
Vol.:(0123456789)1 3

J Opt 
https://doi.org/10.1007/s12596-024-01812-2

RESEARCH ARTICLE

Soliton patterns in the truncated M‑fractional resonant nonlinear 
Schrödinger equation via modified Sardar sub‑equation method

Jamshad Ahmad1   · Maham Hameed1 · 
Zulaikha Mustafa1 · Shafqat Ur Rehman2 

Received: 1 February 2024 / Accepted: 17 March 2024 
© The Author(s), under exclusive licence to The Optical Society of India 2024

Abstract  This article explores a noteworthy nonlinear 
model, namely the truncated M-fractional resonant nonlin-
ear Schrödinger equation (RNLSE), incorporating a Kerr 
law nonlinearity. Various nonlinear phenomena in research 
domains like nonlinear optics, the atmospheric theory of 
deep water waves, quantum mechanics, plasma physics, 
and fluid dynamics can be formulated using the RNLSE. 
To gather various solitary wave solutions for the RNLSE, 
we utilize a modified version of the Sardar sub-equation 
method. Novel optical soliton solutions in trigonometric, 
hyperbolic, and exponential forms are derived. Visualiza-
tion techniques, like 3D, 2D, density, and contour plots with 
different parameter values, effectively illustrate the diverse 
behaviors of soliton solutions. As a result, we attain an array 
of solutions, including bright, singular periodic, hyperbolic 
soliton, dark, periodic dark, combo dark–bright, compac-
tons, kink, periodic, and singular kink soliton solutions. The 
method employed in this study is efficient, accurate, capable, 
and dependable for calculating soliton solutions in nonlinear 
models. We anticipate that the results obtained in this study 
hold significant potential for applications in optical fibers, 
plasma physics, nuclear physics, mathematical biosciences, 
and many more.

Keywords  Optical solitons · The truncated M-fractional 
resonant nonlinear Schrödinger equation · The modified 
Sardar sub-equation method · Singular solitons · 
Trigonometric functions

Introduction

The idea of fractional derivatives has its roots in the well-
known communication between G.A. de L’Hospital and 
G.W. Leibniz in the year 1695. Over the last six decades, 
fractional calculus (FC) has significantly influenced a wide 
range of disciplines, including physics, chemistry, electric-
ity, economics, biology, signal and image processing, aero-
dynamics, and numerous other fields. In the past decade, 
fractional calculus has gained recognition as a premier tool 
for characterizing long-memory processes. These models 
hold appeal not only for engineers and physicists but also 
for pure mathematicians [1]. Understanding the solutions 
to fractional differential equations is crucial for improving 
our comprehension of the behaviors exhibited by physical 
processes with fractional orders. Furthermore, this knowl-
edge significantly contributes to their practical application 
and real-world implications [2]. Ordinary differential equa-
tions (ODEs) and partial differential equations (PDEs) find 
application in diverse fields such as image processing [3], 
fluid dynamics [4], system identification, control theory, and 
related disciplines to elucidate intricate phenomena [5].

Fractional calculus is a field of research that broadens the 
scope of traditional derivatives, typically defined for inte-
ger orders, to encompass non-integer orders. This expan-
sion leads to diverse fractional derivative formulations, 
including the Riemann–Liouville [6], He’s [7], Caputo [8], 
conformable [9], local fractional derivative [10–11], and 
truncated M-fractional derivatives [12]. The Riemann–Liou-
ville fractional derivative constitutes a fundamental meth-
odology utilizing integrals, whereas the He’s fractional 
derivative employs He’s polynomials to characterize frac-
tional derivatives. On the contrary, the Caputo fractional 
derivative integrates integer-order derivatives with the 
Riemann–Liouville method, typically employed in solving 
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initial value problems. The conformable fractional deriva-
tive, a relatively recent formulation, relies on ordinary prod-
uct rules and adeptly manages functions featuring singu-
larities. Finally, the truncated M-fractional derivative alters 
the Riemann–Liouville method by selectively truncating the 
integral component for specified fractional orders. Each of 
these definitions provides unique benefits and is applied in 
diverse domains, including physics, engineering, and signal 
processing, addressing scenarios where non-integer-order 
systems and phenomena are integral.

Soliton solutions to nonlinear events allow us to unveil 
the authentic structure of nonlinear behaviors. A traveling 
wave is a wave that progresses in a specific direction while 
maintaining a constant shape and velocity throughout its 
propagation. This phenomenon is evident in various scien-
tific domains. Exploring traveling wave solutions is valu-
able for both theoretical and numerical investigations of 
model systems. Consequently, the pursuit of traveling wave 
solutions in nonlinear equations is essential for a compre-
hensive understanding of these equations. The examination 
of traveling wave solutions in fractional nonlinear partial 
differential equations (FNLPDEs) is significant for gaining 
insights into the intricate internal mechanisms of complex 
physical phenomena. In 1834, the first recorded observation 
of a soliton was made by the British experimentalist J. Scott 
Russell while he was riding on horseback along a narrow 
barge channel. Over the past two decades, optical solitons 
have emerged as a critical area of study within nonlinear 
optics, revolutionizing applications from telecommunica-
tions to optical computing. In fiber-optic communications, 
they are especially valued for their ability to travel long dis-
tances without distortion, ensuring data is transmitted across 
networks with minimal signal degradation. This capability 
is crucial for high-speed, long-distance communication, 
improving bandwidth utilization and data transmission rates 
significantly. Beyond telecommunications, optical solitons 
contribute to advancements in ultrafast laser systems and 
optical computing, underscoring their versatility and pivotal 
role in modern photonics research and technological devel-
opment. Their sustained study and application highlight the 
ongoing importance of optical solitons in enhancing the effi-
ciency and capability of optical systems across various fields 
[13–22]. These solitons are capable of transmitting signals 
with remarkable precision over extensive distances, paving 
the way for innovation and development in future commu-
nication technology. The study of optical solitons with non-
Kerr law nonlinearities is an emerging area of focus in the 
field of nonlinear photonics [23–25].

The research findings present a multifaceted approach to 
enhancing the performance of soliton propagation, which 
in turn contributes to the mitigation of issues like four-
wave mixing (FWM) and six-wave mixing (SWM), and 
offers a novel strategy for controlling Internet bottlenecks. 

