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Abstract The phenomenon of laser wakefield acceleration 
is one of the prominent mechanisms to accelerate electrons 
to very high energies within a very small propagation dis-
tance. In this study, we have chosen Sinh–Gaussian laser 
pulse with static magnetic field perpendicular to direction of 
propagation of pulse. Analytical solution for chosen electric 
field is obtained from a generalized differential equation of 
laser wake potential. Hence, expressions for wakefield and 
electron energy gain are also obtained. Using feasible param-
eters, it is observed that when laser field amplitude increases 
from 3.85 × 1011 to 4.81 × 1011 V∕m , electron energy gain 
increases from 102.504 to 160.163 MeV in the absence of 
external magnetic field and 103.258 to 160.918 MeV in an 
external magnetic field of 40 T. So, laser field amplitude 
and strength of magnetic field both have direct impact on 
electron energy gain and enhance in energy gain can be seen. 
Our research will be useful for the researchers to obtain a 
more energy efficient electron acceleration mechanism.

Keywords Laser wakefield acceleration · Sinh–Gaussian 
laser pulse · Magnetic field strength · Electron energy gain · 
Energy efficiency

Introduction

Laser plasma interaction is a widely used phenomenon 
for producing various nonlinear effects like production of 
various radiations of desired frequency (THz generation 

[1–10] and harmonic generation [11–17]), controlling the 
intensity of propagating laser pulse (self-focusing [18–23]), 
particle acceleration (laser wakefield acceleration [24–27] 
and plasma wake field acceleration [28, 29]), etc. Particle 
acceleration, especially electron acceleration is one of the 
most important utilized nonlinear phenomena. Optimization 
of various laser and plasma parameters is required for the 
maximum energy efficient laser wakefield acceleration 
(LWFA). Askari et al. [30] have compared LWFA produced 
by Gaussian-like and rectangular–triangular pulse in 
magnetized plasma. In this study, they have investigated the 
role of pulse profile along with the role of external magnetic 
field. Abedi-Varaki et al. [31] have taken Gaussian, super-
Gaussian, and Bessel–Gaussian profile for the comparative 
study of LWFA in magnetized plasma. Role of laser pulse 
profile on LWFA using different Gaussian-like laser pulses 
is investigated by Sharma et al. [32] and found that the laser 
pulse with broadest pulse profile is most suited for wakefield 
generation.

The role of frequency chirped laser pulse (both positive 
and negative) on electron acceleration is investigated by 
Ghotra [33], Pathak et al. [34], Zhang et al. [35], Sharma 
et al. [36, 37], Jain et al. [38] and Singh et al. [39]. Role 
of laser pulse polarization is investigated by Heydarzadeh 
et al. [40], Sharma et al. [41], and Zhang et al. [42]. Plasma 
density also plays a crucial role in electron acceleration 
process. Sharma et al. [43] have studied plasma with ripple 
density variation, and Pukhov et al. [44] and Gupta et al. 
[45] have investigated LWFA in density modulated plasma. 
Up-ramp density plasma has positive correlation with 
electron energy gain in LWFA [46].

Asymmetric laser pulse can significantly affect electron 
acceleration due to its specific pulse shape. Leemans et al. 
[47], Sharma et al. [48], Xie et al. [49], Gopal et al. [50], 
etc. have investigated this correlation. Sharma et al. [51] 
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have studied the role of wiggler magnetic field, Abedi-Varaki 
[52] have selected periodic magnetic field, and Singh et al. 
[53] have used sheared magnetic field to investigate their 
role on laser wakefield acceleration. The effect of beating of 
laser pulses to enhance wakefield excitation is investigated 
by Sharma et al. [54].

In this study, we have chosen Sinh–Gaussian pulse profile 
with transverse static magnetic field to investigate the role 
of both chosen laser profile and magnetic field. Using this 
specific pulse profile, analytical solution for wake potential, 
wakefield and electron energy gain is derived in section II. 
By selecting feasible parameters, curves are drawn in result 
and discussion section III. Research outcomes based on 
these curves are discussed in conclusion section IV. The 
paper ends with references.

Derivation of formulas

A laser pulse with an electric field E and a magnetic field 
B that is traveling in the z-direction through a uniform 
plasma with a density n is analyzed. The rest mass of an 

electron is denoted as m_0. We introduce a new parameter, 
defined as ξ = z − vgt , where vg represents the group velocity 
and t is the time. An external magnetic field, denoted as 
B
0
 , is applied in the y-direction. The expression for the 

wake potential ( Φ ) created in the presence of an external 
transverse magnetic field is as follows: [32]

Here, � is the ratio of speed of light in vacuum to group 
velocity. � = c∕vg, and kP × vg = �P.

In this study, we have chosen a Sinh–Gaussian laser pulse 
with a pulse envelope expressed as

Here, w
0
 indicates the laser’s characteristics, E

0
 represents 

the strength of the laser’s electric field, and L represents the 
length of the pulse.

