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Abstract  Terbium lithium zinc borosilicate glass sys-
tems incorporating copper ions were prepared using a melt 
quenching technique. The structural and physical properties 
of the produced glass samples were investigated using X-ray 
diffraction (XRD), infrared (FTIR), and optical absorption 
(UV/Vis/NIR) spectroscopy. The non crystalline behavior 
of the glasses was confirmed by XRD analysis. FTIR clear 
that changing the ratio of terbium and copper ions did not 
affect the locations of the borate and silicate groups, but 
it affected the intensity of absorption and amount of BO4, 
SiO4 and BO3 groups. The UV–visible–NIR spectra of the 
glasses showed a strong absorption of Tb3+ ions in the NIR 
region (2190, 1942, 1867, and 1775 nm for samples free of 
copper). The highest band gap value was obtained for the 
sample free of copper glass, which had the lowest amount 
of non-bridging oxygen. The estimated CIE coordinates for 
the glasses show their locations in the blue–green region 
for samples free from copper when excited at 250 nm and 
green when the sample was excited at 378 nm. And move 
to green region with the copper content increased. The CIE 
coordinates deviated towards the yellow region when excited 
at 378 nm and became green yellowish with increasing Tb 
concentration.

Keywords  Terbium lithium zinc borate glass containing 
copper · UV–visible–NIR · Optical properties · CIE 
coordinates

Introduction

Glass prepared using a simple quenching method is easier 
to prepare than the crystal material, which saves time. Addi-
tionally, the ability of soluble rare earth (RE) and transition 
metal (TM) can be used in transparent media. Glass can drop 
different amounts of RE and different types that give the 
chance of high intensity emission in different colors. From 
literature studied a transparent glass doped with different 
RE as in Er2O3 gives green emission as studied by Prabhu 
[1], Kaurvv [2], Deopa [3]. Glass doped with Sm2O3 has a 
different range of red color as Swapna [4], Marzouk [5] and 
Eu2O3 in red emission as Hegde [6], Hegde [7], and Tm2O3 
in blue emission El-Maaref [8] and Vijaya Babu, Cole [9] 
and Tb4O7 in green emission by Kaur [10] and Pr6O11 Maha-
muda [11], Hegde [12] and studied effect of different RE on 
mixed together Zhao [13], Sasikala [14], Mungra [15], Zhu 
[16], He [17], Hegde [18].

The preparation glass using a former has the advantage of 
low melting point, good solubility of RE and TM, outstand-
ing thermal and chemical stabilities, and broad emission, 
making it most suitable for high-gain laser applications [19], 
and is inexpensive and relatively stable [20] like borate. In 
contrast, borate has a high phonon energy, which provides 
a good opportunity to overcome this problem through the 
addition of ZnO. The ability of ZnO as a heavy metal to 
reduce phonon energy has been reported [21] and decreases 
the hygroscopic properties with improvement in electrical, 
mechanical, thermal, and optical properties [10]. In addition, 
ZnO exhibits a high thermal resistance against crystalliza-
tion [22]. The addition of silicate as a former in the forma-
tion of borosilicate glass offers various advantages, such as 
preventing crystallization and increasing the emission inten-
sity [23]. Borosilicate glass was chosen because it combines 
the high stability of silicate with ability to lower the melting 
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temperature of borate [24]. Additionally, the use of borosili-
cate glass prevents heavy concentration quenching, which 
improves the efficiency of luminescence materials [25].

Choosing Rare earths such as Tb4O7 and transition metals 
such as CuO have, the ability to emit green light [26] in addi-
tion to their ability to be used in optoelectronic devices [27] 
and used in green lasers. Tb3+ doped glasses have been used 
in the development of electromagnetic transmission window 
of sea water, efficient green emitting phosphors, solid state 
lasers, white LED’s, neutron detection, and medical devices 
[28] and a little in blue emission that give the chance to char-
acterize the type of material like clustering of normal from 
the ratio between green intensity to blue intensity. Adding 
CuO can be used as two ways as the filter-pass or photolumi-
nescence emission depend on the type of the host [29] that 
copper oxidation formed in prepared glass. This advantage 
give the chance of glass used as the glass filter when Cu2+ 
formed inside the network [30] or used in the emission when 
the Cu+ formed and wide luminescence in the visible region 
with a d9s → d10 transition in solids[19, 30–32].

