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Abstract  With the emergence of cloud computing and vir-
tualized infrastructure in the datacenters, the use of high-
radix routers is the most cost-effective alternative for inter-
connection networks. They are typically utilized as a part of 
datacenters for High-Performance Computing (HPC). Soft-
ware Defined Networking (SDN) consolidates the benefits of 
datacenter virtualization, increasing resource flexibility and 
utilization and reducing infrastructure costs and overhead. 
Datacenter networks should be able to ensure high through-
put and resiliency. For such reasons, Hamming graphs and 
Dragonfly networks are suitable for use with high-radix rout-
ers. Multilevel Dragonfly networks are used for lower-radix 
routers to increase the maximum achievable system size 
with the same router design. This paper introduces Ham-
ming graphs and Dragonfly topologies based on SDN basis. 
It also presents a novel addressing scheme for Dragonfly 

topology with simulation experiments. The proposed model 
will be used for minimal, non-minimal, and adaptive rout-
ing in Dragonfly networks to extract a Python code using 
Mininet, which includes MiniEdit that is used to create and 
run network simulations. Evaluations show that with global 
trunking, systems are built with fewer groups than the maxi-
mum allowed. Therefore, there is no compelling reason for 
an additional cost. The proposed recommendations will be 
useful in the implementation of optical networks.

Keywords  Software Defined Networking · Hamming 
graphs · Dragonfly network · Routing

Introduction

With the accelerated development of technology and  band-
width restrictions, the use of high-radix routers is vital to 
diminish the diameter, latency, and cost of interconnection 
networks. The motivation for using high-radix routers is 
their ability to enhance network performance in large-scale 
systems such as datacenters. As a result, an adaptable and 
cost-proficient topology is required to appropriately use 
high-radix routers. The importance of any topology comes 
from its ability to set performance bounds for the network 
by establishing the network diameter as well as the bisec-
tion bandwidth. The topology also largely determines the 
cost of the system. Existing topologies such as Folded-Clos 
or Fattree [1, 2] are not efficient, because they consume a 
large bandwidth to balance traffic that is already balanced. 
So, they pay too high penalty on load-balanced traffic (e.g. 
uniform) to provide good performance on the adversarial 
traffic pattern. On the other hand, a conventional Butterfly 
network is better than a Folded-Clos, because it gives a sig-
nificantly lower cost (approximately half) than a Folded-Clos 
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gives on balanced traffic. However, a conventional Butterfly 
network has a disadvantage, because it has no path diversity. 
So, its performance is severely limited on adversarial traffic 
patterns. The proposed Dragonfly topology is able to effec-
tively increase the radix through the use of a virtual router or 
a collection of routers, where the scalability of the flattened 
Butterfly [3] is restricted by the radix of a single router.

Datacenter networks [4–7] and associated data flow 
scheduling are important for large-scale data-intensive 
computing. There are many network challenges in large data 
centers, but network virtualization offers the solution for 
meeting these challenges, because it reduces the manage-
ment cost by allowing Information Technology (IT) admin-
istrators to manage the network through an interface without 
accessing the underlying network infrastructure. Another 
advantage of network virtualization is that it reduces the 
downtime of networks and applications, thus making trou-
bleshooting easy. It also makes the network infrastructure 
more agile and scalable, because logical domains are con-
nected through tunnels. So, IT administrators do not have 
to physically connect the domains. The SDN [8] achieves 
a rapid progress in cloud datacenters. The SDN technol-
ogy also gives promising opportunities for high-throughput 
and high-volume applications, such as big data deployments 
in the financial and scientific sectors. There is a similar-
ity between Network Functions Virtualization (NFV) [9] 
and SDN, as they speed up operation by breaking the bond 
between proprietary hardware and control/application 
software. So, the two architectures are optimized for the 
dynamic cloud environment at the carrier scale. Reducing 
both Operating Expenses (OpEx) and Capital Expenditures 
(CapEx) is the principal preferred standpoint of NFV and 
SDN, as they seek to leverage automation and virtualiza-
tion to achieve better agility. Hence, the two concepts can 
enhance the benefits of datacenter virtualization by using 
data center topologies such as Dragonfly topology in SDN. 
The Hamming graphs are concerned with error-correcting 
codes and association schemes, to name two areas. They 
have also been considered as communication network topol-
ogies in distributed computing. So, special codes are used 
in Hamming graphs to protect connection paths [10, 11].