By solving Eq.  (1) for the laser profile described in 
Eq. (2), we derive the resulting wake potential:
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The formula for generated longitudinal laser wakefield 
is Ew = −

�Φ

�z

For a new variable � = kp(ξ − L∕2) , the change in the 
relativistic factor (∆γ) is

By utilizing the formula, one can obtain the energy gained 
by an electron called electron energy gain. ΔW = m

0
c2Δ� .
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The error function (erf) and the imaginary error function 
(erfi) are defined in this context as follows: [55]
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Result and discussion

The current study utilized plasma with the following 
specifications: an electron density of4 × 1022 m−3 , a fre-
quency of 1.13 × 1013 rad∕s , and plasma wavelength of 
166 μm corresponding to selected plasma density. In the 
numerical investigation, a laser pulse was chosen with a 
wavelength of 10.6 μm (generated by  CO2 laser source), 
a frequency of 1.78 × 1014 rad∕s , and a pulse dura-
tion of 83 μm. The selected amplitudes of the laser elec-
tric field ( E

0
 ) are3.85 × 1011 V∕m, 4.04 × 1011 V∕m , 

4.23 × 1011 V∕m, 4.43 × 1011 V∕m, 4.61 × 1011 V∕m, 
and4.81 × 1011 V∕m . The numerical value of w

0
 is 

16.87 µm. To assess the influence of the magnetic field 
on electron acceleration via the LWFA phenomenon, we 
employ external field intensities of 0, 10, 20, 30, and 40 T 
(1 T = 10 kilogauss).

Figure 1 illustrates the variation of generated laser wake 
potential with propagation distance for different laser inten-
sities. With the increase in laser intensity from 3.85 × 1011 
to 4.81 × 1011 V∕m , amplitude of generated wake potential 
increases from 88.7471 to 138.581 kV for static magnetic 
field of 20 T. Curves are plotted to obtain peak values of 
generated wake potential for selected different laser pulse 
amplitude at external magnetic field strength 0 T, 10 T, 20 T, 
30 T, and 40 T. The peak values of generated wake potential 
are noted in Table 1. Using these data, Fig. 2 is plotted to 
show the variation of generated wake potential with laser 
electric field amplitude of 3.85 × 1011 V∕m and selected 
magnetic field. Curve represents a positive correlation of 
generated wake potential with external magnetic field.

Figure 3 depicts the relationship between the laser inten-
sities and the generated laser wakefield as the propagation 
distance changes. By increasing the laser intensity from 
3.85 × 1011 to 4.81 × 1011 V∕m , the amplitude of the gen-
erated wakefield increases from 3.89 to 6.08 GV/m. This 

occurs when a static magnetic field of 20 T is applied. 
Laser wakefield graphs are generated for various laser pulse 

Fig. 1  Illustration of gener-
ated laser wake potential 
with propagation distance 
for laser electric field 
3.85 × 1011 V∕m (black) , 4.04 × 1011 V∕m (magenta) , 
4.23 × 1011 V∕m (blue), 4.43 × 1011 V∕m

(green), 4.61 × 1011 V∕m (brown), 
and 4.81 × 1011 V∕m(red). 
B0 = 20 T , w0 = 16.87 μm, 
L = 83 μm

Table 1  Amplitude of generated wake potential (in kV) with laser 
field amplitude ( E

0
 ) and external magnetic field strength ( B

0
)

E
0
 (V/m) B

0

0 T 10 T 20 T 30 T 40 T

3.85 × 10
11 88.5944 88.6326 88.7471 88.9377 89.2037

4.04 × 10
11 97.6753 97.7135 97.828 98.0186 98.2849

4.23 × 10
11 107.199 107.237 107.352 107.543 107.809

4.43 × 10
11 117.166 117.204 117.319 117.509 117.776

4.61 × 10
11 127.576 127.614 127.729 127.919 128.186

4.81 × 10
11 138.429 138.467 138.581 138.772 139.039

Fig. 2  Illustration of generated laser wake potential amplitude for 
different magnetic field strength w0 = 16.87 μm, L = 83 μm and laser 
field amplitude 3.85 × 1011 V∕m
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amplitudes and external magnetic field strengths of 0 T, 
10 T, 20 T, 30 T, and 40 T. The maximum value of the 
generated wakefield is shown in Table 2. Based on the pro-
vided data, Fig. 4 illustrates the relationship between the 
generated wakefield and magnetic field for the laser electric 
field amplitude of 3.85 × 1011 V∕m . The curve illustrates a 
direct relationship between the generated wakefield and the 
external magnetic field.

The relationship between the electron energy gain and 
propagation distance for various laser intensities is shown in 
Fig. 5. The maximum energy gain increases from 102.694 to 
160.353 MeV as the laser intensity rises from 3.85 × 1011 to 
4.81 × 1011 V/m in a static magnetic field of 20 T. Curves are 
generated to represent specific variations in electron energy 
gain in response to laser pulse amplitude and external mag-
netic field strengths of 0 T, 10 T, 20 T, 30 T, and 40 T. 
Table 3 presents the maximum value of the electron energy 
gain amplitude that was generated. Based on the provided 
data, Fig. 6 illustrates the correlation between the generated 
wake potential and the chosen magnetic field at constant 
laser electric field amplitude of 3.85 × 1011 V/m. The curve 
illustrates a positive correlation between the electron energy 
gain and the external magnetic field.

