
Vol:.(1234567890)

J Opt (February 2024) 53(1):528–537
https://doi.org/10.1007/s12596-023-01191-0

1 3

RESEARCH ARTICLE

Eminently sensitive mono‑rectangular photonic crystal 
fiber‑based sensor for cancer cell detection in THz regime

Sapana Yadav1 · Pooja Lohia2 · D. K. Dwivedi1  

Received: 14 February 2023 / Accepted: 16 April 2023 / Published online: 5 May 2023 
© The Author(s), under exclusive licence to The Optical Society of India 2023

Introduction

Presently there is no medicine which can eradicate cancer 
completely. The single option to fight cancer is to diag-
nose it at slightly earlier stages accurately. Cancer diag-
nosis can be done by employing the optical and biochemi-
cal performance of cancerous cells [1]. Because various 
cells’ responses to light are different, this property could 
be investigated to identify different cells proficiently. 
Furthermore, early cancer detection could play an impor-
tant role in lowering cancer-related mortality rate. As a 
result, recently research related to an efficient and effective 
method for early cancer diagnosis has drawn much atten-
tion across the globe. In fast paced life, cancer––the unlim-
ited development of cancer cells in the human body has 
taken place unhealthy, fatal illness specified by high daily 
death rate [2, 3]. This kind of uncontrolled tumor growth 
is a collaborative result of excessive interaction to toxic 
materials, emitting sources, and chronic materials, strong 
liquor consumption, greasy health, an unbalanced diet, low 
physical activity, nutritional insufficiency, and so on [4]. 
If the damaged cells are not spotted at a primitive phase, 
the cancer could develop all over the body, eventually kill-
ing the patient. Various blood analysis (e.g., blood pro-
tein testing, tumor marker, complete blood count, tumor 
marker testing etc.) and urine analysis have been generally 
performed to detect cancer, but the consequences could not 
explicitly state the negatively damaged organ [4]. Biopsy 
has been the standard method for recognizing cancerous 
cells, and it requires taking samples of suspected cells for 
testing [5]. Positron emission tomography (PET), ultra-
sound scan, magnetic resonance imaging (MRI) and com-
puted tomography (CT) might be other prevalent tests for 
detecting cancer [6, 7]. Moreover, these tests have been 
time-consuming (varying from 2 to 30 mins to 2–3 days), 
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that could have negative consequences for cancer patients 
who require prompt diagnosis [8]. Consequently, optoelec-
tronics researchers have been attempting to develop fast 
cancer cell identifiers. Cancerous and normal cells have 
distinct refractive indices (RIs) and show different propa-
gation properties when light given from a similar source. 
Therefore, to detect the characteristics of cell could be 
detected by investigating the received signal [9].

The terahertz frequency spectrum has been known as the 
IR-microwave transmission bridge. THz waves are a subcat-
egory of the electromagnetic spectrum from 0.1 to 10 THz 
frequency range. The terahertz frequency’s outstanding pro-
ficiency makes it relevant in a wide area of usage. The most 
essential of these applications have been explosive threat 
detection, medical, sensing and real-time imaging, environ-
mental [10, 11].

Photonic crystal fibers (PCF) are a kind of optical fiber 
in which air holes have been designed randomly or system-
atically across the cross section [12]. PCF not only reduces 
the risk of uncontrollable losses through free space [13], 
but these are also small, inexpensive robust, and relevantly, 
extremely delicate as well as relevant [14]. There have been 
two kinds of PCF based on their guiding techniques: pho-
tonic bandgap fibers that use the photonic bandgap mecha-
nism [15], and index guiding fibers, which use modified total 
internal reflection [16]. Due to the extremely low energy of 
each photon, THz-based sensors have been strongly efficient 
of penetrating porous samples except damaging the test layer 
[12, 17].

The versatility in developing the cross section represents 
the most beneficial characteristic of PCFs which charac-
terizes it from conventional fiber optics [18]. This enables 
researchers to achieve the desired waveguide characteristics, 
such as reduced confinement loss [19] and tremendously 
high sensitivity [20], high birefringence [21] and numerical 
aperture [22], large modal area [23], and ultra-fat near-zero 
dispersion [24, 25]. So, plenty of complicated PCF cross 
sections have been developed over the years, such as hexa-
gon shaped [26], octagon shaped [27], spiral [28], elliptical 
[29], honeycomb [30], and hybrid [31] claddings.