In this paper, the relationship between the Hamming 
graph (also known as flattened Butterfly) [3] and the Drag-
onfly topology [12] is studied, showing that Hamming 
graphs are extreme cases of Dragonfly networks, but with 
a large level of trunking that is required to retain an opti-
mal global bandwidth with fewer groups than the maxi-
mum allowed. Thus, we can use the Dimension-Ordered 
deadlock-free Routing (DOR) mechanism that is used in 
Hamming graphs. It does not depend on Virtual Channels 
(VCs) for Dragonfly networks. Minimal and non-minimal 
routing mechanisms decouple the number and use of VCs 
from deadlock avoidance. So, the paper depends on these 

mechanisms for Dragonfly networks with trunking t ≥ 2 
and t ≥ 4. Multiple works try to avoid or reduce the num-
ber of VCs in network routers, because the use of multi-
ple VCs increases the area and power requirements of the 
router, makes some router allocation stages more complex, 
and entails a significant cost, leading to lower router fre-
quencies and reduced throughput. However, multiple VCs 
provide deadlock freedom and help to reduce Head-of-
Line Blocking (HoLB) [13].

The cost and performance of a scalable multiproces-
sor are the key elements in interconnection networks. 
Interconnection networks for low-radix routers, in which 
few ports are utilized, use low-radix topologies such as 
2-D mesh, 3-D mesh, torus and clos (Fattree) topologies. 
Cray T3D, T3E, and XT3 are examples of machines that 
employ such networks. Note that low-radix networks pro-
vide optimal latency for a given cost because of the low 
pin bandwidth available in the past [14, 15]. As the pin 
bandwidth of router chips has increased due to the increase 
in the signaling rate and the increase in the number of 
signals, high-radix routers take this advantage of divid-
ing the bandwidth into a larger number of narrow ports 
[16], where low-radix routers divide the bandwidth into 
a smaller number of wide ports. Intel’s Knights Landing 
and future Xeon chips are examples of the designs that use 
on-chip routers, in which the router competes with on-chip 
cores, memories, and I/O for the chip resources, including 
the pin bandwidth that leads to lower-radix routers.

Scaling to large networks based on low-radix switches 
can be achieved by using multi-level Dragonfly networks 
that increase the maximum achievable system size with 
the same router design. This paper introduces a 2D Ham-
ming graph Ka □ Kb that is used for Dragonfly networks 
with trunking t ≥ 2 and t ≥ 4 for minimal and non-minimal 
routing, respectively, to build a balanced Dragonfly net-
work that does not reach the maximum achievable size for 
a given router with a diameter, which can be in the order of 
millions of nodes. The 3D Hamming graph Ka □ Kb □ Kc 
is also introduced in this paper. It is comparable to the 2D 
Hamming graph, but the scalability develops quickly with 
the number of levels, making configurations with more 
than 3 levels improbable. The paper also presents a novel 
addressing scheme for Dragonfly topology with simula-
tion experiments. The proposed recommendations will be 
useful in the implementation of optical networks [17, 18].

 Section 2  introduces the Hamming graphs and Drag-
onfly topologies. Section  3  gives an explanation of the 
proposed model for addressing of the Dragonfly topology. 
Section 4 describes the 2D Hamming graph  Ka □ Kb for 
Dragonfly networks with global trunking. Section 5 intro-
duces two examples concerned with deadlock-free routing 
mechanisms for Dragonfly networks with trunking based 
on coloring of the underlying graphs, and then Mininet is 
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used to extract  the Python code. Finally, Section 6  gives 
the concluding remarks of the paper.

Hamming graphs and Dragonfly topologies

As mentioned in [19], the Hamming graph is characterized 
as the Cartesian product of complete graphs Km1 □… □ 
Kmn, where the Cartesian product is defined as having two 
vertices connected if and only if, for some component, they 
are connected in the corresponding factor and the other com-
ponents are equal.

