuous at x = 0 , so that

ν(x)dx = dV (x)

1 − V (x)
(2.4)

is hazard rate function of V.

Definition 2.2 Let NQ(t) be the queue size(including one being served, if any) at
time ’t’ and for i = 1, 2, . . . , k the supplementary variables are defined as:

B0
i (t) ≡ the elapsed kth phase of service at time ’t’

V 0(t) ≡ the elapsed vacation time at time ’t’

Now let us introduce the following random variables:

Y (t) =
{
0 if the server is idle at time ’t’,
i if the server is busy with ith phase of service at time ’t’, i = 1, 2, . . . , k
k + 1 if the server is on vacation at time ’t’.

(2.5)

From this we have a bivariate Markov process {NQ(t), L(t)} where L(t) = 0
if Y (t) = 0; L(t) = B0

i (t) if Y (t) = i for i = 1, 2, . . . , k and L(t) = V 0(t)

if Y (t) = k + 1. Now for i = 1, 2, . . . , k the following probabilities are define
as:

Qn(x, t) = Prob[NQ(t) = n,L(t) = V 0(t); x < V 0(t) � x + dx] x > 0, n � 0

Pi,n(x, t) = Prob[NQ(t) = n,L(t) = B0
i (t); x < B0

i (t) � x + dx] x > 0, n � 1

and

R0(t) = Prob[NQ(t) = 0, L(t) = 0]
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Now the analysis of the limiting behaviour of this queueing process at a random
epoch can be performed with the help of Kolmogorov forward equations, provided
the following limits exist and are independent of initial state :

R0 = limt→∞ R0(t)

Pi,n(x)dx = limt→∞ Pi,n(x, t)dx i = 1, 2, . . . , k x > 0, n � 1
Qn(x)dx = limt−→∞ Qn(x, t)dx x > 0, n � 0

Definition 2.3 For i = 1, 2, . . . , k the PGF of these probabilities are defined as
follow:

Pi(x, z) =
∞∑

n=1

znPi,n(x) |z| � 1, x > 0 (2.6)

Pi(0, z) =
∞∑

n=1

znPi,n(0) |z| � 1 (2.7)

Also

Q(x, z) =
∞∑

n=0

znQn(x) |z| � 1, x > 0 (2.8)

Q(0, z) =
∞∑

n=0

znQn(0) (2.9)

3 Steady-state probability generating function

From Kolmogorov forward equations , for i = 1, 2, . . . , k the steady-state conditions
can be written as follow

d

dx
Pi,n(x)+[λ+μi(x)]Pi,n(x)=λ(1−a)Pi,n(x)+λa

n∑
k=1

dkPi,n−k(x) n≥2, x >0

(3.10)
and for n = 1

d

dx
Pi,1(x) + [λ + μi(x)]Pi,1(x) = λ(1 − a)Pi,1(x), x > 0 (3.11)

d

dx
Qn(x)+[λ+ν(x)]Qn(x) = λ(1−b)Qn(x)+λb

n∑
k=1

dkQn−k(x) n ≥ 1, x > 0

(3.12)
d

dx
Q0(x) + [λ + ν(x)]Q0(x) = λ(1 − b)Q0(x) (3.13)

also

λR0 = λ(1 − a)R0 + (1 − θ)

k∑
i=1

βi

∫ +∞

0
μi(x)Pi,1(x)dx + (1 − θ)(1 − αk)

×
∫ +∞

0
μk(x)Pk,1(x)dx +

∫ +∞

0
ν(x)Q0(x)dx (3.14)



622 OPSEARCH (Oct–Dec 2015) 52(4):617–630

For n ≥ 1 these sets of equations are to be solved under the following boundary
conditions at x = 0

P1,n(0) = λadnR0 +
k∑

i=1

αi

∫ +∞

0
μi(x)Pi,n(x)dx + (1 − θ)

k−1∑
i=1

βi

∫ +∞

0
μi(x)Pi,n+1(x)dx

+(1 − θ)(1 − αk)

∫ +∞

0
μk(x)Pk,n+1(x)dx +

∫ +∞

0
ν(x)Qn(x)dx (3.15)

and

Pi,n(0) = γi−1

∫ +∞

0
μi(x)Pi−1,n(x)dx, n � 1 (3.16)

also for n ≥ 0

Qn(0) = θ

k−1∑
i=1

βi

∫ +∞

0
μi(x)Pi,n+1(x)dx + θ(1 − αk)