By optimizing the inherent properties of solitons, such as 
phase and amplitude, and employing advanced dispersion 
management techniques, the propagation of solitons through 
fiber optic cables is significantly improved. These solitons 
maintain their shape and energy over extended distances, 
which is critical for the transmission of data across the vast 
networks that constitute the Internet. This optimization 
ensures minimal loss and distortion, essential for maintain-
ing high-quality communication channels. In addressing 
the nonlinear optical phenomena of FWM and SWM, the 
research highlights the effectiveness of carefully adjusting 
system parameters, including channel spacing and the utili-
zation of specific types of fiber (such as dispersion-shifted 
fibers). These adjustments are crucial for reducing the inter-
actions that lead to FWM and SWM, phenomena that can 
cause signal degradation and crosstalk in densely packed 
wavelength-division multiplexing systems. By mitigating 
these effects, the research ensures clearer, more reliable 
signal transmission, a key component in enhancing overall 
network performance and reducing data loss. The implica-
tions of these findings on controlling the Internet bottle-
neck are significant. By enhancing soliton propagation and 
reducing FWM and SWM, the efficiency and reliability of 
data transmission are improved, addressing one of the criti-
cal challenges in network management. This improvement 
directly impacts the Internet’s ability to handle large vol-
umes of data, mitigating the bottleneck effect that can lead to 
slow data transmission rates and increased latency [26–27]. 
Essentially, this research proposes a method that not only 
enhances the physical layer of Internet infrastructure through 
better soliton propagation but also offers a systemic solu-
tion to network congestion. This comprehensive approach to 
solving both technical and systemic issues presents a prom-
ising path forward in the ongoing effort to optimize global 
Internet performance.

At present, fractional nonlinear evolution equations 
(FNLEEs) are gaining widespread recognition. Numerous 
researchers have employed diverse strategies to achieve 
accurate soliton solutions for nonlinear physical models, 
with some of these approaches detailed here the exp(−Φ(�))

-expansion method [28], the improved modified extended 
tanh-expansion method [29], the modified generalized 
rational exponential function method [30–32], the Khater II 
method [33–38], the improved projective Riccati equations 
method [39], the rational extended sinh-Gordon equation 
expansion method [40], the generalized logistic equation 
technique [41], the extended simplest equation method [42], 
the extended Khater method [43], the generalized Khater 
method [44], the direct algebraic method [45], the modified 
Khater method [46], the extended Fan-expansion [47], the 
new Kudryashov method [48–52], the Wang’s direct map-
ping method-II [53], the Hirota bilinear method [54–56], 
the Bernoulli sub-equation function approach [57], the new 
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homoclinic approach [58], the ansatz function method [59], 
the semi inverse method [60], the direct mapping method 
[61], the novel exponential ansatz method [62], the N-fold 
Darboux transformation technique [63], the Sine–Cosine 
method [64], and many more.

This paper utilizes an innovative approach based on 
Sardar sub-equation technique to generate numerous novel 
optical soliton solutions. The current approach enables 
researchers to generate precise optical solutions for both 
integer and fractional order applied differential equations. 
In 2023, Muhammad Amin Sadiq Murad derived the opti-
cal soliton solutions for Time-Fractional Ginzburg–Landau 
Equation by using the MSSEM [65]. This paper talks about 
finding new solutions for a particular equation related to 
optics, using this special approach. In 2023, Jamshad Ahmad 
explored chaotic patterns, bifurcation, and soliton solutions 
in a study analyzing the fractional Boussinesq model by 
using this novel approach [66]. In 2024, Waqas Ali Faridi 
and Zhaidary Myrzakulova [67] conducted a study compar-
ing two improved techniques, the new extended direct alge-
braic method and the MSSEM to understand how optical 
soliton wave profiles form in the Shynaray-IIA equation. 
In 2024, Younes Chahlaoui studied how a soliton solution 
behaves, examined modulation instability, and conducted 
a sensitive analysis on a fractional nonlinear Schrödinger 
model with Kerr Law nonlinearity [68].

The exploration of the nonlinear Schrödinger equation 
(NLSE) across various disciplines underscores its pivotal 
role in nonlinear mathematical physics, illustrating its utility 
in deciphering the complexities of nonlinear optical fibers 
and Bose–Einstein condensation (BEC), among other phe-
nomena [69]. This equation’s versatility extends its relevance 
to fields as diverse as fluid mechanics, plasma physics, and 
finance, highlighting its capacity to model wave propaga-
tion within nonlinear dispersive media [70–72]. While estab-
lishing a broad context for the significance of the NLSE, 
the discussion could be further enhanced by honing in on 
the specific challenges and areas of inquiry that the trun-
cated M-fractional resonant nonlinear Schrödinger equation 
(RNLSE) with Kerr Law nonlinearity presents, particularly 
in the realm of optical soliton solutions. By centering the 
discussion on the unique aspects and difficulties associated 
with the RNLSE, and introducing the modified Sardar sub-
equation method (MSSEM) as a novel investigative tool, the 
paper stands to offer a clearer understanding of its objec-
tives and the anticipated contributions to the field. High-
lighting how MSSEM diverges from or builds upon existing 
methodologies could clarify the study’s innovative edge. A 
focus on the exploration of optical soliton solutions within 
the truncated M-fractional RNLSE framework would not 
only clarify the research’s specific goals but also emphasize 
the potential broader impacts of these findings in advanc-
ing our understanding of nonlinear optical physics and its 

applications. Addressing the limitations of the truncated 
M-fractional resonant nonlinear Schrödinger equation with 
a Kerr law nonlinearity and suggesting possible extensions 
or modifications is crucial for ensuring the robustness and 
validity of research findings, guiding future investigations 
towards more accurate models, and fostering innovation in 
the field of nonlinear dynamics and soliton theory.

The Truncated M-Fractional Resonant Nonlinear 
Schrödinger Equation (RNLSE) finds practical application 
in modeling optical solitons within nonlinear optical fib-
ers, crucial for optimizing data transmission in fiber-optic 
communication systems. Additionally, its insights into 
nonlinear phenomena extend to various fields like plasma 
physics, quantum mechanics, and fluid dynamics, contribut-
ing to advancements in diverse scientific and technological 
domains. The RNLSE represents a variant of the NLSE, 
providing an explanation for the dynamics of solitons and 
Madelung fluids within nonlinear systems. Various meth-
ods exist for finding optical solitons, exact solutions, and 
traveling wave solutions for the RNLSE. For instance, In 
2021, Aly R. Seadawy explored resonant optical solitons 
using the extended rational sine–cosine technique within the 
framework of the conformable time-fractional NLSE [73]. 
Gulnur Yel in 2022, introduced a new wave approach, the 
rational sine-Gordon expansion method to the conformable 
resonant NLSE, incorporating Kerr-law nonlinearity [74]. In 
2023, Yesim Saglam Özkan used the Adomian decomposi-
tion method to investigate the structures of exact solutions 
for the modified NLSE using the framework of conformable 
fractional derivatives [75]. And now in 2024, Dean Chou 
delved into probing wave dynamics within the modified frac-
tional NLSE, offering insights with potential implications 
for the field of ocean engineering by using two powerful 
techniques named as, the Jacobi elliptic function method 
and unified solver method [76].