On the other hand, the Dragonfly network is a two-level 
hierarchical direct network as proposed in [12]. The second 
level has b groups (0, ……, b−1), each being composed 
of routers (0, ……., a−1) (first level). Different groups are 
connected by long, expensive, optical global links, whereas 
routers within a group are connected by short, cheap, elec-
trical local links. The Dragonfly network is specified by the 
number of routers per group (a), the number of groups (b), 
and the global link arrangement (the specific router on each 
group to which each global link is connected).

The diameter k of the Dragonfly topology includes the 
diameters of the global topology kg and local topology 
kl, where k ≤ kg + (kg + 1)kl = kg + kgkl + kl. The degree of 
the Dragonfly topology ∆ also contains two levels, ∆1 and 
∆2 , where ∆1 is the number of local links connected to 
each router and ∆2 represents the number of global links 
connected to each router. So, the topology has a degree 
∆ =  ∆1 + ∆2, and the total number of ports (radix) within 
routers is  R= ∆0 + ∆1 + ∆2, where ∆0 is the number of 

computed nodes in level 0, b = a∆ 2 + 1 and a= ∆1 + 1 in 
any canonical Dragonfly network. The balancing occurs, 
when local and global links have similar loads under uni-
form traffic, and hence the condition 2∆2 ≈ ∆1 is achieved. 
The balancing condition proposed in [12] relies on a = 2∆2, 
and ∆0 = ∆2 , where ∆0 nodes can be connected to each 
router without saturating the network under uniform traffic. 
Canonical Dragonfly is the Dragonfly network using com-
plete graphs with Ka and Kb in both local and global topolo-
gies [20]. In some cases, a canonical Dragonfly topology 
is a subgraph of the rectangular Hamming graph Ka □ Kb. 
Figure 1 shows an example with a = 4,  b = 9, and ∆2 = 2.

As we mentioned, the Dragonfly topology is specified by 
a, b, and the global link arrangement. There are b2O(aΔ2) possi-
ble arrangements for the global links of a canonical Dragonfly. 
Consecutive, Palmtree, and circulant-based arrangements are 
a few specific cases of them, in which the topology is a sub-
graph of the Hamming graph. This paper depends on Palmtree 
arrangement [20] for the Hamming graph, which presents the 
same global connectivity pattern in each group of the sys-
tem. This arrangement can be implemented by connecting 
vertex i  in group j  to vertices a − 1 − i in groups j −i ∆2 – 1, 
j − i∆2 – 2,…., and j − i∆2 −∆ 2. Figure 1b shows the Palmtree 
arrangement of the previous example. Most deadlock-free 
routing mechanisms proposed for Dragonfly networks require 
an ordered use of virtual channels for hops allowed through a 
given type of network link. Canonical Dragonfly depends on 
a minimal routing mechanism in which the path consists of 
one local link l to the router with the required global link, then 
the global link g itself, and finally a local link l to the destina-
tion. So, the paths with only two global links gg are avoided. 

                  (a) Hamming graph with a=4, b=9, and ∆2 = 2.                           (b) Palmtree arrangement for the same example. 

Fig. 1   Two layouts of the same Dragonfly topology, which is a sub-
graph of K4 □ K9 with ∆2 = 2, with nodes organized in rows and 
columns (left, each row corresponds to a different group) or groups 

(right). Global links leaving group 0 are in bold. (a) Hamming graph 
with a = 4, b = 9, and ∆2 = 2. (b) Palmtree arrangement for the same 
example
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Since minimal routing [12] locates the global link between 
the source and destination groups and has paths of type lgl, 
local ports require two different VCs, whereas global ports do 
not require VCs. This mechanism is costly and complex. So, 
in Section 4, we will use Dragonfly networks with trunking, 
because hey do not require VCs.

Proposed model for addressing of Dragonfly 
topology

There is no addressing for the Dragonfly topology, and 
hence we assume that we have some groups of switches 
instead of routers and we put one of them as a core switch, 
but the other switches act as pod switches. Figure 2 shows 
an expanded block diagram of the previous example with 
a = 4,  b = 9, and ∆2 = 2.