∫ +∞

0
μk(x)Pk,n+1(x)dx

(3.17)
Finally the normalizing condition is

R0 +
k∑

i=1

∞∑
n=1

∫ +∞

o

Pi,n(x)dx +
∞∑

n=0

∫ +∞

0
Qn(x)dx = 1 (3.18)

Theorem 3.1 For i = 1, 2, . . . , k from Eqs. 3.10 and 3.11 we have

Pi(x, z) = Pi(0, z)[1 − Bi(x)]e−λa(1−d(z))x x > 0 (3.19)

and from Eqs. 3.12, 3.13

Q(x, z) = Q(0, z)[1 − V (x)]e−λb(1−d(z))x x > 0 (3.20)

Lemma 3.2 For i = 1, 2, . . . , k let

B∗
i (λa(1 − d(z)) =

∫ +∞

0
e−λa(1−d(z))xdBi(x) (3.21)

V ∗(λb(1 − d(z)) =
∫ +∞

0
e−λb(1−d(z))xdV (x) (3.22)

be the z-transform of Bi and V respectively, then

I )zP1(0, z) =λad(z)R0z+zP1(0, z)
k∑

i=1

αiB
∗
i (λa(1−d(z)) +(1−θ)P1(0, z)

k∑
i=1

βiB
∗
i (λa(1−d(z))

+(1− θ)(1−αk)B
∗
k (λa(1 − d(z)) + zQ(0, z)V ∗ (λb(1 − d(z)) −λaR0z (3.23)

and for i = 1, 2, . . . , k

II )Pi(0, z) = �i−1A
∗
i−1(λa(1 − d(z))P1(0, z) (3.24)

where

�j = γ1γ2 · · · γj
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and

A∗
j (λa(1 − d(z)) =

j∏
i=1

B∗
i (λa(1 − d(z)) (3.25)

III )zQ(0, z) = θ

k−1∑
i=1

βiB
∗
i (λa(1 − d(z)) Pi(0, z) + θ(1 − αk)B

∗
k (λa(1 − d(z)) Pk(0, z) (3.26)

Proof I): By multiplying Eq. 3.15 in zn and summation from n = 1 to +∞,
adding Eq. 3.14 to result and using Eqs. 3.21 and 3.22.

II): By multiplying Eq. 3.16 in zn and summation from n = 1 to +∞.
III): By multiplying Eq. 3.17 in zn and summation from n = 1 to +∞.

In the rest of this section for simplifying the formulas we omit (λa(1 − d(z)))

from B∗
i and (λb(1 − d(z))) from V ∗.

Corollary 3.3 From Eq. 3.23

P1(0, z)= zλaR0(d(z)−1)[
β1B

∗
1 −

k−1∑
i=2

βi�i−1A
∗
i +(1−αk)�k−1A

∗
k

]
[1−θ(1−V ∗)]−z

(
1−α1B

∗
1 −

k∑
i=1

αi�i−1A∗
i

)

(3.27)

Remark 3.4 We set G(z) = [
1 − θ (1 − V ∗(λb(1 − d(z)))

]
. In the systems with

vacation, this function has a main role. Also if H(z) = [β1B
∗
1 + ∑k−1

i=2 βi�i−1A
∗
i +

(1 − αk)�k−1A
∗
k] and K(z) = 1 − α1B

∗
1 −

k∑
i=2

αi�i−1A
∗
i , then

P1(0, z) = zλaR0 (d(z) − 1))

zK(z) − H(z)G(z)
(3.28)

and from Eqs. 3.24 and 3.25 we have respectively

Pi(0, z) = zλaR0 (d(z) − 1)) �i−1A
∗
i

zK(z) − H(z)G(z)
(3.29)

and

Q(0, z) = zλaR0 (d(z) − 1)) H(z)

zK(z) − H(z)G(z)
(3.30)

Corollary 3.5 Since

P1(z) =
∫ +∞

0
P1(x, z)dx

hence from Eq. 3.19 for i = 1, using Eq. 3.28 and integration by part we have

P1(z) = zR0(1 − B∗
1 )

H(z)G(z) − zK(z)
(3.31)
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Similarly from Eqs. 3.19 for i = 2, . . . , k, 3.29 and 3.30 we have

Pi(z) =
∫ +∞

0
Pi(x, z)dx =

∫ +∞

0
Pi(0, z)[1 − Bi(x)]e−λα(1−d(z))xdx

= zR0(1 − B∗
i )�i−1A

∗
i−1

H(z)G(z) − zK(z)
(3.32)

and

Q(z) = θR0(1 − V ∗)H(z)

