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Laguerre–Gaussian beams are proposed and can be used 
in optical trapping and moving [2, 3]. In Kotlyar et al. [4], 
the asymmetric Bessel modes are introduced, and it can be 
used instead of conventional Gaussian beam for trapping 
and transferring live cells without thermal damage [5]. In 
Kotlyar et al. [6], the asymmetric vortex Gaussian beams 
are studied and generated experimentally. Up to now, few 
papers have addressed the propagation of the asymmetrical 
laser beams propagating in medium [1, 7].

Uniaxial crystals exhibiting some interesting optical 
properties, such as double refraction, optical rotation or 
polarization effects, are required in some applications, 
including the design of the polarizer and the compensator 
[8], simple modulation of light [9], fiber Bragg gratings [10], 
polarization conversion [11], and generation of white-light 
optical vortices [12, 13] and vector bottle beams [14]. During 
the past years, the propagation of many other kinds of laser 
beams through uniaxial crystals has received much more 
attention, such as Hermite–Gauss [15], Laguerre–Gauss 
and Bessel–Gauss beams [16], flat-topped beams [17, 18], 
dark hollow Gaussian beams [19], beams generated by 
Gaussian mirror resonator in uniaxial crystals [20], partially 
polarized and partially coherent beam [21], higher-order 
cosh-Gaussian beams [22, 23], four-petal Gaussian vortex 
beam [24, 25], Laguerre–Gaussian correlated Schell model 
beam [26], three-dimensional flattened Gaussian beams [27], 
elliptical Gaussian vortex beam [28],sine beams [29], and 
hyperbolic sinusoidal Gaussian beams [30]. However, most 
studies are restricted to the laser beams with axis symmetry 
field. In this paper, our aim is to study the propagation of 
partially coherent asymmetric vortex beams in uniaxial 
crystals orthogonal to the optical axis. Analytical formulas 
for partially coherent asymmetric beams propagating 
in uniaxial crystals are derived, and some numerical 
illustrations are given. The results obtained in this work 
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Introduction

Asymmetric beams are this kind of laser beams with 
decentered field profile with a dark area in the middle. 
Namely, the radiation field is non-symmetry, and the 
position of the center of gravity of the beams deviates 
from the propagation z-axis [1]. Recently, the asymmetric 
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are beneficial to the optical trapping and nonlinear optics 
involving in the special beam profile.

Propagation expression for the cross‑spectral 
density of the PCAV beams

In the rectangular coordinate system, the electric field of 
asymmetric optical vortex beams at z = 0 can be expressed 
as [6]

where ρ′≡(x′,y′) is the two-dimensional position vector at the 
z = 0 plane. w is the waist radius, N is the topological charge, 
and x0 is a distance the embeded optical vortex shifted from 
the Gaussian beam center along the x-axis.

In the Cartesian coordinate system, the cross-spectral 
density function of a PCAV beam at the source plane z = 0 
can be expressed as

where g
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)
 is the spectral degree of coherence

where σ0 is the coherence length.
Substituting Eq. (3) into Eq. (2), and I(ρ′,0) =|E′0(ρ′,0)|2, 

the cross-spectral density of the PCAV beams at z = 0 plane 
can be expressed as

We assumed that the PCAV beams propagate along the 
z-axis and the optical axis of the uniaxial crystal coincides 
with the x-axis. The ordinary and extraordinary refractive 
indices of the uniaxial crystal are no and ne, respectively. 
Within the framework of a paraxial approximation, the com-
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to the optical axis can be treated by the following integral 
formulas [8]

with the two-dimensional Fourier transform Ẽx

(
kx, ky

)
 and 

Ẽy

(
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)
 being given by

In the paraxial approximation, the longitudinal com-
ponent of the field can be neglected as long as the trans-
versal beam radius w0 is larger compared with the wave-
length [31]. Equations  (7) and (8) indicate that the x 
component of the optical field is only a superposition of 
extraordinary plane waves and the y component uniquely 
contains ordinary plane waves, and can be rewritten as

where k = 2π /λ is the wave number with λ being the optical 
wavelength.
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Ẽx

(
kx, ky

)

exp

[
i
(
kxx + kyy

)
− i

n2
e
k2
x
+ n2

o
k2
y

2kn2
o
ne

z

]
dkxdky,

(6)

Ey(�, z) = exp
(
iknoz

) +∞

∫
−∞

+∞

∫
−∞

Ẽy
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In this work, the propagation of partially coherent beams 
passing through uniaxial crystals orthogonal to the optical 
axis will be studied. Here, we only consider the incidence 
extraordinary laser beam (x-polarized) propagating through 
uniaxial crystals orthogonal to the optical axis. The cross-
spectral density of a laser beam propagating in uniaxial 
crystals can be expressed as

Using the following formulas [32]
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Substituting Eq. (4) into Eq. (11), after a tedious but 
straightforward integration, the cross-spectral density of the 
PCAV beams polarized along the x axis through uniaxial 
crystals can be obtained as
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where
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Equations (14)–(20) are the analytical expression for 
the cross-spectral density of the PCAV beams propagat-
ing in uniaxial crystals orthogonal to the optical axis and 
indicates that W(ρ1, ρ2,z) at the z plane depends on the 
beam parameters, such as topological charge, the coher-
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with