We have 9 groups. So, we put one of the groups to act 
as core switches and the remaining groups to act as pod 
switches. We consider 8 pod switches. The IP address allo-
cation within the subnetwork is 10.0.0.0/8. Pod switches 
have address 10.pod.switch.1, where pod and switch in [0, k-
1] are based on position. Core switches have address 10.k.j.i, 

where i and j denote core position in (k/2)2 core switches. 
Similarly, hosts have address 10.pod.switch.ID, where ID is 
the host ID in the switch subnet [2, (k/2) + 1]. Figure 3 shows 
the previous example with addresses for pod switches and 
core switches.

The work in this paper depends on a virtual machine 
known as Mininet [21] to set up an SDN without hardware. 
The Mininet network simulator incorporates MiniEdit, a 
simple GUI editor for Mininet. MiniEdit is an experimental 
tool made to exhibit how Mininet can be extended. MiniEdit 
is used to make and run network simulations. The paper 
also demonstrates how to use MiniEdit to build a network, 
configure network elements, save the topology, and run 
the simulation experiments. Figure 4 shows that we were 
able to create a custom network topology graphically using 
MiniEdit, and then we can extract the Python code.

2D Hamming graph Ka □ Kb for Dragonfly 
networks with global trunking

As mentioned earlier, canonical Dragonfly topologies can be 
seen as subgraphs of Hamming graphs with a proper global 

Fig. 2   An expanded block dia-
gram of the previous example

Fig. 3   Addressing for Dragonfly topology
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link arrangement, which means that Hamming graph is an 
extreme case of Dragonfly network, but with a large level of 
trunking to retain optimal global bandwidth in systems with 
fewer groups than the maximum allowed [22]. The trunking 
level in a topology is the number of parallel links that are 
employed to increase the aggregated bandwidth, increasing 
also the number of router ports used. This concept includes 
two parts, local trunking and global trunking levels. Local 
trunking in a Dragonfly topology points to parallel links 
between pairs of routers within a group, whereas global 
trunking level t refers to the number of global links between 
every pair of groups. Dragonfly networks with global trunk-
ing achieve the relation:

It is clear from the relation that Dragonfly networks with 
trunking depend on the number of routers per group a, 
the number of groups b, the global links per router ∆2, the 
global link arrangement, and the global trunking t > 1 (t =1 
for a canonical Dragonfly without trunking).

As proposed in [23], a balanced trunked Dragonfly net-
work achieves the following relation under uniform traffic 
and minimal routing assumptions:

where the parameter α controls the relation between the 
number of links of each type (global, local) for a balanced 

(1)aΔ2 = t(b − 1)

(2)
b = 1 + �
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− 1
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network and the number of edges of each type in a balanced 
network as follows:

In addition, α can be approximated with the average dis-
tance as:

For the maximum trunking case of Hamming graphs with 
t = a, and α = 1, the balancing condition is b = a or equiva-
lently ∆2 = a−1, whereas in the canonical Dragonfly with 
t = 1 (no trunking) and α = 1/2, the approximate Dragonfly 
balancing condition is b = 1 + a (a−1)/2.

Trunking modifies the balancing conditions of the net-
work, and this is observed in Table 1. Networks with fewer 
groups require more trunking to be balanced. Table 1 shows 
examples of dimensioning of the number of groups b that 
keeps � ∈

[
1

2
, 1
]
.

Figure 5 shows that for t = 1, the balancing condition 
approaches � = 1∕2 . On the other hand, for t  = a = 4, the 
balancing condition approaches � = 1 . The figure also dem-
onstrates that the fewer the groups of a Dragonfly network  
that are accessible, the higher the trunking level required for 
the topology to be balanced is.
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Fig. 4   Custom network in 
MiniEdit (Dragonfly topology)

Table 1   Several dimensioning examples for groups of a network with a = 4 routers per group and different levels of trunking

t Number of groups b using α = l 
according to b = 1 + �

a(a−1)

t

Number of groups b for a bal-
anced network according to 
b = 1 +

1

1+
(

t

a
−1

)2

a(a−1)

t

Number of groups b for α = 1/2 according 
to b = 1 + �

a(a−1)

t

1 13 8.7 7
2 7 5.8 4
3 5 4.8 3
4 4 4 2.5
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The main characteristic of trunking is that it increases the 
number of possible arrangements of a Dragonfly network. 
The previous configurations of global link arrangements for 
Dragonfly networks without trunking can be applied here, 
but these configurations are denoted as extended trunking. 
Figure 6(a) shows the Dragonfly network with extended 
Palmtree arrangement with a = b = 4, and ∆2 = 3. This case 
is called maximum trunking as  t=  a = 4. The graph obtained 
for this case is very similar to the Hamming graph, but it 
is not isomorphic to it. Figure 6(b) shows a representation 
of such a graph with nodes organized in rows and columns.