The representative material in PCF has also been a key 
factor of investigations. However, metallic optical fibers 
were previously utilized. Current research is concentrat-
ing on optical polymers such as SILICA [32], PMMA [33], 
ZEONEX [34], TEFLON [35], TOPAS [36] and TELLUR-
ITE [37]. Optical polymers have been well-known for their 
low cost, impact resistance, and ease of integration with 
optical and mechanical systems [38]. THz sensors based on 
PCF have been broadly employed in air quality monitoring 
of our surroundings [39], identification of toxic substances 
and explosive materials such as cyanides [40],blood compo-
nent evaluation[41, 42], alcohol identification in beverages 
[43] and leaking nature of highly flammable and dangerous 

gases such as hydrogen sulfide and methane in industry sec-
tors because of their enormous popularity.

Sharan et al. [44] proposed the photonic bandgap tech-
nique to identify cancer cells in 2014. Moreover, the pho-
tonic band gap technique has complexity in the manufactur-
ing procedure. The thermal profile has an influence on the 
result. Sharma et al. [45] reported a 2D photonic crystal 
fiber-based sensor for the analysis of cancer cells in cervi-
cal, breast and basal cases. The working wavelength region 
has been extremely narrow. Furthermore, the manufacturing 
tolerance was not presented. Ramanujan et al. reported a 
geometrical covered nanocomposite material-based photonic 
crystal fiber for identifying cancer cells in 2018 [46].They 
were using surface plasmon resonance (SPR)-based sensor 
and obtained extremely small sensitivity. Shimohammadli 
et al. [47] developed a microfluidic apparatus for analyz-
ing breast cancer in the middle of 2018. Ayynar et al. [48] 
reported a dual-core PCF model that could detect breast, 
basal and cervical cancers during the same year. Despite the 
enhanced sensitivity response, the identification limit has 
been extremely small. Jabin et al. [49] proposed a cancer 
model based on surface plasmon resonance for the rapid 
identification of several kinds of cancer cells with enhanced 
sensitivity performance and identification limit in 2019. 
Furthermore, a novel amoeba-shaped design has been con-
structed, and major optical parameters have been evalu-
ated, but the relative sensitivity performance did not come 
as satisfactory compared to the other parameters [50]. To 
overcome the ongoing difficulties and to rise the relative sen-
sitivity the present model has been designed and analyzed. 
As per the knowledge of authors, eminently sensitive mono-
rectangular photonic crystal fiber (MRC-PCF)-based sensor 
for cancer cell detection in THz region is not reported so far.

In the present work, a close-packed cladding PCF has 
been proposed. The proposed model is simple in structure 
with high relative sensitivity and reduced confinement loss 
which delivers simple design with enhanced outcome for 
the identification of cancer cells and normal cells. Several 
characterizations have been investigated in the proposed 
work like relative sensitivity, confinement loss, effective 
area, effective refractive index, birefringence, and propa-
gation constant. The process for mathematically calculat-
ing the performance of the studied model is also presented in 
Fig.1. Finally, the results are shown, along with a conclusive 
analysis.

Design methodology

In this design, the finite element method (FEM) has been 
used. Firstly, the geometry of the model is designed. Fur-
thermore, material has been applied as per their respective 
area. Zeonex is employed in the background material as well 
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as perfectly matched layer (PML). Air has been inserted in 
the cladding region and analyte in the core region. The nor-
mal cells and cancer cells as analytes have been filled into 
core region. The PML aims to prevent light from reflec-
tion and to prevent the PCF from the consequences of the 
surrounding environment, but it makes no contribution to 
practical analysis. Boundary conditions have been initialized 
and mesh setup has been done. Thereafter, the partial dif-
ferential equation (PDE) algorithm has been done. From the 
PDE solutions, optical performance parameters have been 
analyzed. This consecutive process has been shown in Fig.1.

The pictorial depiction of the constituents symbolic for 
our predictable MRC-PCF model has been represented in 

Fig.2. The primary aim of this model is to make a unique 
manufacturer-friendly PCF design. A further essential aim 
is to obtain standard values for the optical characteristics. 
The PCF using only rectangles has been designed which 
confirms that such manufacturing is viable now. The opti-
mized MRC-PCF shown in Fig. 2 has been observed after 
various investigations of altering the design (shifting the 
rectangle numbers, adjusting the width and length, modify-
ing the rectangle locations, etc.). The presented MRC-PCF 
has a complete radius of 1750 µm and it is associated with a 
perfectly matched layer (PML) on the internal surface having 
thickness 8% of the radius. PML acts as an anti-reflection 
coating and avoid signals departing the fiber [51]. The core 

Fig.1  Schematic sketch of proposed sensor design and analysis

Fig.2  Configuration of the proposed PCF model a representative and b fine mesh analysis



