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Abstract Convolutional neural networks (CNN) are the 
best deep learning architecture to perform tumors classi-
fication for different imaging modalities: Us, X-ray, CT, 
and MRI. The scarcity of medical images and scarcity of 
resources are the contemporary problem for achieving suc-
cessful classification. Therefore, it is preferable to use a 
simple network that does not require training and imple-
mentation resources than to use complex or pre-trained 
CNN models. Simple networks make it easy to use in clini-
cal diagnosis and on mobile platforms. In this paper, a pro-
posed CNN architecture for medical image multimodalities 

classification is presented. This proposed network is simple 
and is directly trained by medical images which is better 
than using pre-trained deep learning networks. Firstly, the 
data augmentation process is applied to avoid data shortage, 
and then, the proposed CNN is trained using the resulted 
augmented data. Simulation results demonstrate the effi-
ciency of the proposed CNN architecture for efficient clas-
sification. The proposed model is trained on medical Us, 
X-ray, CT, and MRI datasets from scratch, and it can achieve 
92.7%, 91.1%, 100%, 100% accuracies for these datasets, 
respectively.

Keywords Image classification · CNN · DL · Data 
augmentation · Medical image modalities

Introduction

Medical scans are great tools that help the specialists to 
identify the different abnormalities in the body organs. 
These scans can detect, diagnose, and treat different dis-
eases. The main used medical scans are ultrasonic (Us), 
magnetic resonance imaging (MRI), computed tomogra-
phy (CT), and X-ray [1, 2], which are formed of malignant 
and benign tumors which have become a major element of 
healthcare. Us imaging as a tool for medical diagnosis is 
excessively utilized in clinical practice, and in some situa-
tions is standard procedure because it is usually a painless 
scan, available, less expensive and uses non-ionizing radia-
tion. X-ray is the most used diagnostic imaging test and is 
widely available. They use radiation to form the X-ray image 
of the body and bones which in some situations is harmful 
and precautions must be taken. CT scan combined X-ray 
scans with different angles to give a cross section image of 
the inside object under scan easily and the subject contrast 
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is clearly visible. MRI scan uses a powerful magnetic field, 
magnetic field gradients, and radio waves to form images 
of different organs. It can also create more visible image 
details compared to X-ray and CT scans. As well as, it uses 
non-damaging radiation.

The medical image diagnosis process is performed in 
two steps. At first, the most significant features are identi-
fied and extracted. Then, the most significant features are 
used in building the diagnostic model. The previous concept 
falls within medicine so that doctors use their experience to 
extract the most significant features and then determine the 
type of disease, which makes the diagnosis process a waste 
of time and there is a small percentage of human error. At 
the present time, CNN has proven a remarkable superiority 
in diagnostic tasks, as it can make a diagnosis that doctors 
are unable to do [3–10]. The authors of [11] proposed a 
CNN model based on k-mean to extract significant features 
and then applied a multi-class SVM model to diagnose the 
mammography dataset. In [12], the authors suggested an 
automatic computer-aided diagnosis model diagnose Us 
breast images, and the segmentation model was used to 
show the disease, and then, the classification models were 
implemented. The proposed approach also achieved 85.42% 
classification accuracy using CNN and between 80 and 77% 
classification accuracy in machine learning models. Yi Wang 
et al. [13] proposed a multi-view CNN diagnostic model 
on the Us breast images dataset divided into 135 malignant 
and 181 benign breast lesions. In [14], a CNN multi-organ 
CAD model is proposed to classify breast and thyroid in Us 
images.

Rajeshwari S. Patil et al. [15] proposed a hybrid CNN 
and recurrent NN to detect lesions in mammogram images. 
Their basic phases are pre-processing followed by segmenta-
tion, feature extraction, and detection. Hua Li et al. [16] pro-
posed a classification of benign and malignant mammogram 
images based on an improved DenseNet model for effective 
and accurate classification. The model was based on three 
stages: The first one is preprocessing and normalization. 
The second is replacing the first convolutional layer of their 
model with the Inception structure. Finally, the datasets 
are applied to pre-trained models and the DenseNet model. 
Umar Albalawi et al. [17] proposed a classification mam-
mogram model based on CNN. They used the wiener filter 
to remove the noise and used the K-means clustering tech-
nique to segment the image followed by the CNN classifier. 
Shen, L. et al. [18] proposed a DL model in order to classify 
mammogram lesions. They compared their model with the 
previous models, and it acquired an AUC value of 0.91 on 
the CBIS-DDSM database and 0.95 on the FFDM database. 
Yuezhong Zhang et al. [19] proposed a CNN classifier for 
CT images based on the CDBN model. They used SVM as 
the feature classifier to enhance feature transfer and reuse to 
enrich the features. Applying the Adam optimizer algorithm, 

they get both good accuracy and speed. Huseyin Polat and 
Homay Danaei Mehr [20] proposed a hybrid CNN lung clas-
sifier. They used the SoftMax radial basis function-based 
SVM to study their model performance. They also compared 
their model with AlexNet and GoogleNet. They acquired 
91.81%, 88.53%, and 91.91% for accuracy rate, sensitivity, 
and precision, respectively. Li et al. [21] proposed a CNN 
classifier based on augmentation for a hyperspectral image. 
They proposed an augmentation technique to make the train-
ing samples number increased. Their method benefits deep 
CNN and extracts PBP features. They also used the decision 
fusion classifier.