Incorporating SiO2 into the B2O3 glass matrix improves 
the heat resistance, chemical durability, and electrical resis-
tivity of borosilicate glasses [33–36]. These glasses exhibit 
similar optical properties to fluoride glasses but offer better 
chemical resistance and superior mechanical properties. The 
narrow-band emission of Terbium (3+): Tb3+ arises from 
the transitions between the 4f levels. Trivalent terbium ions, 
Tb3+, which results in sharp luminescence from 4f to 4f 
transitions. This sharpness is attributed to the shielding of 
the 4f electrons by the outer 5s2 and 5p6 orbitals. The green 
light emission in terbium ions [37–39] is attributed to four 
distinct peaks arising from the 5D4 to 7FJ transitions, where J 
is 3, 4, or 6. The most prominent green emission peak occurs 
at 544–550 nm within the visible light spectrum, suggesting 
its potential for use in electronic devices. Optical rays that 
emit light and lasers that emit green light [40, 41].

Our interest was focused on determining the effect of 
the substitution of Tb3+ ions and CuO emitted in green and 
some blue emission on the photoluminescence properties.

Experimental work

Glass samples with a composition of 35 SiO2 + 35 B2O3 + 10 
ZnO + 20  Li2O + (1 − X) Tb4O7 +  X CuO (where X= 0, 
0.05, 0.1, 0.3, 0.5, and 1 mol% coded as Tb–Cu1, Tb–Cu2, 
Tb–Cu3, Tb–Cu4, Tb–Cu5, and Tb–Cu6, respectively. The 
glass samples under investigation were mounted with rea-
gent grade SiO2 (Sigma-Aldrich, 99.9%), H3BO3 (Win LAB 
U.K., 99%), ZnO (Sigma-Aldrich, 99.9%), CuO (Sigma-
Aldrich, 99.9%), and Tb4O7 (Strem chemicals USA, 99.99).

The chemical purity grades were mixed and annealed for 
30 min at 450 °C in a porcelain crucible and then melted 
at 1130 °C. The molten material was cooled and poured 
between two copper plates in air and annealed at 350 °C for 
3 h. All the samples were examined using a Philips Analyti-
cal X-ray analysis system (PW3710) with Cu Kα = 1.54°A.

JASCO, V-570 spectrophotometer (with the precision 
of ± 1 nm), and JASCO FP-8300 spectrofluorometer (com-
prised of a 150 W Xenon arc lamp) measured the optical 
properties of glass samples (transmission, absorption, exci-
tation, and emission).

Differential thermal analysis (DTA) of the prepared 
samples was performed in the temperature range of room 
temperature to 900  °C at a heating rate of 25  °C/min 
using Al2O3 powder as a reference material (Shimadzu 
DTA-50 analyzer).

Attenuated total reflection (ATR) FTIR spectra were 
obtained using ALPHA II FTIR spectrometer from Bruker 
Optik GmbH, Germany, equipped with diamond ATR crys-
tal system in the spectral range of 4000–400 cm−1 with the 
resolution of 4 cm−1.

Results and discussion

When examining the impact of one substance on another’s 
properties, the following methods can be employed: substi-
tution or addition. For oxide glass, a certain percentage of 
the oxide under study replaces an equivalent percentage of 
the original elements (substitution). In addition, a percent-
age of the oxide is added to the original glass composition 
without altering it, resulting in a total that exceeds 100% 
(addition). This methodology is documented in numerous 
scholarly papers [42–44].

Figure 1 illustrates the amorphous structure of the pre-
pared glass, as determined by XRD measurements. The 
graph also reveals an increase in the peak amplitude at 
25 °C, which is attributed to the increase in the copper con-
centration. This increase in copper concentration enable the 
glass to incorporate nanoparticles within its structure.