Deadlock‑free adaptive routing in Dragonfly 
networks with trunking

The advantage of using Hamming graphs with Dragon-
fly networks is that they allow for deadlock avoidance 

mechanisms in the  light of route restrictions (DOR). 
So, the number of VCs allowed for these mechanisms is 
decreased. A DOR mechanism depends on coloring of all 
the links in the network with one of two colors, accord-
ing to their dimensions, and following paths that comply 
with a certain color order. To achieve a careful selection 
of the global link connectivity, the paper depends on an 
extended Palmtree or a subgraph of the Hamming graph 
for the global link configuration, and hence coloring of 
routers is possible.

There are three alternative routing mechanisms for 
Dragonfly networks with global trunking in view of a 
variety of the route restriction mechanism utilized in 
Hamming graphs. The first routing mechanism is minimal 
routing, and it requires t ≥ 2 based on 2 router colors, and 
it can be implemented without VCs. The second routing 
mechanism is a variant of Valiant routing (non-minimal), 
which sends traffic to an intermediate network router. It 

                 (a) t=1                                        (b) t=2                                           (c) t=3                                             (d) t=4 

Fig. 5   Dragonfly network with a  = 4 routers per group and b groups according to Table 1. (a) t = 1, (b) t = 2, (c) t = 3, (d) t = 4

(a)  Extended Palmtree arrangement with  t=a=4.                                 (b)The same example is with vertices organized in rows 
and columns. 

Fig. 6   Dragonfly network with extended Palmtree arrangement with a = b = 4, ∆2 = 3. (a) Extended Palmtree arrangement with t = a = 4. (b) The 
same example with vertices organized in rows and columns
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is used for adverse traffic patterns requiring t  ≥ 4 and can 
be implemented without VCs. Finally, the third routing 
mechanism is an adaptive mechanism. It also requires 
t  ≥ 4, and selects between the minimal or Valiant paths 
depending on network conditions.

Minimal deadlock‑free routing for t ≥ 2

As mentioned, DOR mechanism based on the “2-color 
minimal” like lgl route is required for Dragonfly networks 
with t ≥ 2 global links between pairs of groups. The cyclic 
dependency presented would be avoided using the color-
ordering rules that decide which of the t global links to use 
each time [19]. Figure 7 introduces a simple three-group 
example with 0 or 1 for coloring of routers and + 0 or + 1 
for local links.

It is clear from the figure that there are 4 routers per 
group, and two of them have the first color 0 and the remain-
ing have the second color 1. For global links, vertices with 
the same color should be connected by the proper arrange-
ment of global links, but this leads to a restriction in the 
global link arrangement. To satisfy this restriction, the paper 
idea depends on an extended Palmtree for a ≥ 4 and any sub-
graph of the Hamming graph for a ≥ 2 to divide vertices 

into several classes. Local links l+0 and l+1 are used to con-
nect vertices with the same or different colors, respectively, 
according to the difference of their endpoints.

As shown in the figure, the respective colors of the source 
and destination routers will vary the routing mechanism. For 
routers with the source and destination of different colors, 
the l+0 link is always used in the source group and l+1 in 
the destination group and the path contains one l+0 and one 
l+1 , whereas the global link will have the same color as the 
source router, and hence cyclic dependencies from l+1 l+0 
on local links are prevented. For routes in which endpoints 
have the same color, l+0 local links are always used, when 
the destination group index is larger than the source index 
and the l+1 local links. Otherwise, the path must contain two 
l+0 or two l+1 local links, whereas the global link will have 
the same color as the source router.