Truncated M‑fractional derivative

The truncated M-fractional derivative offers a fresh perspec-
tive on understanding the dynamics of complex systems, 
diverging from conventional fractional calculus. Unlike its 
predecessors, it focuses on finite portions of a system’s evo-
lution, effectively limiting the memory of past states. This 
selective memory retention enables the analysis of systems 
with memory effects while maintaining computational feasi-
bility. Moreover, it allows for the isolation and examination 
of specific temporal segments, unveiling deeper insights into 
underlying physical processes. The Truncated M-fractional 
derivative is chosen for its tailored approach to fractional 
differentiation, selectively truncating the integral component 
for specified fractional orders, thus reducing computational 
complexity while maintaining numerical stability and effi-
ciency. This makes it a practical choice for deriving soliton 
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solutions in the nonlinear model under consideration, reflect-
ing a balance between mathematical properties, suitability 
for the problem, and computational benefits.

Definition 1.1  The definition of the truncated M-fractional 
derivative of s with order � ∈ (0, 1] can be expressed as 
follows

for t > 0, and E𝛽𝛾 ∈ (0, 1), 𝛽 > 0 is a truncated Mittag–Lef-
fler function of one parameter. The definition of the trun-
cated Mittag–Leffler function with one parameter can be 
defined as

If c > 0 , limt→0+(iD
� ,�

N
s(t)) and s is �-differentiable in some 

open interval (0,c). Then we get

Theorem 1.1  s is continuous at t0 , if s ∶ (0,∞) → ℝ is �
-differentiable for t0 > 0 , with 𝛾 ∈ (0, 1], 𝛽 > 0.

Theorem  1.2  Let 0 < 𝛾 ≤ 1, 𝛽 > 0, a, b ∈ ℝ, s, q, 𝜉−dif-
ferentiable, at a point t > 0 . Then

Governing equation

The truncated M-fractional resonant nonlinear Schrödinger 
equation (RNLSE) is expressed as [77]

(1)�D
� ,�

M,t
s(t) = lim

�→0

s(�E� + t)(�t−� )) − s(t)

�
, s ∶ (0,∞)

→ ℝ,

(2)�E�(x) =

�∑
r=0

xr

Γ(�r + 1)
.

(3)�D
� ,�

M
s(0) = lim

t→0+
(�D

� ,�

N
s(t)).

(4)

∙ �D
� ,�

M
(as + bq) = a �D

� ,�

M
(s) + b �D

� ,�

M
(q), a, b ∈ ℝ

∙ �D
� ,�

M
(t�) = �t�−� ,� ∈ ℝ

∙ �D
� ,�

M
(sq) = s �D

� ,�

M
(q) + q �D

� ,�

M
(s),

∙ �D
� ,�

M
(
s

q
) =

q �D
� ,�

M
(s) − s �D

� ,�

M
(q)

q2
,

∙ If f is differentiable, then �D
� ,�

M
(s)(t) =

t1−�

Γ(� + 1)

ds

ds
,

∙ �D
� ,�

M
(soq)(t) = s�(q(t)) �D

� ,�

M
q(t), forsdifferential atq.

(5)

i 𝜗D
𝛾 ,𝛿

M,t
u + 𝛼1 𝜗D

2𝛾 ,𝛿

M,x
u + 𝛼2F(|u|2)u

+ 𝛼3{
𝜗D

2𝛾 ,𝛿

M,x
|u|

|u| }u = 0, 𝛾 ∈ (0, 1], 𝛿 > 0.

Consider a complex function u = u(x, t) where x and t repre-
sent spatial and temporal variables respectively. The param-
eter � belongs to the interval (0, 1] . In this context, �1 denotes 
the coefficient related to group-velocity dispersion, �3 sig-
nifies the coefficient associated with resonant nonlinearity, 
and �2 represents the non-Kerr nonlinearity. The operator 
�D

� ,�

M,t
 acting on u(x, t) represents the truncated M-fractional 

derivative.

The article’s structure is organized as follows: The intro-
duction, discussed in Section “Introduction”, provides a 
brief overview. Section “Governing equation” presents the 
mathematical model. A summary of the MSSEM is detailed 
in Section “Summary of method”. Section “The truncated 
M-fractional resonant nonlinear Schrödinger equation” 
explores various structures of soliton solutions within the 
truncated M-fractional resonant nonlinear Schrödinger equa-
tion. The physical behavior of this equation is addressed 
in Section “Results and discussion”. Finally, concluding 
remarks are drawn in Section “Conclusion” to wrap up the 
article.

Summary of method

In this section, we use a modification of the Sardar sub-equa-
tion approach, designed to create a spectrum of inventive opti-
cal solutions for the truncated M-fractional resonant nonlinear 
Schrödinger equation. The Sardar sub-equation method is uti-
lized due to its efficiency, accuracy, and capability in deriving 
soliton solutions for nonlinear models. Despite its not being 
new, its effectiveness in generating precise optical soliton 
solutions, including those for fractional differential equations, 
makes it a valuable tool in research. Let us consider the general 
fractional nonlinear partial differential equation (FNLPDE).

where Q is a polynomial in u(x, t) and its partial derivatives. 
Applying the subsequent fractional wave transformation

By applying the transformation mentioned earlier, Eq. (7) 
undergoes a conversion into a nonlinear ordinary differential 
equation (NLODE)

(6)

i �D
� ,�

M,t
u + �1 �D

2� ,�

M,x
u + �2(|u|2)u

+ �3

{
�D

2� ,�

M,x
|u|

|u|

}
u = 0.

(7)
Q
(
u, 𝜗D

𝛾 ,𝛿

M,t
u, 𝜗D

𝛾 ,𝛿

M,x
ux, 𝜗D

𝛾 ,𝛿

M,2t
u, 𝜗D

𝛾 ,𝛿

M,2x
ux,…

)

= 0, 𝛾 ∈ (0, 1], 𝛿 > 0,

(8)
u(x, t) = U(�) expi�(x,t), � =

Γ(� + 1)(�x� − kt� )

�
,

�(x, t) =
Γ(� + 1)(�x� + �t� )

�
.
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The series solution of the above obtained NLODE is

The determination of fj , (j = 0, 1, 2, 3,… ,N) , and the com-
putation of additional constants are required. Through the 
equilibrium of the highest-order derivative and nonlinear 
variables, the integer M in Eq. (9) can be identified. The 
following differential equation is satisfied for �(� ) [78–80]

where h0, h1 , and h2 are constants, then Eq. (11) has fol-
lowing cases.

