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Abstract In this paper we propose a static policy for the optimal allocation of
a fixed number of exclusive-use check-in counters dedicated to a single flight.
We first provide the motivation for considering the static policy by showing
that the dynamic policy already available in the literature suffers from the
curse of dimensionality. The objective is to minimize the (expected) total cost
of waiting, counter operation, and passenger delay costs which we show to be
convex in the number of counters allocated. In those cases where the passenger
delay cost is difficult to estimate, we propose an alternative formulation and
minimize the operating and waiting costs subject to a probabilistic service-level
constraint. This constraint ensures that the probability of all passengers being
cleared by the gate closing time exceeds a specific level. Finally, we provide
a simple procedure for estimating the implied delay costs by exploiting the
properties of the two optimization problems. Compared to the difficult-to-
evaluate dynamic policy in other papers in the literature, the present static
policy requires only a few function evaluations. This feature of the static policy
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makes it easy to find the optimal number of counters even when the number
of booked passengers is in the hundreds.

Keywords Transportation · Queues · Airline check-in counters ·
Static policy · Stochastic models

1 Introduction

One of the key operations in any airport is the management of the limited
number of check-in counters. In many of the airports around the world, and
especially in airports in the Asia-Pacific region, check-in counters are managed
by third-party service providers. These service providers handle the entire
check-in operation by supplying all the resources required including the check-
in counters, the appropriate number of check-in clerks and other personnel.
Airlines demand a certain number of counters for each of their flights and,
furthermore, they expect these counters to be at certain locations in the airport.
The number of counters demanded by an airline depends on the capacity of
the plane, the destination and other extraneous factors such as the image of
the airline, the location and the number of counters its competitor uses, etc.

The service provider is contracted by the airport authority to maintain
a certain service level in the check-in operation. Thus, it has to perform a
balancing act in meeting: (1) the demands of the airlines in terms of the
number of counters and other resources; (2) the service level standards set
by the airport authority; and (3) the concerns about its own bottom line. The
challenge is to complete the check-in process for all the arriving passengers
within a specified time window subject to the above constraints. Currently, the
allocation of counters to airlines is made using some simple rules-of-thumb
based on past experience.

Takakuwa and Oyama [19] found that waiting at check-in counters makes
up about 80 % of all the waiting times the passengers experience in an
airport. For any passenger the journey begins at the check-in counters. So,
an efficient check-in schedule should also aim to reduce congestion at the
counters. A passenger who progresses through the check-in process will be
highly satisfied and so will be happy to spend more time at the duty-free
section. Consequently, the overall image of the airport will improve. Some
authors even consider the level of service at the check-in to be a measure of
tourism service quality (see Martín-Cejas [14]). Thus, it is clear that the check-
in counter allocation problem studied in this paper is of strategic importance
to airport operations. Yet, this topic has not received much attention in the
literature. A search of the literature reveals only a few papers addressing
this problem. A majority of these papers uses only simulation to analyze the
problem.

To our knowledge, Parlar and Sharafali [16] were the first to demonstrate
that this decision problem for exclusive use check-in counter systems is
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amenable to analytical treatment. In an exclusive use check-in counter system,
each flight has a dedicated number of counters which stay open until at
least half-an-hour before the scheduled departure of that flight. Examples of
airports where such a system is in use are Terminal 1 and the budget terminal of
Singapore Changi Airport, and the international terminal of Melbourne Tulla-
marine Airport in Australia. Modeling the arrival process as a death process,
the authors of [16] derived the time-dependent transition probabilities for the
underlying terminating queueing process. They used these probabilities in a
stochastic dynamic programming model to analyze a periodic-review multi-
counter single queue problem. Their approach yielded the optimal dynamic
assignment of counters which minimized a suitable expected cost function.
But, for problems with a large number of passengers, their approach required
long computation times. Thus, their dynamic model suffers from the curse of
dimensionality. A dynamic policy is also more complex as it requires periodic
(or continuous) monitoring in order to decide in real time whether to open
or close counters. Administratively, implementing such an open-and-close
policy may be difficult and cumbersome resulting in higher overhead costs.
Moreover, the counter clerks will have to alternate between periods of intense
activity and of idleness. This is likely to have a demoralizing effect on them.
Due to these and other administrative reasons, practitioners always prefer
simple static policies (which advocate a fixed number of counters to be kept
open throughout the operation time) over dynamic policies. For example,
in the case of the airline overbooking problem, Barnhart et al. [3] highlight
that in the airline industry ‘few airlines have implemented such complex DP
formulations because of the difficulties of providing adequate and accurate
inputs.’ Hence, in this research, we propose to investigate the static policy for
the allocation of check-in counters to airlines.

The layout of the paper is as follows. In the next section, we provide a review
of the literature. We then explain in some detail the rationale for this work
in Section 3. In doing so, we also describe the exclusive use check-in counter
queue model together with the assumptions and notation. In Section 4, we
present our models. We first propose an unconstrained static optimization
problem in Section 4.1. The objective function for this model comprises of
the waiting cost, the service provisioning cost and the delay penalty cost. Of
these costs, the delay penalty cost is very difficult to estimate. Instead one can
use a probabilistic service level constraint. This static constrained optimization
model is then presented in Section 4.2. An important use of this model is that
it can also be employed to estimate the implied delay penalty cost. This aspect
of the model is demonstrated in Section 4.3. For all these models, a closed
form solution cannot be derived as the functions involved are transcendental
in nature. So, we illustrate the usefulness of these models through numerical
examples. We then compare the performance of the static model with that of
the periodic review dynamic model of Parlar and Sharafali [16] in Section 5.
Managerial insights are provided in Section 6. Finally, in Section 7, we provide
some concluding remarks together with limitations and directions for future
research.
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2 Literature review

Parlar and Sharafali [16] highlight that simulation is the predominant tool
used in the study of the airport check-in counter allocation problem. A few
studies use pure mathematical models, while some other studies have used a
combination of a mathematical model and simulation. We provide below an
up-to-date review of the extant literature.