Figure 7 shows that there are 3 paths between routers 
of different groups in which l+0 local links are used, but at 
least one of the paths will decrease the group index. So, l+1 
links will be used. Finally, all links are used similarly under 
uniform traffic. Using MiniEdit, the custom network will 
be as shown in Fig. 8. The proposed model for addressing 
Dragonfly topology will be used, and hence the Python code 
can be extracted.

Minimal and non‑minimal deadlock‑free routing 
for t ≥ 4

The  DOR mechanism based on "4-color non-minimal" 
is required for Dragonfly networks with t ≥ 4 global links 
between pairs of groups. Non-minimal valiant routes like 
lgllgl are used for adverse traffic patterns, which do not need 
VCs for deadlock-freedom [23]. The 4-color non-minimal 
can be converted to 4-color minimal, by traversing only the 
first or the second half of the allowed path with a single 
global hop despite using one more local hop in some cases, 
but the 4-color minimal is less restrictive than the previous 
mechanism for t = 2. Figure 9 shows the 4-color non-mini-
mal, with t  ≥ 4. This mechanism is also based on coloring 

Fig. 7   Coloring of routers 
with 0 or 1 and the local links 
with + 0 or  +1

Fig. 8   Custom network in MiniEdit (minimal routing for t ≥ 2)
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of the routers to order local and global links, since local 
links must be ordered.

Figure 9 shows that there are 4 colors for routers, 2 colors 
for global links, and 8 colors for local links. {0A; 0B; 1A; 
1B} are four labels for routers used in this mechanism. For 
global links, vertices with the same color could be connected 
to the extended Palmtree with a ≥ 8 and to subgraphs of the 
Hamming graph with a ≥ 4. gA, and gB are two labels for 
global links according to their endpoints. For local links, 
there are eight labels {l+ 0AA, l+ 0BA, l+ 1AA, l+ 0AB, l+ 1AB, l+ 1BB, 

l+ 1BA, l+ 0BB}. They are determined according to the source 
and destination. An ordering of links is required to achieve 
a deadlock-free routing. Figure 10 introduces the complete 
ordering for local links, which are allowed for the paths. 
Allowed paths flow from left to right, and parallel routes rep-
resent different alternatives, one of which is chosen depend-
ing on the labels of the source and destination routers.

Non-minimal routing uses the complete ordering l+ 0AA; 
l+ 0BA ‹ gA ‹ l+ 1AA ‹ l l+ 1AB ‹ l+ 0AB ‹ l+ 1BB ‹ g B ‹ l+ 1BA; l+ 0BB 
. Global links will always be gA ‹ gB, which means that 

Fig. 9   Coloring of routers with {0A; 0B; 1A; 1B}, and the local links with { l+0AA, l+0BA, l+1AA, l+0AB, l+1AB, l+1BB, l+1BA, l+0BB}

Fig. 10   A precedence of links 
using t = 4, which allows for 
routes lgl and lgllgl, and every 
node represents a link in the 
path

Fig. 11   Custom network in 
MiniEdit (minimal and non-
minimal routing for t ≥ 4)
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the links of class gA will appear earlier in the route than 
the global link of class gB. It is obvious from the order-
ing that local links are selected depending on the label A 
or B of the source router at the beginning of the path of 
ordering and depending on the label A or B of the desti-
nation router at the end of the path of ordering, while in 
the middle depending on the change + 0/ + 1 of the whole 
path. Based on the previous ordering, the route from the 
0A source router to the 0A destination router in different 
groups is l+ 0AA; gA; l+ 0AB; l+ 1BB; gB; l+ 1BA. It is clear that 
this mechanism uses any of the 0B routers in the network 
as the intermediate router of the Valiant path. However, 
if we divide the previous path, we note that packets going 
from a 0A router to a 1A router have a route l+ 0AA; gA; 
l+ 1AA in which packets go, minimally. Similarly, packets 
go minimally from a 0A to a 0A router, and the path is 
l+ 1AB; gB; l+ 1BA. Finally, adaptive routing can be used, 
since minimal and non-minimal routes are allowed with 
the same ordering of links. It is based on selecting one 
of them at the source. So, UGAL method [24] is used, 
because it depends on some decision mechanisms and con-
gestion information from neighbors. Similarly, after using 
MiniEdit, the custom network will be as shown in Fig. 11.