Case-1:
If h0 = 0 , h1 > 0 and h2 ≠ 0 , then

 Case-2:
For constants g1 and g2 , let h0 = 0, h1 > 0 , and 

h2 = +4 × g1 × g2 , then

where g1 and g2 are real constants.
 Case-3:
For constants S1 and S2 , let h0 =

h1
2

4h2
h1 < 0 , and h2 > 0 , 

then

(9)P(u, u�, u��, u���, u����,…) = 0.

(10)U(�) = f0 +

N∑
j=1

fj�
j(�).

(11)(��(�))2 = h2(�(�))
4 + h1(�(�))

2 + h0,

(12)�1(�) =

�
−
h1

h2
sech

�√
h1(� + �)

�
,

(13)�2(�) =

�
−
h1

h2
csch

�√
h1(� + �)

�
.

(14)�3(� ) =
4g1

√

h1
(

4g21 − h2
)

sinh
(

√

h1(� + �)
)

+
(

4g21 − h2
)

cosh
(

√

h1(� + �)
) ,

(15)�4(�) =

√
−

h1

2h2
tanh

(√
−
h1

2
(� + �)

)
,

(16)�5(�) =

√
−

h1

2h2
coth

(√
−
h1

2
(� + �)

)
,

(17)
�6(�) =

�
−

h1

2h2

�
tanh

��
−
h1

2
(� + �)

�

+isech
�√

−2h1(� + �)

��
,

where S1 and S2 are real constants.
 Case-4:
If h0 = 0, h1 < 0 , and h2 ≠ 0 , then

 Case-5:
If h0 =

h2
1

4h2
, h1 > 0, h2 > 0 , and S2

1
− S2

2
> 0 , then

(18)

�7(�) =

√
−

h1

8h2

(
tanh

(√
−
h1

8
(� + �)

)

+ coth

(√
−
h1

8
(� + �)

))
,

(19)

�8(�) =

�
−

h1

2h2

��
S2
1
− S2

2
− S1 cosh

�√
−2h1(� + �)

��

S1 sinh
�√

−2h1(� + �)

�
+ S2

,

(20)�9(�) =

�
−

h1

2h2
cosh

�√
−2h1(� + �)

�

sinh
�√

−2h1(� + �)

�
+ i

,

(21)�10(�) =

�
−
h1

h2
sec

�√
−h1(� + �)

�
,

(22)�11(�) =

�
−
h1

h2
csc

�√
−h1(� + �)

�
.

(23)�12(�) =

√
−

h1

2h2
tan

(√
h1

2
(� + �)

)
,

(24)�13(�) =

√
−

h1

2h2
cot

(√
h1

2
(� + �)

)
,

(25)
�14(�) =

�
−

h1

2h2

�
tan

�√
2h1(� + �)

�

− sec
�√

2h1(� + �)

��
,

(26)

�15(�) =

√
−

h1

8h2

(
tan

(√
h1

8
(� + �)

)

− cot

(√
h1

8
(� + �)

))
,
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 Case-6:
If h0 = 0 and h1 > 0 , then

 Case-7:
If h0 = 0, h1 = 0 , and h2 > 0 , then

Upon inserting Eqs. (9) and (10) into Eq. (11), we con-
solidate coefficients of �(� ) with identical powers. Subse-
quently, by equating each coefficient to zero, an algebraic 
system for the equation is established. Ultimately, we solve 
a set of algebraic equations to determine the parameter val-
ues using Wolfram Mathematica. It offers a computationally 
efficient approach, reducing the time and resources required 
for solution generation. Additionally, the method ensures 
accurate results across various parameter values and system 
configurations, contributing to the reliability of the obtained 
solutions. However, like any mathematical method, it has 
limitations. These include potential challenges in handling 
extremely complex systems and the reliance on certain 
assumptions and initial guesses, which may affect its appli-
cability in certain scenarios. Despite these limitations, the 
method remains a valuable tool for researchers, aiding in 
the exploration of nonlinear dynamics and advancing our 
understanding of complex physical phenomena. However, its 
effectiveness may be limited in cases where equations lack 
clear symmetries, possess highly nonlinear or discontinuous 
coefficients, or exhibit complex dynamics with non-local 
interactions.

(27)

�16(�) =

�
−

h1

2h2

��
S2
1
− S2

2
− S1 cos

�√
2h1(� + �)

��

S1 sin
�√

2h1(� + �)

�
+ S2

,

(28)�17(�) =

�
−

h1

2h2
cos

�√
2h1(� + �)

�

sin
�√

2h1(� + �)

�
− 1

.

(29)�18(�) =
4h1e

√
h1(�+�)

e2
√
h1(�+�) − 4h1h2

,

(30)�19(�) =
4h1e

√
h1(�+�)

1 − 4h1h2e
2
√
h1(�+�)

.

(31)�20(�) =
1√

h2(� + �)
,

(32)�21(�) =
i√

h2(� + �)
.

The truncated M‑fractional resonant nonlinear 
Schrödinger equation

First, we examine the truncated M-fractional resonant non-
linear Schrödinger equation (RNLSE). We employ a frac-
tional complex transformation, converting the nonlinear 
fractional differential equation (NLFDE) into NLODE. 
Using a transformation, we separate the real and imaginary 
parts [81]

Following the balancing principle, balance number 1 is 
obtained from Eq.  (33). Subsequently, the solution to 
Eq. (33) assumes the following form

where f0 and f1 are unknowns. A system of equations, fea-
turing unknown parameters, is constructed by transforming 
Eq. (34) into Eqs. (33) and (11), while setting all powers 
of �(� ) to zero. Computational software such as Maple or 
Mathematica can be utilized to handle the challenges associ-
ated with the unknown parameters in this model. These soft-
ware tools facilitate the derivation of the subsequent results.

w h e r e  A0 = −�1b0�
2 + �2b

3
0
− b0�   , 

A1 = �1
(
−b1

)
�2 + 3�2b

2
0
b1 + �1b1c1�

2 + �3b1c1�
2 − b1�  , 

A2 = 3�2b0b
2
1
 , A3 = �2b

3
1
+ 2�1b1c2�

2 + 2�3b1c2�
2.

Then find the solution set for the above system of 
equations

Using Eq. (37) in (35) and cases of Eqs. (12)–(5) to get the 
required solutions.

 Case-1:
If h0 = 0 , h1 > 0 and h2 ≠ 0 , then

(33)�2U
3 + �1�

2U�� + �3�
2U�� − �1�

2U − �U = 0.