2.1 Pure mathematical programming approaches

Lee and Longton [13] appears to be the pioneering work that looked into
modeling the airport check-in process. They employed queueing analysis for
the problem and identified that the entire check-in operation is ‘equivalent to
combinations of, at most, four queueing processes of different types.’ Later,
in his book [12], Lee provides an account of this interesting experience and
laments the futility of using M/M/s queues to model the check-in process.
Bruno and Genovese [5], Yan et al. [22, 23] pose this problem in a deterministic
setting and model it as a binary integer program. The works are similar in
spirit but differ in the objective function used. While Yan et al. [22, 23] aim
to minimize the passengers’ total walking distance, Bruno and Genovese [5]
minimize the sum of the cost of providing service and the cost for passengers’
waiting time. Using the demand placed by airlines for the check-in counters
as input, Tang [20] proposes a network model to determine the minimum
number of counters per day for common use check-in systems. Hsu et al.
[10] consider four varieties of check-in facilities an airline can offer to the
passengers, namely, (1) counter check-in, (2) self-service check-in, (3) online
check-in and (4) barcode check-in. They then develop a model to allocate
passengers dynamically to these facilities subject to maintaining a minimum
waiting time for the passengers together with a constraint on the utilization of
these facilities.

The system considered in all of the above works is common use check-in
counter system. As stated above, Parlar and Sharafali [16] is the first work
that addressed this issue for an exclusive use check-in counter system. In such
a system, the arrivals occur at random from the finite number of passengers
booked on that particular flight. As the arrivals will terminate once the last
passenger arrives for check-in (or at time T the system close out time), the
arrival process cannot be modeled as the traditional renewal process. Parlar
and Sharafali [16] model the arrivals as events from a death process (see Bhat
[4, p. 208]). Assuming the death rate to be non-stationary, they use stochastic
dynamic programming to dynamically allocate counters to an airline. The
objective function in their model is the sum of the cost of providing service, the
cost for making customers wait and the cost of unfinished check-in at time T.

A related problem to the check-in counter allocation problem is the issue
of workforce scheduling. A couple of papers in this direction are Cao et al. [6]
and Stolletz [18]. For the Ottawa airport in Canada, Cao et al. [6] identify that
the (passenger) agents’ working schedule is the critical factor that impacted
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check-in system performance. The authors develop a linear programming
model and a heuristic to determine alternative working schedules for the
agents that minimized the total agent-hours subject to meeting the varying pas-
senger load. Assuming non-stationary demand, Stolletz [18] uses a hierarchical
workforce planning model. Incorporating employee preferences with flexible
contracts, the author develops a binary linear program for the problem and
illustrates the model through numerical studies.

2.2 Pure simulation approaches

As already mentioned, simulation is the predominant approach used by many
researchers in this area. So, it is impossible to include every work in this
short review. Hence, we mention below some noteworthy works. The work
of Chun and Mak [9] stands out in the use of simulation for check-in counter
management. Assuming a Poisson arrival stream at the counters and beta-
distributed service times, they develop a comprehensive simulation-based
decision support system for the Hong Kong International Airport to determine
the number of counters to allocate to each departing flight. Joustra and van
Dijk [11] develop a simulation toolbox to analyze: (1) common vs. exclusive use
system; (2) capacity planning; (3) operational planning; and (4) personnel plan-
ning. They apply their tool box to analyze the system in Amsterdam Schiphol
airport. Takakuwa and Oyama [19] simulate the passenger flow through the
entire airport. As already pointed out, their analysis reveals that for any
passenger, check-in accounts for 80 % of the total waiting time in the airport.
With the objective to improve efficiency of check-in operations, Appelt et al.
[2] used simulation and scenario analysis for the check-in procedure at the
Buffalo Niagara International Airport.

2.3 Mixed approaches

In almost all the pure simulation-based works in the literature, the objective
has been to compare alternatives rather than optimization. To our knowl-
edge the work of van Dijk and van der Sluis [21] appears to be alone in
combining simulation with integer programming to determine the optimal
check-in service. Their work is also different in the aspect of modeling the
arrival process. In all the simulation based papers, the focus is on common-
use check-in systems. Such systems have continuous operation throughout the
day (as they serve many departing flights through the day). So, the underlying
processes do not terminate. In contrast, an exclusive use system is dedicated
to a single flight. This system closes operation once all the booked passengers
arrive and are checked in or at time T, whichever occurs earlier. Consequently,
the simulation model for such a system (called ‘terminating simulation’) should
also terminate once the above terminating event occurs. Van Dijk and van
der Sluis [21] were the first to observe this phenomenon. So, they propose
terminating simulation to analyze dedicated use check-in counter operations.
As mentioned above, this phenomenon of the terminating nature was modeled
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by Parlar and Sharafali [16] through the use of a death-process based arrival
process.

3 The rationale

In this section, we provide the rationale for this work. The prime reason for
embarking on this research is that the only other analytical model in the
literature fails to solve problems of realistic size. In order to explain this
rationale, we introduce first the exclusive use check-in counter system together
with some notation.

An exclusive-use check-in counter system (see Parlar and Sharafali [16]) is
dedicated to a single flight. The service provider knows a priori the number of
confirmed passengers, N, who will check in for that particular flight. Thus, the
calling population size for this queueing system is finite. There is an extensive
literature on finite population queueing models. In these models, any served
customer usually goes back to the population and will return again to the queue
after some random time. In such systems, the effective arrival rate will be
the same at any time. But, in the check-in queue system a served customer
leaves the system and will never return. So, the arrival rate to the check-in
queue effectively decreases as the time to departure of the flight approaches.
Consequently, this special finite population queue will never reach the steady
state.