H(z)G(z) − zK(z)
(3.33)

Remark 3.6 The unknown constant R0 can be determined by using normalizing
condition (3.18) which is

R0 + P1(1) +
k∑

i=2

P2(1) + Q(1) = 1 (3.34)

From Eqs. 3.31, 3.32 and 3.33 we have

R0[1 + P1(z) +
k∑

i=2

Pi(z) + Q(z)] = R0

[
(1 − z)H(z)

H(z)G(z) − zK(z)

]
(3.35)

R0 is the steady-state probability that the server is idle but available in the system,
hence 1 − R0 = ρ < 1 is the utilization factor of this system and the stability
condition that under which the steady state solution exists.

The values of H(z), G(z), K(z) and their derivatives have main roles in rest of
article, which are in next lemma.

Lemma 3.7 According to lemma (3.8) from [17] we have:

d

dz
A∗

i (λa(1 − d(z)) |z=1 = λaE(X)

i∑
l=1

E(Bl) (3.36)

d2

dz2
A∗

i (λa(1 − d(z)) |z=1=[λaE(X)]2
⎧⎨
⎩

[
i∑

l=1

E(Bl)

]2

+
i∑

l=1

var(Bl)

⎫⎬
⎭+λaE(X(X−1))

j∑
l=1

E(Bl)

(3.37)

Now from Eq. 3.35

ρ = 1 − R0 = z[H(z) − K(z)] + H(z)[G(z) − 1]
(z − 1)H(z)

| z=1

From remark (3.4)

H(1) − K(1) = 0, G(1) = 1 (3.38)
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hence ρ is
0

0
, therfore by L’Hopital rule we have

ρ = H ′(1)−K ′(1)+H(1)G′(1)
H(1)

=

[
(α1+ β1)(B

∗
1 )′ +

k−1∑
i=2

(αi + βi)�i−1
(
A∗

i

)′ + (
A∗

k

)′
]

β1 +
k−1∑
i=2

βi�i−1 + (1 − αk)�k−1

+θ(V ∗)′

(3.39)

4 Mean queue size and other measures of system

From Eqs. 3.31, 3.32, 3.33 and 3.35 the PGF of the queue size distribution at a
random epoch is

PQ(z) = R0 + P1(z) + P2(z) + zQ(z)

= (1 − ρ)
(z − 1)H(z)

zK(z) − H(z)G(z)
(4.40)

Let LQ be the mean number of customers in the queue (i.e mean queue size), then
we have

LQ = dPQ(z)

dz
|z=1 (4.41)

Let PQ(z) = (1−ρ)
f (z)

g(z)
where f (z) = (z−1)H(z) and g(z) = zK(z)−H(z)G(z).

f (z) and g(z) are zero at z = 1, hence LQ is the form
0

0
. So using L’Hopital rule

we have

LQ = (1 − ρ)
f ′′(1)g′(1) − f ′(1)g′′(1)

2[g′(1)]2 (4.42)

By computing f ′(1), f ′′(1), g′(1) and g′′(1) we have

LQ = g′(1)
f ′(1)

f ′′(1)g′(1) − g′′(1)f ′(1)
2[g′(1)]2 = f ′′(1)

2f ′(1)
− g′′(1)

2g′(1)

= H ′(1)
H(1)

− 2K ′(1)+K ′′(1)−H ′′(1)−2H ′(1)G′(1)−H(1)G′′(1)
2[K(1)+K ′(1)−H ′(1)−H(1)G′(1)] (4.43)

Now for computing the mean waiting-time of a test customer in this model, by
using Little’s formula, this measure of system is equal

WQ = LQ

λX

(4.44)

Table 1 Values of parameters

α1 β1 α2 β2 γ1 a b θ μ1 μ2 p1 p2 ν q d

.5 .2 .7 .3 .3 .2 .3 .1 5 4 1 2 2 3 .9
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Fig. 1 LQ vis-a-vis λ

where, following the admissibility assumption of our model, λX the actual arrival
rate of batches is given by

λX = λα (proportion of non-vacation time) + λβ (proportion of vacation time)

But from Remark 3.2 we have

the proportion of vacation time = Q(1) = θλbE(X)E(V )

Hence the proportion of non-vacation time including the first and second service
times and idle time, is equal 1 − θλbE(X)E(V ). Consequently

λX = λa + (b − a)θλ2bE(X)E(V ) (4.45)