(34)U�
(
k − 2�1��

)
= 0.

(35)U(�) = f1�(�) + f0,

(36)A0 + A1�(� ) + A2�(� )
2 + A3�(� )

3 = 0,

(37)
{
�2 = 0, �3 = −�1,� = �1

(
−�2

)}
.

(38)

u1(x, t) = e
iΓ(�+1)(�x�−�1�2 t�)

�

�
b1

�
−
h1

h2
sech

�√
h1

�
� +

Γ(� + 1)
�
�x� − 2�1��t

�
�

�

��
+ b0

�
,

(39)

u2(x, t) = e
iΓ(�+1)(�x�−�1�2 t�)

�

�
b1

�
−
h1

h2
csch

�√
h1

�
� +

Γ(� + 1)
�
�x� − 2�1��t

�
�

�

��
+ b0

�
.



J Opt	

1 3

 Case-2:
For constants g1 and g2 , let h1 = 0, h1 > 0 and 

h2 = +4 × g1 × g2 , then

 Case-3:
For constants S1 and S2 , let h0 =

h1
2

4h2
, h1 < 0 and h2 > 0 , 

then

(40)

u3(x, t) = e
iΓ(�+1)(�x�−�1�2 t�)

�

⎛
⎜⎜⎜⎝

4b1g1
√
h1

�
4g2

1
− 4g1g2

�
cosh

�√
h1

�
� +

Γ(�+1)(�x�−2�1��t�)
�

��
+
�
4g2

1
− 4g1g2

�
sinh

�√
h1

�
� +

Γ(�+1)(�x�−2�1��t�)
�

�� + b0

⎞
⎟⎟⎟⎠
.

(41)

u4(x, t) = e
iΓ(�+1)

(

�x�−�1�2 t�
)

�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b1

√

− h1
h2

tanh
⎛

⎜

⎜

⎝

√

−h1

(

�+
Γ(�+1)(�x�−2�1��t� )

�

)

√

2

⎞

⎟

⎟

⎠

√

2
+ b0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(42)

u5(x, t) = e
iΓ(�+1)(�x�−�1�2 t�)

�

⎛⎜⎜⎜⎜⎜⎝

b1

�
−

h1

h2
coth

�√
−h1

�
�+

Γ(�+1)(�x�−2�1��t
� )

�

�
√
2

�

√
2

+ b0

⎞⎟⎟⎟⎟⎟⎠

,

(43)

u6(x, t) = e
iΓ(�+1)(�x�−�1�2 t�)

�

⎛⎜⎜⎜⎜⎜⎝

b0 +

b1

�
−

h1

h2

�
tanh

�√
−h1

�
�+

Γ(�+1)(�x�−2�1��t
� )

�

�
√
2

�
+ isech

�√
2
√
−h1

�
� +

Γ(�+1)(�x�−2�1��t�)
�

���

√
2

⎞⎟⎟⎟⎟⎟⎠

,

(44)

u7(x, t) = e
iΓ(�+1)

(

�x�−�1�2 t�
)

�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b1

√

− h1
h2

⎛

⎜

⎜

⎝

coth
⎛

⎜

⎜

⎝

√

−h1

(

�+
Γ(�+1)(�x�−2�1��t� )

�

)

2
√

2

⎞

⎟

⎟

⎠

+ tanh
⎛

⎜

⎜

⎝

√

−h1

(

�+
Γ(�+1)(�x�−2�1��t� )

�

)

2
√

2

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

2
√

2
+ b0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

 Case-4:
If h0 = 0, h1 < 0 and h2 ≠ 0 , then

 Case-5:
If h0 =

h2
1

4h2
, h1 > 0 and h2 > 0 and S2

1
− S2

2
> 0 , then

(45)

u8(x, t) = e
iΓ(�+1)

(

�x�−�1�2 t�
)

�

⎛

⎜

⎜

⎜

⎜

⎝

b1

√

− h1
h2

(

√

S21 − S22 − S1 cosh
(
√

2
√

−h1
(

� + Γ(�+1)(�x�−2�1��t� )
�

))

)

√

2
(

S1 sinh
(
√

2
√

−h1
(

� + Γ(�+1)(�x�−2�1��t� )
�

))

+ S2
)

+ b0

⎞

⎟

⎟

⎟

⎟

⎠

,

(46)

u9(x, t) = e
iΓ(�+1)

(

�x�−�1�2 t�
)

�

⎛

⎜

⎜

⎜

⎜

⎝

b0 +
b1

√

− h1
h2

cosh
(
√

2
√

−h1
(

� + Γ(�+1)(�x�−2�1��t� )
�

))

√

2
(

sinh
(
√

2
√

−h1
(

� + Γ(�+1)(�x�−2�1��t� )
�

))

+ i
)

⎞

⎟

⎟

⎟

⎟

⎠

.

(47)
u10(x, t) = e

iΓ(�+1)
(

�x�−�1�2 t�
)

�

(

b1

√

−
h1
h2

sec

(

√

−h1

(

� +
Γ(� + 1)

(

�x� − 2�1��t�
)

�

))

+ b0

)

,

(48)
u11(x, t) = e

iΓ(�+1)
(

�x�−�1�2 t�
)

�

(

b1

√

−
h1
h2

csc

(

√

−h1

(

� +
Γ(� + 1)

(

�x� − 2�1��t�
)

�

))

+ b0

)

.
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 Case-6:
If h0 = 0 and h1 > 0 , then

(49)

u12(x, t) = e
iΓ(�+1)(�x�−�1�2 t�)

�

⎛
⎜⎜⎜⎜⎜⎝

b1

�
−

h1

h2
tan

�√
h1

�
�+

Γ(�+1)(�x�−2�1��t
� )

�

�
√
2

�

√
2

+ b0

⎞
⎟⎟⎟⎟⎟⎠

,

(50)

u13(x, t) = e
iΓ(�+1)

(

�x�−�1�2 t�
)

�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b1

√

− h1
h2

cot
⎛

⎜

⎜

⎝

√

h1

(

�+
Γ(�+1)(�x�−2�1��t� )

�

)

√

2

⎞

⎟

⎟

⎠

√

2
+ b0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(51)

u14(x, t) = e
iΓ(�+1)(�x�−�1�2 t�)

�

⎛
⎜⎜⎜⎝

b1

�
−

h1

h2

�
tan

�√
2
√
h1

�
� +

Γ(�+1)(�x�−2�1��t�)
�

��
− sec

�√
2
√
h1

�
� +

Γ(�+1)(�x�−2�1��t�)
�

���
√
2

+ b0

⎞
⎟⎟⎟⎠
,

(52)

u15(x, t) = e
iΓ(�+1)(�x�−�1�2 t�)