Parlar and Sharafali [16] assume that arrivals form a ‘death process’ (see
Bhat [4, p. 208]) from the population of N travelers booked on the flight. An
arrival at a check-in counter is a removal (or death) of that individual from this
population. The random lifetime of a member in this population is assumed to
follow an exponential distribution with mean λ−1. Hence, for this process, if
m passengers have already arrived by time t, the arrival rate at time t equals
λ(N − m).

The arriving passengers form a single line before the counters. The passen-
ger at the head of the queue gets served by the next available counter. The
authors assume that the instantaneous service rate at a counter is a function
of both the number of passengers present and the number of counters open.
This implies that if there were m arrivals and n service completions during
[0, t] resulting in m − n passengers in the system (including the passengers
undergoing service at the counters) at time t, then the instantaneous service
rate at any counter is c(m − n)μ, i.e., the probability that a departure occurs in
(t, t + �t) is c(m − n)μ�t + o(�t).

Further, they assume a periodic-review model. In such a model, the service
provider reviews the congestion in the system at equally spaced review epochs
in order to decide whether additional counters need to be opened. The
objective in their model is to minimize the total cost of operating this system
over the period [0, T]. With A(t) as the number of passengers that have arrived
by time t, and S(t) as the number of passengers that have been served by time
t, the authors use the stochastic process {(A(t), S(t)) : t ≥ 0} for the analysis.
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This process is clearly a Markov process due to the fact that the underlying
distributions are exponential.

The highlight of that paper is the rather involved approach to obtain closed-
form expressions for the transient transition probability functions,

Pc
m,n(i, j, t) = Pr{(A(t), S(t)) = (i, j) | (A(0), S(0)) = (m, n)} (1)

of finding the system in state (i, j) at time t given that at time 0, the system
was in state (m, n). As the state space could be very large for large N, their
model suffers from the curse of dimensionality. A little reflection reveals
that their periodic-review stochastic dynamic programming model requires the
evaluation of Pc

m,n(i, j, t) for all possible combinations of transitions. All these
values have to be kept in RAM for the computation of the optimal dynamic
policy. For an example problem with N = 10 passengers, the authors had to
evaluate only 1,716 of these functions. But when N is set to 200 passengers,
there will be 138,743,801 functions to account for. This requirement makes it
extremely difficult to solve their model.

In order to understand this issue better, we ran some experiments of their
periodic-review stochastic dynamic programming model. Table 1 presents
the time taken to solve this model for various values of N on a Lenovo
X200 PC running at 1.86 GHz clock speed with 3 GB of RAM. As the case
corresponding to N = 60 itself took about 1,070.90 min (17.8 h) to finish, we
did not consider values of N higher than 60.

To estimate the time to solve problems with N > 60, we used nonlinear
regression to fit a power curve of the form τ(N) = aNb to the data in Table 1.
This gave us the best fit curve τ(N) = 7.759(10−9)N6.2797 as shown in Fig. 1
with a coefficient of determination of r2 = 0.99.

The above results indicate that for a realistic passenger size of, say, N = 250,
we would need τ(250) = 6163.57 days (16.9 years) to optimally solve their
model. This fact makes their model not suitable for implementation. So, for
large N, alternative methods are required to find the optimal number of
counters to allocate to flights. Obviously, one option before us is to use an
approximate dynamic programming method (see Powell [17]) to solve the
above stochastic dynamic programming model. The other option is to search
for alternative policies that are simple and easily implementable. In this paper,
we have chosen the second option because practitioners always prefer a simple
to implement policy over a dynamic policy. The preference for such a policy

Table 1 Time taken to solve
the dynamic programming
model for various values of
N, the number of passengers

N τ , Time (in mins.)

10 0.16
20 1.94
30 14.52
40 86.53
50 399.96
60 1,070.90
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Fig. 1 Best fit curve
τ(N) = 7.759(10−9)N6.2797

for the data on time taken to
solve the dynamic
programming model

would be even higher, if its performance were also as good as a policy based
on approximate dynamic programming.

4 Static models for allocating check-in counters

We now introduce our static model for the optimal allocation of check-in
counters to a single flight. The salient features together with some notation
have already been explained in Section 3. The problem description is the
same as in Parlar and Sharafali [16] except for the periodic review approach
considered in that paper. We drop this assumption in our paper and replace it
with the following:

• The airport service provider in our model is interested in the optimal static
policy. In other words, for a particular flight, we have to find c, the optimal
number of counters, to keep open throughout the period T.

The total cost function is comprised of, (1) the cost of operating the
counters; (2) the cost for making passengers to wait; and (3) the penalty cost
resulting from delayed passengers who have not yet been cleared at the closing
time T (if the latter cost can be estimated with some degree of accuracy).

Before proceeding, for ease of reference, we give below in Table 2 the
notation we use in this paper. The symbols are listed in alphabetical order.

The underlying stochastic process for the model in this paper is also
{(A(t), S(t)) : t ≥ 0}. This is a Markov process as already highlighted above.
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Table 2 List of notation in alphabetical order

Symbol Description

A(t) = m Number of passengers that have arrived by time t equals m.
c Number of check-in counters that are open (decision variable).
γ0 Amortized fixed cost of the technology usage in managing congestion [$].
γ1 The cost of making a passenger wait per unit time [$/passenger-time].
γ2 The cost of operating a counter per unit time [$/counter-time].
γ3 The penalty cost for each arrived passenger not cleared check-in

by time T [$/passenger].
γ4 Congestion monitoring and supervision cost [$/time].
h Duration of supervision at every review epoch [time/review epoch].
K The number of review epochs in the periodic review stochastic dynamic

programming model.
λ−1 The mean ‘lifetime’ of a passenger [time/passenger].
μ The base service rate [passenger/time].
N Number of passengers booked for the flight.
Pc

m,n(i, j, t) Transient probability of finding the system in state (A(t), S(t)) = (i, j)
at time t given that the system was in state (m, n) at time 0
and c counters are open.