Table 2 shows the maximum number of computing nodes 
in a network (ab∆0) for a given router radix R in which 

R =
n∑
i=0

Δi = Δ0 + Δ and for 2-level networks with 

R = (a − 1)(1 + 2�) and α obtained from Eq. (3). This paper 
deals with Moore graphs in which the degree ∆ and diameter 
k give the maximum number of vertices, namely k = 2 with 
∆ = 2,3,7 and k= 3 with ∆ = 2 [24].

Figure 12 shows the scalability for 2-level Dragonfly net-
works with trunking level t by evaluating the system size for 
different router radii and trunking levels. The figure includes 
the 2D Hamming graph (t = a,  k= 2), canonical 2-level Drag-
onfly topology (t = 1, k = 3), and multiple alternatives with 
variable trunking levels and smaller size than the canoni-
cal Dragonfly. It is shown from the figure that with global 
trunking, systems do not reach the maximum size for a given 
router and a diameter which can be in the order of millions 
of nodes. Thus, trunking is required to build systems with 
size smaller than the maximum achievable size.

3‑Level Dragonfly Networks

By increasing the number of hierarchy levels, larger Drag-
onfly networks can be built with high scalability. This sec-
tion gives the properties of 3-level Dragonfly networks, 
which are comparable to 2-level Dragonfly networks, but 
the scalability develops quickly with the number of levels 
making configurations with more than 3 levels improbable.

The 3-level Dragonfly networks [19] include a 1-level 
group that consists of routers, a 2-level group that consists of 
b 1-level groups, and c 2-level groups that exist in the whole 
network. The 3-level Dragonfly networks include local (l or 
1), medium (m or 2), and global (g or 3) links. Hence, the 
degree will be extended to Δ = Δ1 + Δ2 + Δ3 , and there are 
two trunking levels ( t2, t3).

For this case, t2  is the number of links between every 
pair of 1-level groups, and t3 is the number of links between 
every pair of 2-level groups. Similar to the 2-level trunked 
Dragonfly networks, the balancing conditions for 3-level 
Dragonfly networks can be obtained from the next relations:

Table 2   Characteristics 
of 2D balanced Dragonfly 
networks with a, and b 
routers per dimension, Δ

0
 

computing nodes per router, 
router radix (R ports), and 
the approximate number of 
computing nodes

2-level balanced Dragonfly networks with a, and b  
routers per dimension and Δ0 computing nodes per 
router

 Canonical Dragonfly
t = 1 

Hamming 
graph 
Ka □ Kb
t = a

Balancing conditions  b= 1 + a(a−1)/2   b = a
Link use relations a ≈ 1∕2 � = 1

Routers = ab a
3∕2 a2

Radix = R = Δ + Δ
0

R = (a − 1)(1 + 2�) = 2(a − 1) R = 3(a − 1)

Computing nodes = ab Δ
0 (R4 + 4R

3 + 12R
2)∕26 (R + 2)3∕33

General route lgl lg

Fig. 12   Scalability for 2-level Dragonfly networks with trunking 
level t 
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Considering that α and β are the relations between the 
average distance on each type of link, where � =

avg2

avg1
 and 

� =
avg3

avg2
 , the degrees are obtained from the next relations:

Table 3 shows the maximum number of computing nodes 
in a network (abc Δ0 ) for a given router radix. As we men-

tioned earlier, R =
n∑
i=0

Δi = Δ0 + Δ , and for 3-level balanced 

networks, R = (a − 1)(1 + � + 2��) . The table includes four 
important cases, which are exceptionally significant. The 
first case is the canonical 3-level Dragonfly network with no 
trunking. The second case is 3D Hamming graph Ka □ Kb □ 
Kc, which is balanced for a = b =c. The third case is a 3-level 

(5a)aΔ2 = t2(b − 1) ≈ a(a − 1)�

(5b)abΔ3 = t3(c − 1) ≈ t2b(b − 1)�

(6a)Δ2 ≈ (a − 1)� ≈ Δ1�

(6b)Δ3 ≈ (a − 1)�� ≈ Δ2�

cascade-like Dragonfly network, which has t2 = a , and it is 
equal to a 2-level Dragonfly network in which a Hamming 
graph is utilized for the local group topology. The remaining 
case in the table depends on t3 = b , the same number of 
3-level links as in 2-level groups. With such trunking, mini-
mal routes are shortened to lmlgl. Larger values of trunking 
up to t3 = ab could shorten paths to lmlg, yet this obviously 
leads to over dimensions of the system.