�

⎛⎜⎜⎜⎜⎜⎝

b1

�
−

h1

h2

�
tan

�√
h1

�
�+

Γ(�+1)(�x�−2�1��t
� )

�

�

2
√
2

�
− cot

�√
h1

�
�+

Γ(�+1)(�x�−2�1��t
� )

�

�

2
√
2

��

2
√
2

+ b0

⎞⎟⎟⎟⎟⎟⎠

,

(53)

u16(x, t) = e
iΓ(�+1)(�x�−�1�2 t�)

�

⎛⎜⎜⎜⎜⎝

b1

�
−

h1

h2

��
S2
1
− S2

2
− S1 cos

�√
2
√
h1

�
� +

Γ(�+1)(�x�−2�1��t�)
�

���

√
2
�
S1 sin

�√
2
√
h1

�
� +

Γ(�+1)(�x�−2�1��t�)
�

��
+ S2

� + b0

⎞⎟⎟⎟⎟⎠
,

(54)

u17(x, t) = e
iΓ(�+1)(�x�−�1�2 t�)

�

⎛
⎜⎜⎜⎝

b1

�
−

h1

h2
cos

�√
2
√
h1

�
� +

Γ(�+1)(�x�−2�1��t�)
�

��

√
2
�
sin

�√
2
√
h1

�
� +

Γ(�+1)(�x�−2�1��t�)
�

��
− 1

� + b0

⎞
⎟⎟⎟⎠
.

 Case-7:

(55)

u18(x, t) = e
iΓ(�+1)(�x�−�1�2 t�)

�

⎛
⎜⎜⎜⎝

4b1h1 exp
�√

h1

�
� +

Γ(�+1)(�x�−2�1��t�)
�

��

exp
�
2
√
h1

�
� +

Γ(�+1)(�x�−2�1��t�)
�

��
− 4h1h2

+ b0

⎞
⎟⎟⎟⎠
,

(56)

u19(x, t) = e
iΓ(�+1)(�x�−�1�2 t�)

�

⎛
⎜⎜⎜⎝

4b1h1 exp
�√

h1

�
� +

Γ(�+1)(�x�−2�1��t�)
�

��

1 − 4h1h2 exp
�
2
√
h1

�
� +

Γ(�+1)(�x�−2�1��t�)
�

�� + b0

⎞
⎟⎟⎟⎠
.

If h0 = 0 , h1 = 0 and h2 > 0 , then

(57)

u20(x, t) = e
iΓ(�+1)(�x�−�1�2 t�)

�

⎛
⎜⎜⎜⎝

b1√
h2

�
� +

Γ(�+1)(�x�−2�1��t�)
�

� + b0

⎞
⎟⎟⎟⎠
,
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Results and discussion

In this section, the distinctive originality and novelty of the 
present study is showcased through a comparison of the 
derived solutions with those from prior research. Moham-
mad Mirzazadeh et al. explored optical solitons within an 
extended-dimensional nonlinear conformable Schrödinger 
equation that incorporates cubic–quintic nonlinearity by 
applying the extended hyperbolic method and Nucci’s 
reduction method [82]. They obtained solutions for peri-
odic waves, solitary waves, and rational waves for the given 
equation. In this study, we have derived diverse solutions, 
including dark, singular, periodic, and bright wave solutions, 
employing the MSSEM. Our findings exhibit variations from 
those presented in [82] when compared, yet by adjusting 
the values of the involved components, similar outcomes 
can be obtained. Unlike previous studies, the uniqueness 
of this research lies in its examination of the influence of 
model parameters on soliton behavior. Although the applied 
techinque is novel for the model under investigation, result-
ing in the creation of several solitons, the primary emphasis 

(58)

u21(x, t) = e
iΓ(�+1)(�x�−�1�2 t�)

�

⎛
⎜⎜⎜⎝
b0 +

ib1√
h2

�
� +

Γ(�+1)(�x�−2�1��t�)
�

�
⎞
⎟⎟⎟⎠
.

of this study is on understanding how model parameters 
impact the actions of solitons.

The sequence of figures, referenced from Figs. 1, 2, 3, 4
, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17, meticulously 
portrays a diverse range of soliton solutions through 3D, 2D, 
contour, and density plots, each corresponding to unique 
equations from Eqs. (38) to (58). These visual representa-
tions encapsulate a broad spectrum of soliton phenomena: 
Fig. (1) illustrates the bright soliton emerging from Eq. (38), 
showcasing a localized wave structure. In contrast, Fig. 2 
presents the singular periodic soliton arising from Eq. (39), 
characterized by abrupt and distinctive bends within the 
wave pattern. Figure 3 showcases hyperbolic soliton solu-
tions sourced from Eq. (40), featuring localized regions of 
decreased amplitude within the wave solutions. Figure 4 
exhibits dark soliton solutions sourced from Eq.  (41), 
exhibiting stable waveforms preserving their shape during 
propagation. Furthermore, Fig. 5 illustrates the periodic dark 
soliton solution derived from Eq. (42), displaying local-
ized regions of increasing amplitude within the wave. Fig-
ure 6 exhibits the combo dark–bright soliton solution from 
Eq. (43), featuring localized regions of increased amplitude 
within the wave solutions. Additionally, Fig. 7 showcases 
the compactons soliton derived from Eq. (44), maintain-
ing a localized form without dispersing during propaga-
tion. Figures 8 and 9 portray hyperbolic soliton solutions 
originating from Eqs. (45) and (46), respectively, showcas-
ing periodic behavior while preserving localized shapes. 
Moving forward, Fig. 10 represents another kink soliton 
solution derived from Eq. (49). Similarly, Figs. 11 and 12 
demonstrate the periodic soliton derived from Eqs. (51) 

Fig. 1   The graphics of u1(x, t) 
in Eq. (38) at � = 1.5 , � = 0.2 , 
� = 0.1 , b0 = 2.5 , b1 = 1.7 , 
c0 = 1.5 , �1 = 2.5 , �3 = 2.8 , 
h1 = 1.3 , h2 = 0.6 , � = 2.8 , and 
� = 0.6
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and (52). Furthermore, Fig. 13 portrays the peakon kink 
soliton obtained from Eq. (54), featuring abrupt changes or 
bends within the wave. Figures 14 and 15 showcase another 
compacton soliton from Eq.  (55) and another singular 
kink soliton from Eq. (56), displaying peaked structures 
and abrupt changes within their waveforms, respectively. 
Finally, Fig. 16 illustrates a bright soliton solution derived 
from Eq. (57), displaying a stable, peaked waveform, while 
Fig. 17 represents the bright peakon soliton derived from 

Eq. (58), featuring localized regions of decreased amplitude 
within the wave solutions. These diverse soliton solutions 
span various scientific fields, including signal processing, 
nonlinear optics, fluid dynamics, atomic physics, plasma 
studies, and biological wave phenomena, providing critical 
insights into wave behavior across different contexts and 
systems.