531J Opt (February 2024) 53(1):528–537 

1 3

area has been shown in the diagram by a single rectangle 
represented by  Rc. The core’s height and width have been 
taken as 500 and 920 µm, respectively. Fourteen rectangular 
air holes have been organized irregularly in the cladding 
region. Same symbols have been used to represent the simi-
lar rectangles. For example, the core’s nearest right and left 
rectangles have been similar and therefore indicated by a 
single symbol R1. Going to follow this strategy, designed 
six different rectangle structures are indicated by R1, R2, R3, 
R4, R5, and R6 , the height is (H) and width is (W) for every 
rectangle represented in Fig.2. The studied design has a pitch 
of 310 µm and a strut of 10 µm between two sequential rec-
tangles. Zeonex has been chosen as our fiber component due 
to its unique properties. In the THz region, Zeonex has key 
beneficial property as its immobile RI of 1.53. Furthermore, 
Zeonex has been acquired with high chemical resistance, 
glass transmigration warmth, and humidity insensitivity 
[52].

Various fabrication processes of PCF have been used so 
far. For example, 3D printing, extraction, Sol–gel etc. [53]. 
To fabricate irregular design, both extraction and 3D print-
ing have been examined favorably. PCF designs as rectan-
gles have already been manufactured in Planck Institute. The 
manufacturing viabilities of the studied optimized PCF are 
described in the literature [54].

Model analysis

In this study, physics-controlled mesh size is employed for 
better outcome. Complete mesh consists of 55584 domain 
elements and 3390 boundary elements of the fiber. Popular 
FEM has been employed for the studied PCF. Finite ele-
ment method changes the microfabricated model into the 
ordinary differential equation. Finite element method is pre-
cise and gives designing of complicated structures before 

manufacturing. It also gives the complete analysis through 
which the design can be enhanced. Figure 2 shows the mode 
field distribution at 2.1 THz frequency for normal and cancer 
cell as analyte and gives best result. It can be noticed from 
Fig.3 that field intensity is more at the midpoint and then 
reducing continuously within the radius of the fiber which 
shows a Gaussian property. It can also be noticed that light 
has been airtight limited within the core area, which estab-
lishes a strong interaction between material and field to be 
sensed. As a result, the relative sensitivity of the proposed 
sensor fiber would be high. For model analysis, evaluation of 
the waveguide characteristics against important parameter, 
the operating frequency of the THz range has been chosen. 
For analysis, x polarization has been chosen and y polariza-
tion has been ignored because light confinement has been 
improved significantly in the x polarization mode, with 
improved relative sensitivity behavior and reduced confine-
ment loss.

Using FEM in 1.0–2.5 THz frequency range, the optimum 
MRC-PCF has been proposed. To analyze the performance 
of the model, implementing the material to be examined into 
the core, various performance parameters have been calcu-
lated. The relative sensitivity (RS), effective area (Aeff), con-
finement loss (CL), birefringence (B) and effective refractive 
index (neff), propagation constant (β) have been examined.

It shows that intensity of light has strong interaction with 
the analytes, while exhibiting less interaction in the cladding 
area. The results obtained for studied PCF show enhanced 
sensitivity. Sensitivity is directly proportional to the ana-
lytes’ refractive index.

Confinement loss

The confinement loss (CL) fundamentally arises because 
of optical power leakage from core to cladding because of 
introduction of a finite air holes. The CL can be evaluated 

Fig.3  Mode field distribution of proposed PCF model a x-polarized and b y-polarized
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using effective refractive index imaginary part. It can be 
lowered by appropriately ordering the core holes and clad-
ding. The numerically CL is calculated using Eqn. (1) [55, 
56].

where neff and f represent the effective refractive index and 
frequency in THz region, respectively.

Figure  4 indicates that the confinement loss is very 
low. It indicates that confinement loss reduces as the fre-
quency rises. From Fig. 4, it can be observed that an inverse 
relation between confinement loss and frequency holds. 
The confinement loss recorded at 2.1 THz frequency are 
5.828 ×  10−25  cm−1, 3.072 ×  10−27  cm−1 for cancer and nor-
mal cells, respectively.

Confinement loss occurs by optical mode leakage from 
the core of the fiber. The air holes inside the cladding region 
have been organized so that the refractive index difference 
has been sufficient to preserve the optical field within core 
region. Light travels away from the core and into the clad-
ding region due to insufficient refractive index contrast, 
expanding confinement loss. As a result, creating effective 
cladding with adequate air pitch and air-hole diameter val-
ues will assist in lowering confinement loss, which may be 
lowered to minimal levels by appropriate cladding structure 
design [57–59].