S(t) = n Number of passengers that have been served by time t equals n.
T Duration of time the check-in counter system will be open.
�x�; �x� Floor of x; Ceiling of x.
Y(t) = A(t) − S(t) Number of passengers in the system at time t.

Parlar and Sharafali [16] have shown that the transient transition probability
functions defined in Eq. 1 are,

Pc
m,n(i, j, t) =

(
N − m
i − m

)
e−(N−i)λt

max(i−m,m−n)∑
r=0

(
i − m

r

)
[α(c, t)]i−m−r[β(c, t)]r

×
(

m − n
j − n − r

)
e−(m− j+r)cμt(1 − e−cμt) j−n−r, t ≥ 0, (2)

for c ≥ 1, m ≤ i ≤ N, n ≤ j ≤ i, where,

α(c, t) ≡ λ

λ − cμ
(e−cμt − e−λt), (3)

β(c, t) ≡ (1 − e−λt) − α(c, t). (4)

The analysis in this paper depends on the convexity or otherwise of the
functions α(c, t) and β(c, t). These are first presented below as a lemma. We
note that c, a decision variable denoting the number of counters to keep open,
is naturally a discrete quantity. For analytical ease, we treat it as continuous
and use calculus methods to prove the convexity of the above functions.

Lemma 1 For a f ixed value of t, the function α(c, t) is decreasing and convex in
the decision variable c, and the function β(c, t) is increasing and concave in c.

Proof Please refer to Appendix A. 	
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Remark 1 Naturally, the above results apply only when λ �= cμ. In a practical
problem where the parameters λ and μ are estimated from empirical data,
it would be highly unlikely to encounter a case with λ = cμ since λ and μ

would normally assume non-integer values. Nevertheless, this special case can
also be examined since we can show that limλ→cμ α(c, t) = cμte−cμt. In this
case, differentiating α(c, t), we find α′(c, t) = μte−cμt(1 − cμt) and α′′(c, t) =
2μ2t2e−cμt

(−1 + 1
2 cμt

)
, implying that α is decreasing if cμt > 1 and convex

if cμt > 2.

4.1 The unconstrained optimization problem

Let c be the number of counters allocated to a particular flight under consider-
ation. Only these c counters will be open throughout the period [0, T]. Let N
be the number of passengers with confirmed booking on this flight. Of these,
some passengers might have checked in online. Let n be the number of such
passengers, i.e., S(0) = n. Usually, at t = 0 some passengers might have already
arrived and be waiting for the check-in counters to open. So, let A(0) = m
be the number of passengers who have arrived by time t = 0. Note that A(0)

includes those who have checked in online. Thus, the system actually opens
with m − n passengers waiting to check-in and N − m passengers still to arrive.

Our objective is to find the optimal c so that the total cost of providing this
check-in service is the least. To this end, we first derive explicit expressions for
the cost terms.

4.1.1 The cost of waiting

If Y(t) is the number in the system at time t, then Y(t) = A(t) − S(t). Now, the
total waiting time of all the passengers is given by

∫ T
0 Y(t) dt. So, W(c), the

total expected waiting time of all the passengers in [0, T] is,

W(c) = E
[∫ T

0
Y(t) dt | A(0) = m, S(0) = n

]
.

Hence, the total waiting cost of all the passengers in [0, T] is γ1W(c). We now
have the following Lemma.

Lemma 2 The total expected waiting time is

W(c) =
[
λ(N − m)

λ − cμ
+ (m − n)

]
(1 − e−cμT)

cμ
+ (N − m)

λ − cμ
(e−λT − 1).

Also, W(c) is decreasing and convex in c.

Proof Please refer to Appendix B. 	
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4.1.2 The cost of counter operation

As c counters are kept open throughout the interval [0, T], the total number
of hours of counter operation is K(c) = cT. Thus, the counter operation cost
in [0, T] is γ2 K(c). Since K(c) is a linear function of c, it is also convex in c.

4.1.3 The cost of unf inished check-in at time T

It is expected that the system must clear check-in of all the arrived passengers
by time T. If, due to certain reasons, some passengers are still waiting to clear
check-in at T, then it might delay the take-off of that flight. Delaying the
take-off of any flight will result in additional cost to the service provider. To
calculate the cost of such unfinished work at time T, we use Eq. 11 to find D(c),
the expected number of passengers still to check-in at time T as,

D(c) = E[Y(T) | A(0) = m, S(0) = n] = (N − m)α(c, T) + (m − n)e−cμT .

Hence, the expected cost of unfinished check-in at time T is γ3 D(c). Using the
same arguments as in Lemma 2, we again infer that D(c) is also a decreasing
convex function of c.

4.1.4 The total cost function

Now, combining all the three cost components, we obtain the total expected
cost G(c) during [0, T] as G(c) = γ1W(c) + γ2 K(c) + γ3 D(c). The uncon-
strained problem (UCP) can now be formulated as,

UCP: min
c∈C

G(c) = γ1W(c) + γ2 K(c) + γ3 D(c) (5)

where C = {c : cmin ≤ c ≤ cmax} is the set of feasible values for the decision
variable c. We call this version of the model the “unconstrained problem” since
there are no explicit constraints on the decision variable other than the natural
limits defined by C.

Theorem 1 The total expected cost G(c) is convex in the decision variable c.

Proof The proof is trivial since W(c), K(c) and D(c) are all convex func-
tions of c. 	

Remark 2 We highlight that even if K(c) were a nonlinear convex function,
the general result of Theorem 1 would still be true.

Theorem 2 Let c0 be the solution of the equation

−[γ1W ′(c) + γ3 D′(c)] = γ2T (6)

If c0 ∈ C, then the optimal number of counters to allocate is given by c∗ = ⌊
c0

⌋
or

⌈
c0

⌉
; otherwise c∗ = cmin or cmax.