In our previous studies, we prepared samples of borosili-
cate glass in porcelain crucibles, at temperatures within the 
same limits. These samples were analyzed using an EDX 
device, which verifies the integrity of the samples. Porce-
lain crucibles react with lead oxide and some heavy ele-
ments, and it is recommended to avoid using them [45–47].

The infrared spectra of the glass samples are depicted in 
Fig. 2. The FTIR spectra disclose the structural configura-
tion of the units within the glass samples. Additionally, the 
FTIR offers data on the stretching and bending vibrations for 
the silicon and boron groups.
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All spectra demonstrate the presence of borate groups. 
The B–O stretching vibrations of trigonal (BO3)3− units 
(in meta-, pyro-, and ortho-borate) cause the broad band 
from 1200 to 1700 cm−1, centered at 1376 cm−1. The anti-
symmetrical stretching vibrations with three non-bridging 
oxygens (NBOs) of B–O–B linkages correspond to the band 
at 1420–1540 cm−1 [48]. The stretching vibrations of the 
non-bridging oxygen atoms (O–B–O) in the [BO2O]− units, 
which are connected with [BO4] or [BO3] units, are found at 
1360 cm−1 and 1455 cm−1, respectively [49].

The spectral band between 800 and 1200 cm−1 is attrib-
uted to the stretching vibrations of B–O bonds in tetra-
hedral BO4 units. The band around 1005 cm−1 is due to 

the non-bridging oxygens (NBOs) within the BO4 group. 
The silicate and borate groups —comprising BO3 and BO4 
units—overlap their spectral contributions and may combine 
within the 1000–1120 cm−1 range.

The stretching vibration of Si–O–Si bonds in the NBO 
of SiO4 tetrahedral units causes two bands at 1040 and 
1100 cm−1. That is, as the NBO bonds (Si–O–Si links in Q1 
units) rose, so did the bridge oxygen bond (Si–O–Si bonds) 
[48]. The stretching vibrations of Si–O–Si bonds in silicates 
result in various configurations in the glassy network. These 
configurations include Q3 (1075 cm−1) with 3 bridging oxy-
gen and one non-bridging, Q2 (1000 cm−1) with 2 bridg-
ing oxygen and 2 non-bridging, and Q1 (900 cm−1) with 
1 bridging oxygen and 3 non-bridging. The band indicates 
the presence of B-O-Si bonds at 1020 cm−1. The stretch-
ing vibration of Si–O–Si bonds in the non-bridging oxygen 
of SiO4 tetrahedral units produces two bands at 1040 and 
1100 cm−1. Fig. 3 shows the effect of Tb4O7 addition on the 
SiO4, BO4 and BO3 vibration groups. It is clear the struc-
ture variation between samples.

Figure 4a shows the effect of light fall on the sample 
in the UV, Vis, and near IR ranges. High-intensity peaks 
were observed in the NIR range for the sample doped with 
1 mol% Tb4O7, followed by a decrease in the NIR range 
with the appearance of a peak at vis, which increased with 

Fig. 1   The XRD of the prepared glass samples

Fig. 2   The infrared spectra of the glass samples
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prepared glass samples
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increasing Cu concentration. Using the deconvolution 
method shown in Fig. 4b, the positions of the peaks were 
determined. The appearance of peaks in the NIR range at 
2190, 1942, 1867and 1775 nm are represented as 7F6 → 7F3, 
7F2, 7F1, and 7F0 respectively [50–52]. The UV spectra con-
tribute to the appearance of two low-intensity peaks at 486 
and 379 nm, which represent transitions from 7F6 to 5D4 
and 5D3, respectively [51]. Generally, copper (Cu) exists in 
two valence states, Cu+ and Cu2+. The presence of Cu+ is 
a result of the 3d10 → 3d9 4S1 transition, which appears in 
the blue UV absorption spectrum and is observed in glass 
containing 0.5 and 1 mol % CuO.