4.1 Particular case

If αi → 0 for each i = 1, 2, . . . , k, then K(z) = 1, and also H(1) = 1, therefore
ρ = H ′(1) − G′(1) and

LQ = H ′(1) + H ′′(1) + 2H ′(1)G′(1) + G′′(1)
2 (1 − H ′(1) − G′(1)

(4.46)

5 Special cases and numerical results

Analyzing a queueing system via actual cases are very important and useful way to
confirm the models. In this section we chose known distributions for service times
and vacation time, so with this, and by some numerical approches the validity of

Table 2 Values of LQ with respect λ

λ 1 2 3 4

LQ .38 1.7 2.64 10.9
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Fig. 2 LQ vis-a-vis θ for λ = 3

0.2 0.4 0.6 0.8

10

10

20

the system are examained. Also this approch explains that our model can function
reasonably well for certain practical problems. For simple computations we assume
k = 2.

Case 1 For each i = 1, 2, let the distribution of services time be pi-Erlang as
follows:

dBi(x) = (piμi)
μi xpi−1e−piμix

(pi − 1)! dx x > 0, pi ≥ 1

hence

B∗
i (λ − λd(z)) = (piμi)

pi

[λ (d(z) − 1) + piμi)]pi

so E(Bi) = 1
μi

and E
(
B2

i

) = pi+1
piμ

2
i

.

Also we assume the distribution of vacation time be q-Erlang

dV (x) = (qν)νxq−1e−qνx

(q − 1)! dx x > 0, q ≥ 1

hence

V ∗(λ − λd(z)) = (qν)q

[λ(d(z) − 1) + qν]q
so E(V ) = 1

ν
and E(V 2) = q+1

qν2
. If we chose geometric distribution for batch size,

i.e dn = d(1 − d)n−1, 0 < d < 1, then E(X) = 1
d
and E(X(X − 1)) = 2(1−d)

d2
.

Now for numerical result we assume the following values for parameters such that
the steady state condition(ρ < 1) obtained

Table 3 values of LQ with respect θ

θ 0 .1 .2 .3 .4 .5 .6 .7 .75

LQ 1.58 1.9 2.34 2.95 3.87 5.44 8.69 19.4 46.46
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Fig. 3 L vis-a-vis μ1 and μ2

Now by using above values and Eq. 3.39, the steady state condition is ρ =
.227λ < 1, so λ < 4.4. By using Eq. 4.43

LQ = .06λ + .144λ + .004λ2

.58 − .13λ

The graph of model is in Fig. 1.
Some values of LQ against λ are in Table 2.
Now in this case we analyze LQ with respect to θ . Using values of Table 1, and

λ = 3 the steady-state condition is ρ = .18 + .498θ < 1, hence θ < .76. Also

LQ = .18 + .4782 + .35θ

.34 − .445θ

Figure 2 shows the graph of model. Also in Table 2 some values of LQ against θ are
computed. Untile θ = .6, the system is tolerable, but after θ = .7 the system blows
up.

Table 4 values of parameters

α1 β1 α2 β2 γ1 a b θ ν d

.3 .4 .6 .4 .3 .3 .2 .3 3 .6
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Table 5 values of LQ with respect μi

μ1 = μ2 1.5 2 3 5 10

LQ 9.54 2.7 1.4 .54 .23

Case 2 In this case we assume for i = 1, 2 the distribution of service times and
vacation time are exponential as follow

dBi(x) = μie
−μixdx, E(Bi) = 1

μi

E
(
B2

i

)
= 2

μ2
i

and

dV (x) = νe−νxdx, E(V ) = 1

ν
E

(
V 2

)
= 2

ν2

With geometric distribution for batch size according to Case 1 and following values
for parameters in Table 3 the steady state condition with respect μ1 and μ2 is ρ =
.96
μ1

+ .29
μ2

+ .03 < 1. Also

LQ = .5

μ1
+ .11

μ2
+

1.12
μ1

+ .36
μ2

+ .32
μ2
1

+ .06

[(
1
μ1

+ 1
μ2

)2 +
(

1
μ2
1

+ 1
μ2
2

)]

1 − 1
μ1

+ .3
μ2

and the graph of model is in Fig. 3. According to this curve and values of Table 4, L
decresses with respet μi (Table 5), and according to values of tables after μ1 = μ2 =
2 the system is stable. Also since LQ = −6.19 when μ1 = μ2 = 1, then steady state
condition begins after μ1 = μ2 = 1.28, but after μ1 = μ2 = 2, the system is stable.