Birefringence

Birefringence is the most essential parameter of optical char-
acteristics which has been employed widely in coherent opti-
cal communications and in the manufacturing of fiber optic 
sensors. The electric field of a propagating electromagnetic 

(1)CL =
4�f

c
× Img

(
neff

)
, cm−1

wave has always been associated in a specific direction, 
which is known as polarization. When a linearly polarized 
light penetrates a fiber core with an anisotropic refractive 
index distribution, it divides into two mutually orthogonal 
polarized modes. These two orthogonal modes propagate 
at varying speeds based on the refractive index of the fiber 
along the direction of polarization. The birefringence is 
the difference in refractive indices along two mutually per-
pendicular directions [57]. This parameter represents the 
polarization-controlling ability of photonic crystal fiber. 
Birefringence can be evaluated using the refractive index 
(RI) difference between the x (nxplane) and y (nyplane) plane 
as shown in Eqn. (2) [55, 56].

where nxplane and nyplane indicate the effective refractive index 
of x and y polarizing modes, respectively.

From Fig.5, it is obvious that the change of birefringence 
can be represented with the variation of frequency range. 
Because of the tight confinement at higher frequencies, the 
refractive index mode varies in a decreasing direction after 
a specific frequency. The modeling of an asymmetric PCF 
design produces a noteworthy refractive index difference. 
For the studied PCF, birefringence has been obtained as 
4.709 ×  10−4 and 4.885 ×  10−4 for cancer and normal cells, 
respectively.

Because the birefringence in PCFs is caused by a non-
axisymmetric allocation of the effective refraction around 
the core, they are extremely temperature insensitive. 
Because of such immunity, PCF with high birefringence is 
very appealing for telecommunication and sensing appli-
cations. Such PCF can compensate the polarization mode 
dispersion in optical fibers.

(2)B =
||| nxplane − nyplane

|||

Fig.4  Confinement loss vs frequency between the cancer cell and 
normal cell

Fig.5  Birefringence vs frequency plot for the cancer cell and normal 
cell
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Effective area

Effective area measures the analyte identification area of any 
PCF-based sensor. For reducing the deterioration increased 
by the nonlinear effect, a wide effective area is essential. 
A low effective area allows for the high-power density 
required for nonlinear impacts to be considerable. Exten-
sion of the electromagnetic wave is based on the strut size 
and holes size of the fiber. The mathematical parameters of 
the designed model can be arranged in the similar way. The 
effective area has been calculated as [55].

Here, the distribution of electric field over the cross sec-
tion of fiber can be represented by |E|.

From Fig.6, it is noticed that the effective area decreases 
as the frequency increases. With increasing frequency, it is 
observed that light confinement takes place through the core 
region, consequently lowering the effective area of the fiber. 
At 2.1 THz frequency, the effective area can be attained as 
4.445 ×  10−8 µm2 and 2.549 ×  10−8 µm2 for normal and can-
cer cells, respectively.

Relative sensitivity

In MRC-PCF major light travels through the core area. A 
very small portion of the beam specified as the evanescent 
wave transfers through the cladding region and the light 
corresponds with the material to be sensed. The sensitiv-
ity evaluating factor measures the light interaction with the 
selected materials. It can be expressed using Beer–Lambert 
law as [55].

(3)Aeffect =

(
∫ ∫ |E|2dxdy

)2

∫ ∫ |E|4dxdy

where I0(f) and I(f) represent light intensity before and after 
putting the analyte at the assigned place, respectively. lc 
denotes the length of the channel, � m denotes the absorp-
tion coefficient, where lc inversely proportional to the � m, 
while f denotes the operating frequency and the relative sen-
sitivity ‘r’.

The absorbance of the liquid concentration or evanescent 
wave can be evaluated by Eqn. (6) [53].

The relative sensitivity of presented PCF can be calculated 
by [55].

where nr represents the refractive index of assigned materi-
als, neff represents the effective refractive index of guided 
mode and P shows the ratio of interaction between the light 
intensity and directed analytes given by Eqn. (7) [55].

where Ex and Ey, Hx and Hy shows the electric field and 
magnetic field elements along x and y modes, respectively.

Figure 7 shows that the studied PCF gives the maximum 
sensitivity for cancer cell and minimum for normal cell since 
these holds the higher and lower refractive index, respectively. 
Relative sensitivity relates to the operating frequency too. With 
increase in frequency, compression of beam of light occurs and 
light is slightly constrained within the core with a high inten-
sity which improves the light matter interaction, so sensitivity 
is improved. With rise in frequency the sensitivity rises till a 
particular frequency. Because of higher frequency, the beam 
of light has been more concisely constrained in the core area 
and strong interaction with the related analyte occurs which 
improves the power ratio of the core. Furthermore, with rise 
in frequency the refractive index also increases resulting an 
increase in sensitivity. The sensitivity is achieved as 81.38 and 
65.83% for cancer cell and normal cells, respectively, for the 
designed PCF.