During the melting process, the presence of Cu2+ results 
in octahedral coordination. This leads to splitting of the d 
orbitals into two degenerate T2g levels at a lower energy 
and a higher energy level of 2Eg. Additionally, tetragonal 
distortion causes the Jahn–Teller effect, resulting in the 
splitting of T2g ions into 2B2g (dxy) and 2Eg (dxz, dyz), 
whereas 2Eg splits into 2B2g (dx2–y2) and 2A2g (dz2).

According to, [53] the appearance of a broad band is 
due to 2Eg → 2B1g,

2B2g → 2B1g, and 2A1g → 2B1g, which correspond to 
709, 864, and 1039 nm, respectively [54]. The intensity 
and broadness of the peak increased with increasing Cu 
concentration, and Cu+ appears as previously observed, 
causing a decrease in the Tb peak intensity [32, 55].

To determine the physical transitions of light between the 
valence and conduction bands as Eg, we used optical absorp-
tion values. The value found by Mott and Davis is related 
to various parameters, including the absorption coefficient, 
photon energy, and optical band gap. The optical band gap 
is determined by the following relation [56].

From the Tauc plot as shown in Fig. 5a and 5b, the direct 
and indirect Eg values were evaluated, where α represents 
the absorption coefficient, Eg is the optical band gap, and n 
is the optical transition of the electron. Generally, the addi-
tion of a modifier causes changes in the Eg values. This is 
because the modifier alters the NBOs present in the valence 
band, thereby forming extrinsic bands between them on the 
lattice and changing the distance between the valence and 
conduction bands.

The results obtained drawn in Fig. 6 indicate that glass 
containing rare earth (RE) has a high value of Eg, which 
decreases with an increase in transition metal content, con-
sistent with literature sources [10, 55, 57, 58]. Furthermore, 

(1)αh� = B(h� − Eg)n

Fig. 4   a The UV–Vis–near IR of the glass samples. b The deconvo-
lution of the glass sample 0.7 Tb4O7 and 0.3CuO

Fig. 5   The Tauc plot evaluated the a direct and b indirect Eg values
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as observed in studies [31, 59], adding Cu leads to a decrease 
in Eg.

This behavior can be attributed to structural changes. A 
decrease in BO4 units leads to an increase in NBO bonds, 
which in turn raises the electronic polarizability across the 
B–O bonds. Notably, an increase in NBOs narrows the band 
gap between the valence and conduction bands, resulting 
in a glass with low energy gap and high refractive index. 
This can also be linked to changes in bonding strength, 
which are influenced by ionic radius and electronegativity 

(Tb3+  = 0.106–0.118 and Cu3+–Cu1+ = 0.068–0.091 nm). 
Furthermore, an increase in CuO relative to Tb4O7 leads to 
a reduction in BO4 formation and consequently, a decrease 
in Eg. The optical band gap behavior is generally nonlin-
ear, a trend that can be attributed to the influence of mixed 
rare-earth and transition elements on the glass network. 
Additionally, reducing Tb and adding Cu can increase the 
donor centers, thereby lowering the Eg of the glasses. The 
smooth absorption edges in the absorption spectra indicate 
the amorphous nature of the current glass samples, a finding 
supported by density results [60]. Optical band gap values 
similar to those for borate glass systems containing dyspro-
sium ions or transition metals [61, 62].

The DTA curve in Fig. 7 illustrates the thermal behavior 
of the prepared material with increasing temperature. The 
temperature increase exhibited an endothermic peak, indi-
cating a glass transition temperature (Tg). As the tempera-
ture continued to increase, an exothermic peak appeared at 
the beginning of the crystallization nucleation peak (Tc) at 
the onset of the crystallization temperature Tx.

The temperature then increased continuously and another 
endothermic peak appeared, which corresponded to the 
melting glass temperature (Tm).

Table 1 lists the values of Tg, Tc, Tm, the Kauzmann 
relation Trg and the glass ability ΔT.

From the Tg values, a slight difference in value appears 
between the samples, and at the same time, a change in val-
ues is expected from the structural change in BOs and NBOs 
[53]. Glasses with higher BO3 content have a lower Tg [52]. 
To compare the samples prepared previously with differ-
ent formers and increasing Cu concentrations [29, 63, 64]. 
These values agree with the results of the samples under 
study.