6 Concluding remarks

In this paper we have studied a batch arrival k phases queueing system with randomly
feedback, admissibility restricted and server’s vacation which generalized classical
M/G/1 queue. An application of this model can be found in mobile network where
the messages are in batch form, the service may have many phases such that ser-
vices may be unaccepted and customer may repeat the services. Also, because of
admissibility restriction in service or system, all batches don’t enter in service. Our
investigations are concerned with not only queue size distribution but also wait-
ing time distribution. This model extends the systems for example in Artalejo [2],
Badamchizadeh and Shahkar [3], Badamchizadeh [4], Choudhury [7], Madan and
Choudhury [13, 14]. A practical generalization for this system is to consider optional
services and optional vacation.



630 OPSEARCH (Oct–Dec 2015) 52(4):617–630

References

1. Alnowibet, K., Tadj, L.: A quarum queueing system with Bernoulli vacation schedule and restricted
admissibility. Adv. Model. Optim. 9(1), 171–180 (2007)

2. Artalejo, J.R., Choudhury, G.: Steady state analysis of an M/G/1 queue with repeated attempts and
two-phase service. Qual. Technol. Quant. Manag. 1(2), 189–199 (2004)

3. Badamchizadeh, A., Shahkar, G.H.: A two phases queue system with Bernoulli feedback and
Bernoulli schedule server vacation. Int. J. Inf. Manag. Sci. 19(2), 329–338 (2008)

4. Badamchizadeh, A.: An Mx/(G1,G2)/1/G(BS)/VS with optional second service and admissibility
restricted. Int. J. Inf. Manag. Sci. 20(2), 305–316 (2009)

5. Chaudhry, M.L.: The queueing system Mx/G/1 and its ramification. Naval Res. Logist. Quart. 26,
667–674 (1974)

6. Choudhury, G.: A note on the Mx/G/1 queue with a random set-up time under a restricted
admissibility policy with a Bernoulli vacation schedule. Statistical Methodology, (to appear) (2008)

7. Choudhury, G., Paul, M.: A batch arrival queue with a second optional service channel under N-policy.
Stoch. Anal. Appl. 24, 1–22 (2006)

8. Choudhury, G.: A bath arrival queueing system with an additional service channel. Inf. Manag. Sci.
14(2), 17–30 (2003)

9. Ke, J.C.: An Mx/G/1 system with startup server and J additional options for service. Appl. Math.
Model. 32, 443–458 (2006)

10. Madan, K.C.: On a single server queue with two stage heterogeneous service and deterministic server
vacation. Int. J. Syst. Sci. 32, 837–844 (2001)

11. Madan, K.C., Abu-Dayyeh, W.: Restricted admissibility of batches into an Mx/G/1 type bulk queue
with modified Bernoulli schedule server vacations. ESSAIMP: Probab. Stat. 6, 113–125 (2002)

12. Madan, K.C., Abu-Dayyeh, W.: Steady state analysis of asingle server bulk queue with general vaca-
tion time and restricted admissibility of arriving batches. Revista Investigation Operacional 24(2),
113–123 (2002)

13. Madan, K.C., Choudhury, G.: An Mx/G/1 queue with Bernoulli vacation schedule under restricted
admissibility policy. Sankhaya 66(1), 175–193 (2004)

14. Madan, K.C., Choudhury, G.: A single server queue with two phases of heterogenous service under
Bernoulli schedule and a general vcation time. Inf. Manag. Sci. 16(2), 1–16 (2005)

15. Madan, K.C., Al-Rawi, Z.R., Al-Naser, A.D.: On MX/

(
G1
G2

)
/1/G(BS)/Vs vacation queue with

two types of general heterogeneous service. J. Appl. Math. Decis. Sci., 123–135 (2005)
16. Salehirad, M.R., Badamchizadeh, A.: On the multi-phase M/G/1 queueing system with random

feedback. CEJOR 17, 131–139 (2009)
17. Shahkar, G.H., Badamchizadeh, A.: On M/(G1,G2, . . . , Gk)/V/1(BS). Far East J. Theor. Stat.

20(2), 151–162 (2006)
18. Wang, J.: An M/G/1 queue with second optional service and server breakdowns. Comput. Math.

Appl. 47, 713–1723 (2004)


	A batch arrival multi phase queueing system with random feedback in service and single vacation policy
	Abstract
	Introduction
	Mathematical model and definitions
	Steady-state probability generating function
	Mean queue size and other measures of system
	Particular case

	Special cases and numerical results
	Concluding remarks
	References