Proof Please refer to Appendix C. 	
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Example 1 Consider a flight with N = 100 passengers with confirmed book-
ing. With the cost parameters as (γ1, γ2, γ3) = (40, 60, 80), the service provider
is willing to allocate a maximum of 5 counters to this flight, i.e., C =
[cmin, cmax] = [1, 5]. Let the system operating time be T = 1 hour and the mean
‘lifetime’ of an arriving passenger be λ−1 = (9.5)−1. The base service rate is
μ = 6.3. Thus, for all integer values of c, we have λ �= cμ. We also assume that
at t = 0, seven passengers have already arrived and two have been cleared, i.e.,
m = 7 and n = 2.

With these parameter values, it is now easy to solve unconstrained optimiza-
tion problem minc∈C G(c) to determine the optimal number of counters. The
first order condition G′(c) = 0 yields c0 = 3.22 ∈ C. Since this value is not an
integer, we examine the cost function at the two neighboring integer values of
3 and 4. We find G(3) = 387.94, and G(4) = 395.87. Thus, it is optimal to open
c∗ = 3 counters resulting in a minimum expected total cost of G(c∗) = 387.94.

4.2 The constrained optimization problem

In the unconstrained optimization problem formulated and solved above, cost
is the primary concern. With the focus on cost alone, it is possible that the
system might end up with more passengers not cleared through the system by
time T. This in turn would create a chain reaction in delaying the take off
of the plane or making the plane take off on time without some confirmed
passengers. This event may happen if γ3, the penalty cost for not clearing an
arrived passenger by time T, is significantly underestimated. On the other
hand, a higher value of γ3 would imply more counters than necessary, thus
resulting in higher cost. One way to deal with this dilemma is to consider a
probabilistic service level constraint. This constraint will ensure that by closing
time T the probability of any passenger being delayed is no more than a pre-
specified level, say, θ = 0.01.

This brings to attention the important issue of the estimation of the cost
coefficients γ1, γ2 and γ3. In reality, the coefficients γ1 and γ2 are somewhat
easier to estimate, but it is very difficult to find estimates for γ3. For example,
as indicated in [16], European Organization for the Safety of Air Navigation
(EOSAN)’s estimates for γ1 range from ¤38 to ¤49 per hour. Similarly,
Federal Aviation Administration estimates for personal travel is $23.30, for
business travel $40.10 and for all purposes $28.60 per hour (see, [16]). In our
examples, we use γ1 = $40, which is very close to EOSAN’s low-range and to
the estimate recommended by Federal Aviation Administration for business
class passengers. Aéroport International Strasbourg (as cited in [16]) provides
estimates for γ2 that range from ¤25 per hour (for a maintenance agent) to
¤70 per hour (for a project manager). We use an estimate of γ2 = $60 in our
numerical examples.

Unfortunately, it is nearly impossible to estimate γ3 to some degree of
accuracy. A similar situation exists in the inventory control literature where
the shortage penalty cost is difficult to estimate. The inventory control liter-
ature tackles this issue through the use of service level constraints. It is well
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established there that service level constraints help in estimating the imputed
shortage cost (see Chopra and Meindl [8, pp. 350–351], and Nahmias [15,
Ch. 5]). For example, Aardal et al. [1] consider a continuous review (r, Q)

inventory system subject to a service level constraint and show how the shadow
price of this constraint can be interpreted as the shortage cost corresponding
to the service level guaranteed. A similar study was carried out by Çetinkaya
and Parlar [7] for the economic order quantity model with planned backorders.
They demonstrate how one can estimate the shortage cost implicitly through
the use of service level constraints. They also show how more meaningful
managerial insights can be gained through these approaches.

Motivated by these considerations, in this section we introduce a probabilis-
tic service level constraint of the form Pr{Y(T) ≥ 1 | Y(0) = m − n} ≤ θ . Here,
θ is the parameter chosen by the management. This constraint stipulates that
the chances of finding more than one passenger with unfinished check-in at
time T should not exceed θ . We note that, in practice, the management would
be more comfortable to specify a θ rather than estimate γ3.

Now, using Eq. 2, we have

π(c) ≡ Pr {No unfinished check-in at time T | Y(0) = m − n}
= Pc

m,n(N, N, T).

That is, π(c) is the probability that at time t = T all N passengers will be
cleared given that at t = 0 the system opened with c counters and m − n
passengers. We can now derive that

π(c) = (1 − e−cμT)m−n[β(c, T)]N−m.

One would intuitively expect π(c) to be an increasing function of c. This is
indeed the case as shown in the next proposition.

Proposition 1 The function π(c) is increasing in the number of open counters c.

Proof The proof follows from the fact that both 1 − e−cμT and β(c, T) are
increasing and positive functions of c. 	


Since 1 − π(c) = Pr{Y(T) ≥ 1 | Y(0) = m − n}, the constraint 1 − π(c) ≤ θ

requires that the chances of ending up with one or more waiting passengers at
time T is very small, say θ , chosen by the management. Thus, the constrained
optimization problem (CP) becomes,

CP: min
c∈C

F(c) = γ1W(c) + γ2 K(c) (7)

s.t. π(c) ≥ 1 − θ . (8)

We illustrate the solution of the constrained problem with the following
example.
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Example 2 Consider again the same problem as in Example 1, but now assume
that the unit cost of delayed passengers is not specified. Instead the manage-
ment sets θ = 0.01, i.e., it aspires to have a 0.99 probability of clearing all the
passengers by the closing time T. We retain the values of the other parameters
as in Example 1. First, solving the problem 7 without the constraint 8, the
optimal value of c is again obtained as c = 3 but with a slightly lower cost
F(3) = 387.37. However, at this value we find π(3) = 0.98 which does not
satisfy the management’s requirement of π(c) ≥ 0.99.

Solving now the constrained problem CP in Eqs. 7 and 8, we obtain c∗ = 4
at a higher cost of F(4) = 393.53 with π(4) = 0.99 .

4.3 Calculation of the implied delay cost

In the last section, we developed a model with a service level constraint in lieu
of γ3. We also indicated that through this service level constraint we should be
able to calculate the implied penalty cost. In this section, we provide a simple
method for calculating this implied value of γ3.