Effective refractive index

The effective refractive index is defined by Eq. (8) [53].

(4)I(f ) = I0(f ) exp[−r�mlc]

(5)A = log

[
I(f )

I0(f )

]
= −r�mlc

(6)r =

[
nr

neff

]
× P

(7)p =
∫analyte Re

(
ExHy − HxEy

)
dxdy

∫total Re
(
ExHy − HxEy

)
dxdy

(8)neff =
�0

�
Fig.6  Effective area vs frequency for the cancer cells and normal 
cells
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Here, � represents wavelength of the em wave in the ana-
lyte and �0 shows the wavelength in the vacuum.

The refractive index of the core of the fiber is larger than 
the cladding so that the wave of the light can travel by the 
total internal reflection and the maximal quantity of power 
of the wave can be confined into the core.

Figure 8 shows the variation of the effective refractive 
index with frequency. Electromagnetic spectrum having 
larger frequency possess smaller wavelength, resulting in a 
larger  neff, and light propagating in an analyte with a larger 
 neff lessens the wavelength and increases the  neff because of 
the related Eqn. (8). The  neff can be achieved as 1.475 ×  10−18 
and 7.773 ×  10−21 for cancer cell and normal cells, respec-
tively, for the designed PCF.

A high-refractive index core area has been bounded 
by a reduced refractive index material that serves as the 
cladding. The refractive index of the cladding has been 
reduced by constituting a microstructure of air holes in a 
predictable pattern which follows the length of the fiber. 
Because the interface between the reflecting core and the 
cladding is not made clear, the guiding principle has been 
the modified total internal reflection from the core and 
effective cladding [57].

Propagation constant

To calculate the number of losses that occurs due to leak-
age can be predicted by propagation constant (β). Using 
the imaginary part of the neff, propagation constant can be 
evaluated with the help of Eqn. (9) [53].

where f denotes the frequency, Img (neff) imaginary value of 
neff and c speed of light.

The propagation constant is evaluated using the con-
sistent values that arises due to the dispersion of incident 
light from the core to the cladding. Figure 9 shows the 
variation of β for the cancer cells and normal cells in the 
1.0–2.5 THz frequency range. With increase in frequency, 
propagation constant slightly decreases then becomes 
almost zero. At 2.1 THz, propagation constant values are 
− 1.01961 ×  10−24 and 9.44071 ×  10−27 for cancer cells and 
normal cells, respectively.

(9)� =
2�f

c
Img

(
neff

)
Fig.7  Relative sensitivity vs frequency between the cancer cell and 
normal cell

Fig.8  Effective refractive index vs frequency for the cancer cells and 
normal cells

Fig.9  Propagation constant vs frequency for the cancer cell and nor-
mal cell
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Nonlinearity

The density of high optical power of fiber has been given 
by a low effective area for which the nonlinear effects are 
prominent. Nonlinearity Ɣ, known as nonlinear coefficient, 
calculates the capability of constraining the high-intensity 
light. It is defined as the inverse of the effective area of the 
fiber. It can be evaluated using Eq. (10) [30].

where n2 shows the effective refractive index of the fiber 
material, Aeffect denotes the effective area, c represents the 
speed of light and f represents the frequency in the THz 
range.

Optical nonlinearity can be employed to construct feasi-
ble optical fiber devices. By making large air holes or low-
ering the core dimension, PCFs could be constructed with 
a high-refractive index contrast between both the core and 
the cladding. This design promotes strong confinement of 
the waveguides, that increases the nonlinear coefficient [57].

Figure 10 depicts that with the increase in frequency non-
linear coefficient increases. As it follows the inverse relation 
to the effective area (see Fig.6). The nonlinear coefficients 
are 1.59833 and 1.63352  W−1Km−1 for normal and cancer 
cells, respectively.

Conclusion

In the present work, a square core PCF biosensor has been 
proposed for sensing the cancerous cells as analyte. The 
studied PCF model sensor shows extremely remarkable high 

(10)V =
2�f

c

n2

Aeffect

relative sensitivity of 81.38% for cancer cells and 65.83% 
for normal cells. Furthermore, other noteworthy propaga-
tion characteristics––reduced confinement loss of and large 
effective area has been attained for the analyte at design 
parameters of 2.1 THz. This model has been preferably sat-
isfactory for sensing of cancer cells and normal cells. The 
studied PCF gives noteworthy results and could be employed 
in biosensing applications.
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