The glass transition temperature (Tg) decreases with the 
addition of copper, which modifies the glass structure owing 
to the increase in non-bridging oxygen sites (NBOS). The 
proximity of the crystallization temperature (Tc) to Tg or 
the melting temperature (Tm) explains the thermal stability 
and difficulty of crystallization. The ability of glass to delay 
crystallization and its good glass-forming ability are due to 
its stability in performance, with Tc closer to Tm than Tg. 
The difference between Tc or Tx and Tg, was calculated 
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Fig. 7   The DTA curve of the prepared glass samples

Table 1   The DTA parameters 
(glass transition temperature 
Tg, crystallization temperature 
Tc and the melting temperature 
Tm), the Kauzmann relation Trg 
and the glass’s ability ΔT

Tb4O7 (mol%) Tg °C Tx °C Tc °C Tm °C Trg ΔT °C

1 496 679.36 722.08 793 0.625 183
0.95 502 682.69 708.92 823.7 0.609 180
0.9 488 687.17 714 794.86 0.613 199
0.7 496.5 693.53 709.8 797 0.622 197
0.5 493.5 685 732 800 0.616 191
0 484.98 677.64 707.54 807.85 0.600 192
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to determine ΔT [64]. Another important factor is the esti-
mation of the glass-forming ability using the Kauzmann 
relation Trg = Tg/Tm, which was calculated using the DTA 
parameter.

By obtaining a value of Trg within the range of 0.5 to 
0.66, the system identifies the glass with the highest value 
that has good forming ability.

In Figs. 8 and 9, the excitation spectra obtained by vary-
ing the wavelength of the Cu ions to 460 nm and that of 
the Tb3+ ions to 543 nm. When glass samples are excited 
with Tb ions at 543 nm, different excitation peaks can be 
observed in the ultraviolet (UV), near-ultraviolet (n-UV), 
and blue regions. The spectra displayed six excitation bands, 
with peaks at 304, 318, 342, 352, 370, 378, and 486 nm 
attributed to the transitions from the ground level (7F6) to 
5H4, 5H7 + 5D1, 5L6,7, 5G5, 5L10, 5G6 + 5D3, and 5D4 excited 
states, respectively [65, 66] at different positions. 

Figure 8 shows a reduction in the peak intensity as the 
concentration of Tb4O7 decreased. Moreover, all peaks dis-
appeared in the glass samples containing only CuO. If we 
choose to excite Cu ions at 460 nm and record the excitation 
spectrum in the UV range, as shown in Fig. 9, the peak at 
250 nm represents the transition from 1Ag to 1T2g of Cu+. 
As the intensity of the peak changed, the decrease indicated 
an improvement in Cu2+ [32].

The light produced by Tb3+ ions can be divided into two 
regions based on the excited level emitted. When the excited 
level emitted was 5D3 to 7F6-3, emission peaks observed at 
wavelengths less than 480 nm were observed at 382, 416, 
438, and 480 nm, characterized by blue emission. In con-
trast, the closest level to 5D3 is 5D4, which allows non-radi-
ative energy to increase the emission at 488, 545, 588, and 
622. These emissions are formed as a transition to a lower 
level (5D4 to 7F6-3) as green emissions [67, 68]. According 
to previous studies, the sum of the emission intensity results 
from the excited level 5D4 to the emission intensity resulting 
from the excited state 5D3 indicates the distribution of Tb in 
a glass sample.

This distribution can be either homogeneous or clustered 
[28, 67, 69–71].The disappearance of the blue emission is a 
sign of clustering of Tb ions in the glass sample. However, 
the increase in green emission suggests that glass may be 
suitable for green laser applications [10]. According to our 
research, the emission of Cu ions is explained by the pres-
ence of Cu+ in both its + 3 and + 2 charge states, which act 
as luminescence centers (also known as defect centers) that 
enhance phosphor emission intensity [29]. When present as 
Cu+ (3d9-4S1), Cu ions act as color centers, which are uti-
lized in the emission properties. In contrast, the presence of 
Cu2+ has an inverse effect on emissions [20].