Let θ = θ̄ be the specified service level parameter. Let c∗(θ̄) be the optimal
solution to the constrained nonlinear programming problem CP given by
Eqs. 7 and 8. It is possible that c∗(θ̄) may be different from c∗ found in
Section 4.1 for the original unconstrained problem UCP in Eq. 5. The natural
question that now arises is, for what value(s) of γ3, c∗ = c∗(θ̄)? To answer this
question, we rename the expected cost function of the unconstrained problem
(UCP) as G(c, γ3), where γ3 is now unknown. As before, using calculus, the op-
timal c∗ is the solution to the first order condition γ1W ′(c) + γ2T + γ3 D′(c) =
0. If we expect c∗ = c∗(θ̄ ), then γ1W ′(c∗(θ̄)) + γ2T + γ3 D′(c∗(θ̄ )) = 0. Solving
for γ3, we find the imputed penalty cost to be

γ̂3 = −γ2T + γ1W ′(c∗(θ̄))

D′(c∗(θ̄))
. (9)

This value is actually the upper bound to the implied penalty cost. However,
we recall that c∗ is one or both of the integer neighbors of the non-integer
optimal solution c0 to UCP 5. So, there may be other values of γ̂3 which may
also result in the same optimal solution c∗(θ̄ ) that is found in CP in Eqs. 7 and 8.
Hence, we must also compute the lower bound for the implied cost γ̂3. This
is obtained by solving either (1) G(c∗(θ̄ )) = G(c∗(θ̄ ) − 1), or (2) G(c∗(θ̄)) =
G(c∗(θ̄ ) + 1), depending on which side of c0 the optimal integer solution is
located. We illustrate this approach with the following example.

Example 3 Let θ = 0.01, that is, the management wishes to have a 0.99 prob-
ability of clearing all the passengers by the time the system closes. Using
the same parameters as in Examples 1 and 2, we will now estimate γ̂3. We
recall that the optimal solution to the constrained problem CP in Eqs. 7
and 8 is c∗(θ̄) = 4 counters. So, the first order condition with unknown γ̂3 is
40W ′(4) + 60 · 1 + γ̂3 D′(4) = 0, i.e., γ̂3 = 12494.19. This is the upper bound of
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the implied delay cost. To calculate the lower bound, we solve G(3) = G(4)

to find γ̂3 = 2891.04. Thus, for the given service level parameter θ = 0.01, the
implied delay cost γ3 could be any value in the interval [2891.04, 12494.19]. The
implication is that, for all γ3 ∈ [2891.04, 12494.19], the optimal integer solution
to the original unconstrained problem UCP 5 is c∗ = 4 counters.

If this range for the implied delay cost is deemed high or unrealistic by the
management then the management may decide to open only three counters
and be satisfied with a 0.98 probability of clearing all passengers.

5 Dynamic vs. static model—a comparison

Having established an-easy-to-use static model in the previous sections, we
now embark on comparing its performance with that of the dynamic model
that was proposed in Parlar and Sharafali [16]. We use numerical experiments
to study this comparison.

As λ, the lifetime parameter of the passengers, is constant over the interval
[0, T] in the static model, we assume the same for the dynamic model too.
Further, let (T, K | cmin, cmax) = (1, 3 | 1, 5), and (N | λ, μ | γ1, γ2, γ3) = (10 |
2.5, 5 | 40, 60, 100) be the base values for the numerical experiments with an
initially empty system, i.e., A(0) = S(0) = 0. That is, a maximum of cmax = 5
counters are available for the duration of T = 1 hour before the scheduled
departure of the flight. At least cmin = 1 counter will be open throughout T.

For the dynamic model, the number of review epochs is K = 3. This means
that every 20 min a review will be made to decide whether to open an
additional counter or not. Thus, for the periodic review dynamic programming
model the decision epochs are t1 = 0 h, t2 = 1

3 h and t3 = 2
3 h. However, for the

static model, the decision is made at t1 = 0 only.
We now recall, for easy reference, the periodic review stochastic dynamic

programming model of Parlar and Sharafali [16]. The underlying stochastic
process is {(A(t), S(t)), t ≥ 0}. At time tk the state of the system is (m, n). For
the optimal policy, let Vk(m, n) be the minimum expected cost-to-go from time
tk to the final time T. At time tk, after observing the state (m, n), a decision is
made to have ck ≡ ck(m, n) counters open. This gives, for k = 1, . . . , K,

Vk(m, n) = min
cmin≤ck≤cmax

ck(N,N)=0, Vk(N,N)=0

⎡
⎣gk(ck) +

N∑
i=m

i∑
j=n

Pc
m,n(i, j, tk+1 − tk)Vk+1(i, j)

⎤
⎦ .

(10)

In the above, gk(ck)=γ1
∫ tk+1

tk

[
(N−mk)α(ck, s)+(mk−nk)e−ckμs

]
ds + γ2(tk+1−

tk)ck is the cost for the period (tk, tk+1), and the transition probability,
Pc

m,n(i, j, tk+1 − tk), is calculated from Eq. 2.
Note that if all the passengers arrive before tk and all of them get checked

in by tk, then the system will be closed at tk. Consequently, ck(N, N) = 0 and
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Vk(N, N) = 0. Further, as per our assumption on the unfinished work at T, the
boundary condition should be VK+1(m , n ) = γ3(m − n).

We ran numerical experiments by varying the parameter values around
the base values mentioned above. Table 3 summarizes the results of these
experiments. The base values are typeset in bold font. Hence V1(0, 0) is the
optimal expected cost for the dynamic policy and G(c∗) is optimal expected
cost for the static policy. The percentage increase in costs if the static policy is
implemented is given by G(c∗)/V1(0, 0) − 1.