Figure 13 shows the scalability for 3-level Dragonfly net-
works with trunking levels t2 and t3 . The figure also includes 
the 3D Hamming graph 

(
t2 = a, t3 = a2, k = 3

)
 , a canonical 

3-level Dragonfly network without trunking (k = 7) , and a 
cascade-like Dragonfly network 

(
t2 = a, t3 = 1, k = 5

)
 . It is 

also shown from the figure that with global trunking, sys-
tems do not reach the maximum size for a given router and 
a diameter, which can be in the order of millions of nodes.

Conclusion

In this work, we have studied the relationship between 
Hamming graphs and Dragonfly networks with a proper 
global link arrangement and applied them in SDN. Ham-
ming graphs represent an extreme case of a Dragonfly net-
work, but with a large level of trunking. Networks based on 
Hamming graphs allow for deadlock avoidance mechanisms 
based on route restrictions (DOR) and do not require VCs. 
So, Dragonfly networks with trunking based on coloring and 
ordering of the network resources use DOR mechanisms to 
reduce the number of VCs. Trunking is required to build 
systems that do not reach the maximum achievable size for 
a given router and a diameter, which can be in the order of 
millions of nodes. 2D Hamming graph Ka □ Kb is used for 
Dragonfly networks with trunking t ≥ 2 and t  ≥ 4 that allow 
for 3-hop paths, and 6-hop paths, respectively, in addition 
to traffic randomization in both cases without a restriction 
on the number or use of VCs in the system. 3D Hamming 

Table 3   Characteristics of 3-level balanced Dragonfly networks with a, b, and c routers per dimension, Δ
0
 computing nodes per router, router 

radix (R ports), and the approximate number of computing nodes

3-levels balanced Dragonfly networks 
with a, b and c routers per dimension,  
Δ

0
  computing nodes per router

3-level canonical Dragonfly
t2=1, t3=1

Hamming 
graph
Ka □ Kb □ Kc 
t2 = a, t3 = ab

Cascade-like
t2 = a, t3 = l

Fourth case 
t2 = 1, t3 = b

Balancing conditions b = 1 + a(a−1)/2,
c = 1 + b(b−1)/2

a = b = c a= b
c−1 = a2(a-1)/2

c-1 = b−1≈
a(a−1)/3

Link use relations � ≈ � ≈ 1∕2 � = � = 1 � = 1

� ≈ 1∕2

� ≈ 1∕3

� = 1

Routers = abc a
7∕16 a3

≈ a
5∕2 a

5∕32

Radix = R = Δ + Δ
0

R = (a − 1)(1 + � + 2��) = 2(a − 1) R = 4(a − 1) R = 3(a − 1) R = 2(a − 1)

Computing nodes = abc Δ
0 R

4(R + 2)4∕214 (R + 3)4∕28 (R6 + 12R
5 + 54R

3)∕(22 × 3
6) R

6∕(26 × 3
3)

General route lmlglml lmg lmglm lmlgl

Fig. 13   Scalability for 3-level Dragonfly networks with trunking lev-
els t

2
 and t

3
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graph Ka □ Kb □ Kc has also been studied in this paper. It is 
comparable to the 2D Hamming graph, but the scalability 
develops quickly with the number of levels making con-
figurations with more than 3 levels improbable. Evaluations 
show that with global trunking, systems are built with fewer 
groups than the maximum allowed. Therefore, there is no 
need for an additional cost.

This work on high-radix routers and networks will be 
very important over time, because the size of networks will 
continue to increase. So, interconnection networks will turn 
out to be more critical to system performance. The leverage 
resulting from 2-level and 3-level Dragonfly router designs 
will extend to multi-level Dragonfly networks to increase 
the maximum achievable system size with the same router 
design.
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