The degree of coherence of the PCAV beams at a pair 
of points ρ and − ρ can be given by

where W(ρ, − ρ, z) can be obtained by setting ρ1 = − ρ2 = ρ 
in Eq. (14), S(− ρ, z) can be obtained by replacing ρ with 
− ρ in Eq. (21).
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The effective beam width of the PCAV beams at plane 
z is defined as

where Wx and Wy are the effective beam widths of the PCAV 
beams in the x and y directions, respectively.
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where

with s = 1 or 2 and Γ(·) is a Gamma function. As a result, 
the calculations of the spectral degree of coherence and the 
effective beam width are convenient by using the derived 
formulas.

Numerical examples

According to the obtained analytical expressions, the 
properties of the x linearly polarized PCAV beam 
propagating in uniaxial crystals orthogonal to the x-axis 
are numerically demonstrated. The calculation parameters 
are set as follows: λ = 632.8 nm (He–Ne laser), w = 20 μm, 
σ0 = 10 μm, x = 0.1w,  no = 2.616 (rutile crystal) [33], and 
M = N = 1, unless specified in captions.

First, let us consider the effects of the coherent length 
on the evolution properties of the PCAV beams propa-
gating in free space  (no =  ne = 1). Figure 1 represents the 
spectral density distributions of the PCAV beam at several 
propagation distances for different values of the coher-
ence length. It can be seen that the distribution of spectral 
density from a hollow profile of source plane becomes a 
Gaussian profile with the increase of propagation distance 
(see the upper row of Fig. 1). It is also found that the beam 
profile changes from asymmetric to symmetrical distribu-
tion. This is due to the diffraction effect of the beam itself. 
As the coherence length increases, the increasing evolu-
tion distances are needed to form Gaussian profile (see the 
middle row of Fig. 1) and the PCAV beam keeping hollow 
profile propagates farther (see the lower row of Fig. 1). 
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This is because for the partially coherent beams the longer 
the coherence length is, the smaller the diffraction effect 
is. Therefore, we can adjust the spectral density distribu-
tion of the PCAV beams through the change of the coher-
ence length. It should be noted that the spreading of PCAV 
beams decreases with the increasing the coherence length, 
which can be observed from the results presented in [25].

The spectral density distribution of a PCAV beam propa-
gating in uniaxial crystals with  ne/no = 1.2 at several propa-
gation distances for different shifted values of x0 is given 
in Fig. 2. In the case of x0 = 0, the PCAV beam reduces to 
partially coherent symmetric vortex beam. One can see 
from a1–a4 of Fig. 1 the partially coherent symmetric vor-
tex beam can keep hollow profile at the short propagation 
distance, and will lose circularly symmetric profile upon 
propagation. Finally it will evolve into asymmetric ellipti-
cal profile. This phenomenon is in line with the existing 
results [34]. The physical reason of the asymmetric distribu-
tion is due to the effect of anisotropic crystals  (ne >  no), the 
effect of uniaxial crystals on the distribution of x-direction 
is more obvious than y-direction. In uniaxial crystals, the 
propagation properties of the PCAV beam are very differ-
ent from that of partially coherent symmetric vortex beam. 
From Fig. 1 it can be also seen that propagation distance of 
the PCAV beam keeping hollow profile in uniaxial crystals 
is larger than that in free space (see b2 of Fig. 1 and b2 
of Fig. 2). As shifted distance x0 increases, beam gravity 
is further away from the beam centre, and the worse non-
uniformity of laser beams is, however, the position of the 
intensity maximum is changeless.
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Figure 3 gives the spectral density distributions of a 
PCAV beam with M = N = 2 at several propagation distances 
for different values of e. The case of  ne =  no (see the upper 
row of Fig. 3) represents the evolution properties of the spec-
tral density distribution of the PCAV beam propagating in 
isotropic crystals. The condition of  ne ≠  no means the evolu-
tion properties of the PCAV beam propagating in anisotropic 
crystals. It is evident that from Fig. 3 the hollow profile 
increases with increase of topological charge. The inten-
sity distribution will rotate anticlockwise 45°in isotropic 
crystals and 90° in anisotropic crystals of  ne/no = 1.2 with 
the increase of transmission distances. For the anisotropic 
crystals of  ne/no = 1.5, the intensity distribution will rotate 
clockwise during short propagation distance (see c1 and c2 
of Fig. 3), and then rotate counterclockwise at far field. This 
physical reason for the inconsistent rotation between near 
and far field is that the strong anisotropic effect restrains the 

rotation properties of vortex beam and plays an leading role 
for the PCAV beam propagating in anisotropic crystals of 
 ne/no = 1.5. Because of the refractive index  ne >  no, the beam 
spreads faster along the x direction than the y direction when 
the propagation distance increases. The propagation proper-
ties of a PCAV beam propagating through a negative crystal 
is shown in Figs.3 (d1)-(d4). It is obvious from Fig. 3 that 
for the case e < 1, i.e., negative crystal, the beam profile of 
a PCAV beam is elongated in the y direction; for the case 
e > 1, i.e., positive crystal, the beam profile of a PCAV beam 
is elongated in the x direction.