As expected, the total cost for the static policy is greater than that for the
periodic review dynamic policy. We also note that the total costs increase with
N. An interesting observation is that the percentage increases for N = 30 are
significantly less than those for N = 10. For N = 30, the percentage increase in
expected costs when the static policy is used varies between 14.62 and 20.35 %.
At first sight, this may appear to be discouraging, but as we noted in Section 1,
the periodic review dynamic policy requires extra efforts for book-keeping

Table 3 Comparison of the optimal cost V1(0, 0) of the dynamic policy in Parlar and Sharafali [16]
with the optimal cost G(c∗) of the static policy

N λ μ γ1 γ2 γ3 V1(0, 0) G(c∗) G(c∗)
V1(0, 0)

− 1 [Static � Dynamic] iff aM >

(%)

10 1.5 5 40 60 100 155.97 188.87 21.09 32.90
2.5 150.23 182.97 21.79 32.74
3.5 140.46 174.38 24.15 33.92

10 2.5 5 20 60 100 129.59 165.16 27.45 35.57
40 150.23 182.97 21.79 32.74
60 170.46 200.78 17.79 30.32

10 2.5 5 40 40 100 121.91 142.97 17.28 21.06
60 150.23 182.97 21.79 32.74
80 176.61 222.75 26.13 46.14

10 2.5 5 40 60 50 134.00 165.08 23.19 31.08
100 150.23 182.97 21.79 32.74
150 162.61 196.64 20.93 34.03

30 1.5 5 40 60 100 268.89 314.54 16.98 45.65
2.5 259.49 301.37 16.14 41.88
3.5 241.74 283.14 17.12 41.39

30 2.5 5 20 60 100 212.28 255.47 20.35 43.19
40 259.49 301.37 16.14 41.88
60 294.40 337.43 14.62 43.03

30 2.5 5 40 40 100 210.41 241.37 14.72 30.96
60 259.49 301.37 16.14 41.88
80 303.68 348.91 14.89 45.23

30 2.5 5 40 60 50 231.77 267.89 15.59 36.12
100 259.49 301.37 16.14 41.88
150 280.80 326.00 16.09 45.19

Here, the parameter values are varied around their base values (in bold) of (N | λ,μ | γ1, γ2, γ3) =
(10 | 2.5, 5 | 40, 60, 100). The last column indicates that if the monitoring cost aM exceeds the
numbers given, then the static policy dominates (�) the dynamic policy, i.e., the static policy has a
lower cost
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and for monitoring congestion. In addition to technology requirements for
monitoring, this will entail using a supervisor who will have to visit the counters
at every review epoch, evaluate the congestion level at the counters and make
a decision to open/close additional counters. Thus, for the dynamic policy,
additional costs for manpower and technology usage need to be also included.

Let $γ0 be the amortized fixed cost per flight for technology usage (for
example, Hamilton Airport in New Zealand1 uses a required IRR of 9.5 % to
recover the counter capital charge of $410K over 15 years). Let h hours be the
supervision time required for review and decision making by the supervisor.
Hence, the additional cost for the periodic review dynamic policy can be
modeled as aM = γ0 + Khγ4, where γ4 is the supervision cost per unit time.
We assume γ4 > γ2. Note that aM is independent of the decision variable. Thus,
for the dynamic policy the actual total cost is aM + V1(0, 0). It then follows that
the static policy proposed in this paper will be preferable to (i.e., dominate) the
dynamic policy iff G(c∗) < aM + V1(0, 0). (This is indicated in the last column
of Table 3 by the label “[Static � Dynamic] iff aM >”.) Since it is a simple
matter of calculating the monitoring cost aM, this comparison can be made
relatively easily for each flight and the preferable policy (static or dynamic)
can be determined when N is not too large, i.e., when N is less than 50 (as we
have done in Table 3). Naturally, when N > 50, as discussed above, it would
be impossible to evaluate the dynamic policy. To summarize, the static policy
should be chosen: (1) when N ≤ 50 and G(c∗) < aM + V1(0, 0); or, (2) when
N > 50.

6 Managerial insights

The constant policy model we proposed in this paper is simple and easy to
implement. Thus, managers can confidently make better informed decisions
with regard to the allocation of counters to flights. The data required are
easy to collect. The model is also flexible in the sense that it can be used
for other purposes. For example, the manager can evaluate the performance
of the optimal static allocation policy from the model against any standards
stipulated by the airport authority. A key benchmark set by any airport
authority is that, on average, the number in the system cannot exceed a given
value, say η. This situation can easily be handled by introducing a constraint
maxt∈[0,T] E[Y(t) | A(0) = m, S(0) = n] ≤ η, where E[Y(t) | A(0) = m, S(0) =
n] is given by Eq. 11 in Appendix B.

Although the model is confined to exclusive-use counter operations, it has
applicability to common-use counter operations as well. Common use counters
are shared by several flights that are scheduled to depart during a specific

1Hamilton International Airport—Landing charges pricing methodology, March 2008. Down-
loaded from www.hamiltonairport.co.nz/file/downloads/pricing_11mar08.pdf on March 29, 2011.

http://www.hamiltonairport.co.nz/f/ile/downloads/pricing_11mar08.pdf
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interval of time. If one imagines this combined group of planes as a single
plane, one can easily realize the applicability of our model to this situation. By
exploiting this applicability, the service provider or the airlines can actually
compare the results of this common use counters model to exclusive use
models. They can then decide the appropriate system to use. A by-product of
this work is the usefulness of our model in workforce planning. This is because
the number of counters used determines the number of personnel required to
manage the congestion at the counters.

The ground handlers in airports not only provide check-in service to airlines
but also offer baggage, gate boarding, cargo and catering services. So, any
delay at the check-in facility will have a cascading effect on the subsequent
operations. We highlight that the model’s output can help the service provider
align her own other internal operations accordingly while also satisfying the ex-
ternal stakeholder requirements. Further, this simple-to-use model can also be
used as a planning tool to make decisions on capacity and other infrastructure
expansion.