From the excitation curve (Fig. 8), it can be observed that 
the highest intensity occurred at 378 nm. This indicates the 
most suitable wavelength for exciting Tb3+ions. Figure 10 
shows the emission of the glass sample under 378 nm exci-
tation. It shows high-intensity peaks in the green emission 
region, and low-intensity peaks in the blue emission region.

The glass sample doped with CuO did not show any Cu 
emission and its peaks disappeared. The figure shows that 
the emission intensity decreased with decreasing Tb4O7 con-
centration. Because there was no emission of Cu ions, we 
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Fig. 8   The excitation curve of glass samples at λem = 543 nm
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determined the distribution of Tb3+ ions inside the network. 
The intensity ratio of green to blue is a sensitive parameter 
that can be used to determine the concentration of Tb4O7.

Table 2 shows the calculated ratio between the sum of 
the intensities of the green emission (5D4-7FJ) and the sum 
of the peak intensity of the blue emission (5D3-7FJ). The 
obtained values indicate an increase in the value for the 
sample containing 0.95 mol% Tb4O7, suggesting that the 
Tb3+ ions are clustered. As the concentration of Tb4O7 
decreased, the ratio began to decrease, explaining the 
increase in blue emission and indicating a more homoge-
neous distribution of Tb3+ ions at low concentrations of 
Tb4O7 [68].

From the perspective of bridging oxygen BO and NBOs, 
density plays an important role in characterizing the glass 
structure.

The effect of Tb4O7 concentration on density and molar 
volume is seen in Table 3.

The density ρ and molar volume Vm {Molar vol-
ume = molecular weight/ density (Vm = Mw/ρ)} exhibit a 
similar tendency in this picture, with the density and Vm 
increasing as the Tb4O7 concentration increases. Tb3+ enters 
the interstitial position in the glass structure, breaks bonds 
to create NBOs, and causes a volume increase. The density 
increased as the MW (molecular weight) of Tb increased. Vm 
increases as the oxygen level rises, resulting in the de-
polymerization of glass structures. From density and molar 

volume calculate the number of Tb3+ ions per unit volume 
according to N = (DρNA)/Mw {D is the concentration of 
Tb4O7, NA is the Avogadro’s number}, also the distance 
between Tb3+–Tb3+ ions calculated using the relation 

R = 
(

1

N

)1∕3

 . And set in Table 3. From it, can be observed that 
the Tb3+ ions are too far from each other, disallowing excita-
tion energy to be transmitted between surrounding rare-earth 
ions, resulting in an increase in emission intensity and 
increase in radiative energy.

Figure 10 shows a high-intensity peak at 542 nm, which 
exhibits splitting. This phenomenon is caused by the dis-
tortion of the glass network by Tb3+ ions, which leads to 
a stark splitting of the energy level [28].

Based on the excitation curve of Cu shown in Fig. 9, the 
excitation wavelength of the Cu ions was chosen as 250 nm 
to excite the glass samples, as shown in Fig. 11.

Figure 11 shows the ability to excite Tb3+ ions and its 
effect on the peaks of 488, 542, and 584 nm of green emis-
sion. The high-intensity peak of Tb4O7 emission decreases 
and appears as the emission of a broad emission peak 
of Cu ions with the increase in Cu concentration. This 
decrease in the intensity of the peak in the green region 
reduced the ratio between the green and blue regions. In 
addition, the very towering peaks inside the broadband at 
502 nm represent the boron emission. The towering peak 

Table 2   The peaks intensity 
of transition (5D3-7FJ) and 
(5D4-7FJ)

sample Intensity (5D3-
7FJ)

ƩI(5D3) Intensity (5D4-7FJ) ƩI(5D4) ƩI(5D4)/ƩI(5D3)