The solutions presented in this study hold physical sig-
nificance. For example, a dark soliton, characterized by an 

Fig. 2   The graphics of u2(x, t) 
in Eq. (39) at � = 2.6 , � = 0.99 , 
� = 2.1 , b0 = 0.45 , b1 = 1.7 , 
c0 = 1.4 , �1 = 0.5 , �3 = 0.6 , 
h1 = 0.3 , h2 = 0.45 , � = 2.6 , 
and � = 1.2.

Fig. 3   The graphics of u3(x, t) 
in Eq. (40) at � = 2.1 , � = 0.99 , 
� = 1.9 , b0 = 0.8 , b1 = 0.57 , 
c0 = 1.5 , �1 = 1.5 , �3 = 0.7 , 
h0 = 0 , h1 = 0.66 , h2 = 0.96 , 
� = 1.5 , � = 0.5 , g1 = 0.4 and 
g2 = 0.6
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intensity lower than the background, emerges distinctively 
from a conventional pulse. Instead, it primarily lacks energy 
within a continuous-time beam. Additional varieties of soli-
tary waves, known as singular solitons, exhibit singularities 
often characterized by infinite discontinuities. When the 

center of the solitary wave is positioned imaginarily, these 
singular solitons may be associated with solitary waves. This 
solution category incorporates spikes, making it a potential 
descriptor for the formation of rogue waves. Examples of 
such solitary waves encompass compactions, characterized 
by finite (compact) support, and peakons, distinguished by 
peaks with a discontinuous first derivative. A bright soliton 
refers to solitary waves with a peak intensity surpassing 
that of the background. Bright solitons play a crucial role in 

Fig. 4   The graphics of u4(x, t) 
in Eq. (41) at � = 1.3 , � = 0.99 , 
� = 1.9 , b0 = 1.4 , b1 = 1.5 , 
c0 = 0.7 , �1 = 0.5 , �3 = 1.7 , 
h0 = 0.88 , h1 = −1.4 , h2 = 1.8 , 
� = 0.76 , and � = 0.35

Fig. 5   The graphics of u5(x, t) 
in Eq. (42) at � = 2.1 , � = 0.99 , 
� = 2.1 , b0 = 1.4 , b1 = 1.5 , 
c0 = 1.7 , �1 = 1.5 , �3 = 1.6 , 
h0 = 0.13 , h1 = −0.9 , h2 = 0.68 , 
� = 0.67 , and � = 0.9
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Fig. 6   The graphics of u6(x, t) 
in Eq. (43) at � = 1.9 , � = 0.99 , 
� = 1.8 , b0 = 1.8 , b1 = 1.2 , 
c0 = 2.7 , �1 = 1.5 , �3 = 2.6 , 
h0 = 1.62 , h1 = −0.9 , h2 = 1.8 , 
� = 1.8 , and � = 0.9

Fig. 7   The graphics of u7(x, t) 
in Eq. (44) at � = 0.9 , � = 0.99 , 
� = 0.5 , b0 = 0.9 , b1 = 0.6 , 
b2 = 0.5 , c0 = 0.8 , �1 = 0.66 , 
�3 = 0.8 , h0 = 0.06 , h1 = −0.3 , 
h2 = 2.8 , � = 3.3 , and � = 0.8
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Fig. 8   The graphics of u8(x, t) 
in Eq. (45) at � = 2.9 , � = 0.78 , 
� = 2.4 , b0 = 2.6 , b1 = 3.1 , 
c0 = 2.4 , �1 = 0.6 , �3 = 1.1 , 
h0 = 0.22 , h1 = −0.8 , h2 = 1.4 , 
� = 1.5 , � = 0.5 , S1 = 1.2 , and 
S2 = 1.1

Fig. 9   The graphics of 
u9(x, t) in Eq. (46) at � = 1.1 , 
� = 0.99 , � = 1.9 , b0 = 0.55 , 
b1 = 1.3 , b2 = 1.5 , c0 = 0.2 , 
�1 = 0.6 , �3 = 0.77 , h0 = 0.72 , 
h1 = −1.8 , h2 = 0.9 , � = 0.66 , 
and � = 0.8
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Fig. 10   The graphics of 
u12(x, t) in Eq. (49) at � = 1.5 , 
� = 0.99 , � = 1.3 , b0 = 0.8 , 
b1 = 1.1 , c0 = 0.77 , �1 = 1.5 , 
�3 = 2.5 , h0 = 0.05 , h1 = 0.5 , 
h2 = 0.8 , � = 0.6 , and � = 0.6

Fig. 11   The graphics of 
u14(x, t) in Eq. (51) at � = 2.1 , 
� = 0.96 , � = 0.6 , b0 = 0.9 , 
b1 = 0.6 , b2 = 0.7 , c0 = 0.8 , 
�1 = 0.5 , �3 = 0.8 , h0 = 0.018 , 
h1 = 0.2 , h2 = 1.8 , � = 2.3 , and 
� = 0.3
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Fig. 12   The graphics of 
u15(x, t) in Eq. (52) at � = 1.4 , 
� = 0.92 , � = 1.7 , b0 = 0.9 , 
b1 = 0.6 , c0 = 3.8 , �1 = 1.5 , 
�3 = 0.8 , h0 = 0.018 , h1 = 0.5 , 
h2 = 1.8 , � = 1.3 , and � = 0.9

Fig. 13   The graphics of 
u17(x, t) in Eq. (54) at � = 0.9 , 
� = 0.99 , � = 0.5 , b0 = 0.1 , 
b1 = 0.3 , c0 = 0.1 , �1 = 0.1 , 
�3 = 0.2 , h0 = 1.62 , h1 = 0.92 , 
h2 = 0.2 , � = 0.5 , and � = 0.9
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Fig. 14   The graphics of 
u18(x, t) in Eq. (55) at � = 1.9 , 
� = 0.99 , � = 1.6 , b0 = 1.2 , 
b1 = 0.3 , c0 = 0.5 , �1 = 1.4 , 
�3 = 2.2 , h0 = 0 , h1 = 1.56 , 
h2 = 0.78 , � = 1.8 , and � = 1.9