When an intense laser beam propagates through 
underdense plasma, nonlinear ponderomotive force and 
electrostatic force between electron and positive ions are 
responsible for periodic oscillation of electrons (plasma 
wave) about the axis of propagation of laser pulse. As a 
result, a wake potential and wakefield develops along the 
longitudinal axis called laser wake potential and laser 
wakefield, respectively, which can be utilized to accelerate 
electrons. With the increase in laser field amplitude or 
strength of external magnetic field, the phenomenon of 
electron acceleration becomes more effective. It can be seen 
through the curves obtained in our study.

Using Gaussian-like and rectangular–triangular pulses, 
Askari et al. [30] have studied the impact of magnetic field 
on wakefield generation and concluded that the use of 

Fig. 3  Illustration of generated 
laser wakefield with propagation 
distance for laser electric field 
3.85 × 1011 V∕m(black), 4.04 × 1011 V∕m(magenta) , 
4.23 × 1011 V∕m(blue), 4.43 × 1011 V∕m

(green), .61 × 1011 V∕m (brown), 
and 4.81 × 1011 V∕m (red). 
B0 = 20T , w0 = 16.87 μm, 
L = 83 μm

Table 2  Amplitude of generated wakefield (in GV/m) with laser field 
amplitude ( E

0
 ) and external magnetic field strength ( B

0
)

E
0
 (V/m) B

0

0 T 10 T 20 T 30 T 40 T

3.85 × 10
11 3.88469 3.88828 3.89903 3.9169 3.94177

4.04 × 10
11 4.28287 4.28646 4.29722 4.31509 4.33999

4.23 × 10
11 4.70047 4.70406 4.71482 4.7327 4.75762

4.43 × 10
11 5.1375 5.14109 5.15185 5.16974 5.19468

4.61 × 10
11 5.59395 5.59754 5.6083 5.6262 5.65115

4.81 × 10
11 6.06982 6.07341 6.08418 6.10208 6.12705

Fig. 4  Illustration of generated laser wakefield amplitude for differ-
ent magnetic field strength w0 = 16.87 μm, L = 83 μm and laser field 
amplitude 3.85 × 1011 V∕m
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external magnetic field enhances acceleration of electrons. 
They also used Gaussian laser pulse for the similar study 
[56].

Conclusion

Laser wakefield acceleration (LWFA) is a notable process 
that rapidly increases the energy of electrons over a 
short distance using laser-induced wakefield. For this 
investigation, we have selected a Sinh–Gaussian laser pulse 
that is accompanied by a static magnetic field positioned 
perpendicular to the pulse’s direction of propagation. The 
analytical solution for the selected electric field is derived 
from a generalized differential equation of the laser wake 
potential. Consequently, equations for the wakefield and the 
increase in electron energy are also derived. By varying the 
laser field amplitude within reasonable limits, it was found 
that increasing it from 3.85 × 1011 to 4.81 × 1011 V∕m 
resulted in an increase in electron energy gain from 
102.504 to 160.163  MeV when there was no external 
magnetic field. When an external magnetic field of 40 T was 
present, the electron energy gain increased from 103.258 
to 160.918 MeV. The amplitude of the laser field and the 
strength of the magnetic field directly affect the increase 
in electron energy gain, resulting in an enhancement of 
energy gain. Out of electric and magnetic fields, the role of 
electric field is dominant as per the results of our study using 
selected parameters. An electric field of high amplitude 
can enhance the wakefield more effectively to generate a 
plasma wave of higher amplitude. This generated plasma 
wave is responsible for generating enhanced laser wakefield 
acceleration. Our findings will provide valuable insights for 
researchers seeking to enhance the efficiency of electron 
acceleration mechanisms for energy production.

Fig. 5  Illustration of electron 
energy gain with propagation 
distance for laser electric field 
3.85 × 1011 V∕m(black), 4.04 × 1011 V∕m(magenta) , 
4.23 × 1011 V∕m(blue), 4.43 × 1011 V∕m

(green), 4.61 × 1011 V∕m(brown), 
and 4.81 × 1011 V∕m(red). 
B0 = 20T , w0 = 16.87 μm, 
L = 83 μm

Table 3  Amplitude of electron energy gain (in MeV) with laser field 
amplitude ( E

0
 ) and external magnetic field strength ( B

0
)

E
0
 (V/m) B

0

0 T 10 T 20 T 30 T 40 T

3.85 × 10
11 102.504 102.552 102.694 102.929 103.258

4.04 × 10
11 113.011 113.059 113.2 113.436 113.765

4.23 × 10
11 124.03 124.078 124.22 124.456 124.784

4.43 × 10
11 135.562 135.609 135.751 135.987 136.317

4.61 × 10
11 147.606 147.654 147.796 148.032 148.361

4.81 × 10
11 160.163 160.211 160.353 160.589 160.918

Fig. 6  Illustration of maximum electron energy gain for differ-
ent magnetic field strength w0 = 16.87 μm, L = 83 μm and laser field 
amplitude 3.85 × 1011 V∕m
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