7F5
7F4

7F6
7F5

7F4
7F3

Tb-Cu1 5.4 3.27 8.67 176 537.84 38.86 10.8 763.5 88.06
Tb-Cu2 3.4 2.4 5.8 142.85 428.29 29.22 8.37 608.73 104.95
Tb-Cu3 3.7 3.04 6.74 121.99 357.93 22.35 6.29 508.56 75.45
Tb-Cu4 3.7 2.4 6.1 34.93 100.36 5.5 1.27 142.06 23.28
Tb-Cu5 4.17 2.8 6.97 16.11 42.1 1.9 0.32 60.43 8.67

Table 3   Density, molar volume, number of Tb3+ ions in unit vol-
ume and distance between Tb3+ ions

Sample Density (g/cm3) Molar volume
(cm3/mol)

N E + 24
(No./cm3)

R
(nm)

Tb-Cu1 2.735 24.489 6.727 0.53
Tb-Cu2 2.724 24.465 6.371 0.539
Tb-Cu3 2.741 24.194 6.141 0.546
Tb-Cu4 2.701 24.063 4.731 0.596
Tb-Cu5 2.646 24.052 3.313 0.671
Tb-Cu6 2.539 23.756 – – Fig. 11   The emission spectra of glass samples doped with different 

concentration of CuO and Tb4O7 excited at λexc = 250 nm
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represents the contribution of boron emission, which was 
previously studied by Lu [72, 73], Collins [74] and Freitas 
[75]. The broad band signifies the emission mechanism 
formed by Cu, as when the glasses are excited at 250 nm, 
the excited electrons populate the higher 1T2g level, and 
non-radiative relaxation to the 3Eg level occurs. The short 
life span of this level, from radiative relaxation to the 1Ag 
ground level appears a broad emission peak of around 
470 nm [32, 76].

The color of the glass sample varied from that under 
day light or UV excitation light. The visible emission color 
under UV light was evaluated using the CIE chromaticity 
coordinates. The emitted color when different emission 
wavelengths are mixed as shown in Figs. 10 and 11 is shown 
in Fig. 12.

From Fig. 12, shows differences in the emitted colors 
under different UV lights. The sample excited at 378 nm 
shows green emission, which is in accordance with a 
previous report [28, 53, 66], whereas under 250 nm, the 
green emission is italicized to blue-green. The obtained 
data for the corresponding (x, y) coordinates are listed 
in Table 4. The second vital parameter determination is 
CCT [32, 66] by

where υ = (x-0.332)/(y-0.186). The evaluated values are 
tabulated in Table 4.

This shows the difference in color brightness with 
different Tb4O7 concentrations and the ability to use 
samples doped with Tb4O7 and CuO in daylight fluo-
rescence and samples doped with Cu in neutral-white 
fluorescence.

Conclusion

Terbium lithium zinc borosilicate glass doped with copper 
oxide was prepared using a melting technique. The spectro-
scopic characteristics of the obtained glass systems were 
examined by recording their excitation and emission spectra. 
When directly excited, the characteristic luminescence bands 
arising from the electronic transitions of the Tb3+ ions were 
observed. Further experiments were conducted to investigate 
the impact of copper ion concentration on the spectroscopic 
characteristics of lithium zinc borate glasses. They found 
that under UV–visible light excitation, our glass system dis-
plays different colors between blue, green, and yellow emis-
sions, which is the result of multiple bands of Tb3+ forming 
simultaneously. The results indicate that lithium zinc borate 
glasses can be used as potential light emitters.

CCT = −449�3 + 3525�2 − 6823.2� + 5520.3

Fig. 12   CIE1931 chromaticity coordinates for glasses under excita-
tion wavelength at 250 nm and 378 nm

Table 4   The chromaticity 
parameter (x,y) and the 
correlated temperature CCT​

Sample Exc at 378 nm Exc at 250 nm

x Y CCT​ x Y CCT​

TbCu1 0.270 0.606 6592 0.083 0.592 11,128
TbCu2 0.267 0.611 6637 0.056 0.589 11,982
TbCu3 0.264 0.606 6709 0.038 0.558 13,286
TbCu4 0.252 0.581 7038 0.010 0.560 14,256
TbCu5 0.235 0.521 7787 0.009 0.558 14,342
TbCu6 0.432 0.474 3552 0.010 0.534 15,172
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