Fig. 15   The graphics of 
u19(x, t) in Eq. (56) at � = 0.9 , 
� = 0.98 , � = 0.2 , b0 = 1.6 , 
b1 = 0.89 , c0 = 1.5 , �1 = 0.7 , 
�3 = 3.5 , h0 = 1.62 , h1 = 0.88 , 
h2 = 0.4 , � = 0.4 , and � = 0.2
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Fig. 16   The graphics of 
u20(x, t) in Eq. (57) at � = 0.4 , 
� = 0.7 , � = 0.3 , b0 = 0.1 , 
b1 = 0.2 , b2 = 0.1 , c0 = 0.8 , 
�1 = 0.5 , �3 = 0.8 , h0 = 0 , 
h1 = 0 , h2 = 0.8 , � = 0.9 , and 
� = 0.1

Fig. 17   The graphics of 
u21(x, t) in Eq. (58) at � = 0.9 , 
� = 0.99 , � = 0.2 , b0 = 0.1 , 
b1 = 0.3 , c0 = 0.1 , �1 = 0.1 , 
�3 = 0.2 , h0 = 0 , h1 = 0 , 
h2 = 0.2 , � = 0.5 , and � = 1.9
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signal transmission due to their localized nature [83]. Appli-
cations of bright solitons extend to plasma studies, while 
compactons are utilized in modeling localized waves. Bright 
solitons provide insights into fluid dynamics, and singular 
dark solitons find relevance in atomic physics. Periodic 
soliton solution is characterized by a recurring and continu-
ous pattern, determining both its wavelength and frequency. 
The period is defined as the time needed to complete one 
cycle of the waveform, while frequency represents the num-
ber of cycles per second. These solitons facilitate periodic 
signal transmission in wave guides and optical fibers. Kink 
waves either ascend or descend from one asymptotic state 
to another, reaching a constant value at infinity, while sin-
gular kink solitons contribute to nonlinear optics and signal 
processing. The application of combo dark–bright solitons 
extends to various fields such as optical communications 
and nonlinear optics for manipulating lightwave properties. 
Compactons, being solitons, possess a confined spatial sup-
port, limited to a finite core. These solitons lack an expo-
nential tail and have a finite wavelength. Moreover, they 
possess resilient soliton-like solutions. Combo dark–bright 
and singular combo dark–bright solitons enhance our under-
standing of complex wave behaviors, especially in biological 
systems. Singular kink solitons are valuable for identify-
ing abrupt waveform changes in various physical systems. 
Bright peakon solitons and bright solitons are employed in 
nonlinear optics and photonics for their stable waveform 
characteristics. Bright peakons find application in oceanog-
raphy for understanding localized amplitude reductions in 
water wave dynamics. Collectively, these soliton solutions 
contribute to insights and manipulations across scientific 
disciplines, covering a broad spectrum of wave phenomena 
with distinct characteristics. Periodic solitons maintain their 
form and speed over time, while dark and bright solitons 
represent specific areas of heightened or decreased intensity. 
Peakons are characterized by sharp peaks traveling at steady 
speeds, and kink waves reach a constant value at infinity 
by rising or falling from one asymptotic state to another. 
Compactons, limited to a finite core, are solitons due to their 
compact spatial support.

Conclusion

In this paper, the MSSEM recognized as a robust method 
for solving nonlinear evolution equations (NLEEs), is 
employed for the truncated M-fractional resonant nonlin-
ear Schrödinger equation (RNLSE). By applying this tech-
nique, we identified solutions in various forms, including 
dark, bright, periodic, combo dark bright, peakons, kink, and 
compactons soliton solutions. It’s important to emphasize 
that Mathematica is a widely acknowledged and extensively 
validated software tool employed across diverse scientific 

and mathematical domains. Although no software is com-
pletely immune to errors, Mathematica has undergone thor-
ough testing and validation procedures to mitigate such 
risks. Additionally, we utilized the most recent version of 
Mathematica to leverage any updates or enhancements in 
its algorithms. Utilizing this software, we have generated 
3D, 2D, contour, and density plots for these solutions. The 
solutions obtained in this research align strongly with the 
original equation, underscoring their reliability. The method-
ologies introduced here demonstrate impressive adaptability, 
capable of addressing a wide range of NLPDEs. Notably 
unprecedented, the outcomes presented in this paper estab-
lish the developed method as a dependable and effective 
approach for exact solutions in NLPDEs. Our future work 
aims to explore further into dynamic NLPDE analysis, using 
the modified Sardar sub-equation method to examine the 
fractional-stochastic quantum Zakharov–Kuznetsov equa-
tion under additive or color multiplicative noise conditions. 
Additionally, our proposed method holds potential for solv-
ing systems like the Drinfel’d–Sokolov–Wilson system and 
other integrable NLPDEs, fostering advancements in these 
intricate domains through ongoing research efforts.

Optical solitons have emerged as indispensable tools 
in modern telecommunications, offering a unique solu-
tion to the challenges of long-distance data transmission. 
These self-reinforcing solitary wave packets, governed by 
a delicate balance of nonlinear and dispersive effects, have 
transformed the landscape of fiber optic communication. 
By maintaining their shape and speed over vast distances, 
solitons effectively mitigate the detrimental effects of disper-
sion, ensuring that data signals remain intact and coherent. 
This breakthrough technology has enabled the development 
of high-speed internet connections and global communica-
tion networks that can reliably transmit massive amounts 
of data over thousands of kilometers without significant 
degradation. Despite their remarkable utility, the deploy-
ment of optical solitons is not without its complexities and 
limitations. Managing soliton dynamics, including interac-
tions between solitons and dispersive waves, requires precise 
control over various parameters within the optical medium. 
Moreover, the interaction of solitons with other signals in 
densely populated fiber optic networks poses challenges in 
maintaining signal integrity and minimizing interference. 
However, ongoing research and technological advancements 
continue to address these challenges, driving innovation in 
soliton-based communication systems and paving the way 
for even faster, more efficient, and reliable data transmission 
in the future [84–97].

The implications of these findings span various fields 
including optical fibers, plasma physics, nuclear physics, 
mathematical biosciences, and beyond. For instance, the 
derived soliton solutions may drive the innovation of novel 
devices like all-optical switches and amplifiers, enhancing 
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the efficiency and reliability of fiber optic communication 
networks. Furthermore, in plasma physics, these solutions 
hold promise for unraveling intricate plasma phenomena, 
potentially advancing the development of fusion reactors 
and other plasma-based technologies. Moreover, insights 
gleaned from these soliton solutions could reshape mod-
els of biological systems within mathematical biosciences, 
offering fresh perspectives on phenomena such as neuronal 
signaling and protein dynamics [98].
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