Next, let us turn to study the coherence properties of 
PCAV beam propagating in free space or inside uniaxial 
crystals orthogonal to the optical axis. Figure 4 gives the 
evolution of the modulus of the spectral degree of coher-
ence of a PCAV beam propagating in free space at several 
propagation distances for different shifted values. One can 

Fig. 1  Spectral density distributions of a PCAV beam propagating in free space at several propagation distances for different values of the 
coherence length
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find from Fig. 4 that profiles of |μ(ρ,–ρ, z)| in the initial 
source plane are all Gaussian distributions. The profiles of 
|μ(ρ,–ρ, z)| of a partially coherent symmetric vortex beam 
(see the upper row of Fig. 4), consisting of a concentric 
ring with a central bright spot during propagation, are much 

different from that of a PCAV beam with x0 = 0.3w. The 
larger propagation distance, the bigger profiles of |μ(ρ,–ρ, 
z)|. When x0 = 0.1w, the profile of |μ(ρ,–ρ, z)| of a PCAV 
beam is similar to that of a partially coherent symmetric 
vortex beam after certain propagation distance, however, the 

Fig. 2  Spectral density distributions of a PCAV beam at several propagation distances for different shifted values
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outer ring and the inner spot are incompletely separated at 
a short propagation distance. This is because, after a cer-
tain propagation distance, a PCAV beam will evolve into 
a symmetric Gaussian beam similar to the distribution of a 
partially coherent symmetric vortex beam. From the lower 

row of Fig. 4, we can find that the patterns of the spectral 
degree of coherence of a PCAV beam with longer shifted 
distance consist of a central bright spot with two dark areas 
and rotate anticlockwise during the propagation. This rota-
tion phenomenon meets with the above results.

Fig. 3  Spectral density distributions of a PCAV beam at several propagation distances for different different values of the extraordinary and 
ordinary refractive indices
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Figure 5 gives the modulus of the spectral degree of 
coherence of a PCAV beam propagating inside uniaxial 
crystals orthogonal to the optical axis at several propaga-
tion distances for different values of the extraordinary and 
ordinary refractive indices. Under the condition of  ne/no = 1 
(see the upper row of Fig. 5), it represents the modulus of the 
spectral degree of coherence of the PCAV beam propagat-
ing in isotropic crystals. It is observed that evolution of the 
spectral degree of coherence of the PCAV beam propagating 
in isotropic crystals is similar to that in free space. As propa-
gation distance increases, the patterns of |μ(ρ,–ρ, z)| of the 
PCAV beam propagating in anisotropic crystals will evolve 
into an elliptical ring with a central bright ellipse spot. The 
larger the  ne/no value, the more elliptical the beam shape.

Finally, we turn to discuss the evolution properties 
of the effective beam width of the PCAV beams from 
Eq. (24). Figure 6 shows the dependence of the effective 
beam width of the PCAV beam propagating in uniaxial 
crystals orthogonal to the optical axis on propagation dis-
tance z for different values of ne/no and coherence length. 
We can see from (a) and (b) of Fig. 4 that the effective 
beam width along x axis is the same as that along y axis for 
ne/no = 1. With increasing the value of ne/no , the effective 
beam width in the x-direction increases and the effective 
beam width in the y-direction decreases.The reason is that 
the anisotropic effect along x-direction is more stronger 
than that along y-direction. From (c) and (d) of Fig. 4, 
one can see that the effective beam width of the PCAV 

Fig. 4  Modulus of the spectral degree of coherence of a PCAV beam propagating in free space at several propagation distances for different 
shifted values
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beam increases more rapidly during the propagation as 
the coherence length decreases, it is larger in x direction 
than in y-direction at a given propagation distance due to 
the anisotropic effect. This phenomenon is in line with the 
reported results [17, 26, 35].

Conclusion

We have derived the analytical expressions for the cross-
spectral density function of the PCAV beams propagating 
in uniaxial crystals orthogonal to the optical axis, and the 
simulation is done by considering the effects of crystal 

factor (the ratio of extraordinary and ordinary refractive 
indices) and source parameters (such as the coherence 
length, and topological charge), as well as the propaga-
tion distance in detail. It is found that the distribution of 
spectral density becomes from a decentered profile of 
source plane to a Gaussian profile at a far field, and with 
increasing the coherence length, the increasing distances 
are needed for the form of Gaussian profile. The PCAV 
beam will rotate π/2 along counterclockwise during the 
propagation. The obtained results show that the profiles of 
the PCAV beams can be modulated by the uniaxial crys-
tals, which will be useful in optical trapping and nonlinear 
optics in which the special profile is required.

Fig. 5  Modulus of the spectral degree of coherence of a PCAV beam at several propagation distances for different different values of the 
extraordinary and ordinary refractive indices
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