7 Conclusion

In this paper we have proposed a static policy to manage the exclusive use air-
port check-in counter allocation problem. The model’s objective is to minimize
the total cost of operation of the counters while at the same time satisfying
the requirements of the airport authority and airlines. The approach is simple
and easy to implement unlike the dynamic programming-based methods. The
model can easily accommodate any realistically sized problem with several
hundred passengers. We have justified this by comparing the performances
of the static and dynamic policies through numerical experiments.

One of the limitations of the model is the assumption that the system serves
only one class of passengers. We argue that congestion at the counters is
mainly due to the economy class passengers. Business and first class passengers
enjoy priority service with dedicated counters. So, our model will be more
than sufficient in that respect. One other feature not incorporated in the
model is group arrivals. Again large group bookings are usually handled
independently of the other ordinary passengers. It is our contention that
groups like families can be accommodated easily in the model by using some
approximations. The other limitation is the assumption of constant death rate
λ for the arrival process. It is likely that λ may vary with time. The tacit
assumption in our static model is that λ itself is the rate averaged over [0, T].
Such approximation is common in planning models, as in, e.g., the economic
order quantity model where the deterministic annual demand is taken as the
average of past demands.

Further research is possible in two directions. The current model assumes
the operation time T to be given. The first extension could be to treat this
also as a decision variable and determine the optimal duration for counter
operation. In the current work we assume a single queue multiple counter
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system. One can relax this assumption and consider parallel queues. Although
there is a loss of fairness in a parallel queuing system, we can cite many
airports around the world where parallel queues are in use. We have also
established that the static policy should be chosen over the dynamic policy
when (1) the passenger size is below 50 and the cost of the static policy G(c∗)
is less than aM + V1(0, 0), the total effective cost of the dynamic policy; or
(2) the passenger size is above 50. So, for large planes, if the dynamic policy
is better then we need to find faster algorithms to solve the dynamic model.
We mention that research is underway by the authors for finding alternative
stochastic dynamic programming methods to address the issue of determining
the optimal solution for problems with large passenger sizes.
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Appendix

A Proof of Lemma 1

First, we define α′(c, t) ≡ dα(c, t)/dc, and note from Parlar and Sharafali [16,
Lemma 2] that

α′(c, t) = λμ

(λ − cμ)2 {e−cμt[1 + t(−λ + cμ)] − e−λt} < 0.

Thus, α(c, t) is decreasing in c. Next, we similarly define α′′(c, t) ≡ d2α(c, t)/
dc2, and find

α′′(c, t) = − λμ2

(−λ + cμ)3

{
2e−cμt

[
1 + t(−λ + cμ) + 1

2
t2(−λ + cμ)2

]
− 2e−λt

}

= 2λμ2e−cμt

(−λ + cμ)3

{
e(−λ+cμ)t −

[
1 + t(−λ + cμ) + 1

2
t2(−λ + cμ)2

]}
.

When −λ + cμ > 0, it can be shown, using the properties of the exponential
function and its Taylor expansion around zero that e(−λ+cμ)t − [1 + t(−λ+
cμ) + 1

2 t2(−λ + cμ)2
]

> 0 and so in the above α′′(c, t) > 0. By the same argu-
ment, if −λ + cμ < 0, then e(−λ+cμ)t − [

1 + t(−λ + cμ) + 1
2 t2(−λ + cμ)2

]
< 0

implying again that α′′(c, t) > 0, thus proving the first part of the lemma.
Moreover, since β ′(c, t) = −α′(c, t) > 0, and β ′′(c, t) = −α′′(c, t) < 0, the β(c, t)
function is increasing and concave in c. This proves the lemma. 	
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B Proof of Lemma 2

Parlar and Sharafali [16] have derived the probability generating function
(p.g.f.) �̂m,n(u, t) of Y(t) as,

�̂m,n(u, t) = E[uY(t) | A(0) = m, S(0) = n]
= {[1 − α(c, t)] + α(c, t)u}N−m [

(1 − e−cμt) + e−cμtu
]m−n .

They further derive,

E[Y(t) | A(0)=m, S(0)=n] = d
du

�̂m,n(u, t)

∣∣∣∣
u→1

=(N−m)α(c, t)+(m−n)e−cμt.

(11)
It then follows that the total expected wait of all passengers is,

W(c) =
∫ T

0

[
(N − m)α(c, t) + (m − n)e−cμt] dt. (12)

Performing the integration in Eq. 12, we obtain the explicit result:

W(c) =
[
λ(N − m)

λ − cμ
+ (m − n)

]
(1 − e−cμT)

cμ
+ (N − m)

λ − cμ
(e−λT − 1).

Differentiating W(c) we have

W ′(c) =
∫ T

0

[
(N − m)α′(c, t) − μt(m − n)e−cμt] dt, (13)

W ′′(c) =
∫ T

0

[
(N − m)α′′(c, t) + (μt)2(m − n)e−cμt] dt. (14)

Using Lemma 1, we see that W(c) is decreasing in c since the integrand in
Eq. 13 is negative for all t ∈ [0, T]. Thus W ′(c) < 0. Moreover, using Lemma 1
again, as α′′(c, t) > 0 for all t ∈ [0, T], and the second term in Eq. 14 is always
positive, we have W ′′(c) > 0. 	


C Proof of Theorem 2

Proof follows from Theorem 1. Since G(c) is convex, c0, the unique minimizer
of G(c) is the solution of the first order condition given by Eq. 6. We observe
that the r.h.s. of Eq. 6 is a positive constant and that the l.h.s. is an increasing
function of c. If c0 ∈ C, then c∗ can be found by examining the cost function
G(c) at the nearest integer neighbor(s) of c0. It then follows that c∗ = ⌊

c0
⌋

or⌈
c0

⌉
. However, if c0 /∈ C, then G(c) must be a monotonic function of c. In this

case the optimal solution c∗ must be at one of the boundary points (cmin, or
cmax) of the feasible region C. 	
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