Agrawal et al. [22] proposed a CNN model to classify 
gastrointestinal system features using a few samples in the 
training stage and transfer learning models. They also devel-
oped a metric to study model performance. This metric car-
ried a correlation of 87% in the validation stage. Keita Saito 
et al. [23] proposed a CNN classifier for heart diseases. It 
was trained by heart disease images from scratch. Samir S. 
Yadav et al. [24] proposed a CNN classifier to diagnose a 
disease from chest X-ray images. It was shown that using 
augmentation techniques as well as transfer learning is very 
effective and leads to improved performance. Feng-Ping 
An et al. [25] proposed a CNN classifier for breast mass 
and brain tumor tissue. Their method constructed different 
CNN models suitable for the medical images’ features using 
the adaptive sliding window fusion mechanism. The biggest 
problem with classifying the medical images using neural 
networks is the used database size. In addition, pre-process-
ing is required; however, it is known that the pre-processing 
and the feature extraction in CNNs do not have to be per-
formed. Table 1 shows an overview of the recent work using 
deep learning techniques for medical image classification.

Knowledge transfer learning has been used in many com-
puter vision tasks. But there is a difference between natural 
images and medical images, which presents a difficult prob-
lem in building an effective CNN model for medical image 
diagnosis that outperforms other intelligent systems. In this 
work, a CNN architecture for diagnosing benign and malig-
nant tumors is proposed. Also, a simple network was built 
that does not require many resources to implement the pro-
posed network on mobile platforms. For effective evaluation 
of the proposed network, four different data sets were used: 
Us, X-ray, CT, and MRI. Detailed comparisons were also 
made with the latest transfer learning models, including the 
different measures of accuracy with the confusion matrix.

This paper aims firstly to classify the two types of tumors 
from four different database modalities with a CNN architec-
ture between benign and malignant. Two methods are tested 
through experiments, namely transfer learning on three CNN 
models: VGG16, VGG19, and AlexNet. Also, a proposed 
training network is built from scratch. The more complex 
models were compared with the simple ones in terms of 
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Table 1  Overview of the recent work using deep learning techniques for medical image classification

C carcinoma, N normal, B benign, M malignant, GLCM gray-level co-occurrence, MSD mean score difference, RAM recurrent attention mecha-
nism, GAN generative adversarial networks, SVM support vector machine, RF random forest, CNN convolution neural network, Sen sensitivity, 
Sp specificity, Pr precision, PPV positive predictive value, NPV negative predictive value, Acc accuracy, AUC  area under the curve, BI-RADS 
Breast Imaging Reporting and Data System, GI gastrointestinal, PBP pixel-block pair

Study/ Year Image modality Method Classifier Metric Category

Hussein, S.et al. [3] 
2019

CT lung and MRI and 
pancreas

Graph Regularized 
Sparse Multi-task 
learning

3D CNN and Transfer 
Learning

Acc 91.26%
MSD 0.459

Categorization of lung 
nodules and pancre-
atic cysts (IPMN)

Shaikh, M. et al. [4] 
2019

MRI brain/ Retina (RAM) model CNN Acc 97%
Acc 93.37%

Meningioma, Pituitary, 
and Glioma /Grading 
of diabetic macular 
edema

Afshar, P. et al. [10] 
2019

MRI brain Caps-Net Architecture CNN Acc 90.89% Meningioma, Pituitary, 
and Glioma

Kaur, P. et al. [11] 
2019

Mammography multi-class SVM CNN Acc 96.9%, M, B, N

Yi-Wei Chang et al. 
[12] 2020

Us breast BI-RADS SVM, RF, CNN Acc 80.00% Acc 
77.78% Acc 85.42%

M, B

Yi Wang et al. [13] 
2020

Us breast Inception-v3 archi-
tecture

CNN AUC 94.68% Sen 
88.60% Sp 87.60%

M, B

Xiaowen Liang et al. 
[14] 2020

Us breast and thyroid Multiorgan CAD 
system

CNN Sen 84.9%, Sp 69.0%, 
PPV 62.5%, NPV 
88.2%, Acc 75.0%, 
AUC 0.769

Fibroadenoma, Invasive 
carcinoma/Nodular 
goiter

Papillary carcinoma
Rajeshwari S. Patil 

et al. [15] 2020
Mammography GLCM and GRLM Hybrid CNN and 

RNN
Acc 90.5%, Sen 

92.4%, Sp 89.8%, Pr 
78.2%

M, B, N

Hua Li et al. [16] 
2019

Mammography DenseNet-II CNN Acc 94.55% M, B

Umar Albalawi et al. 
[17] 2020

Mammography Weiner filter k-means 
clustering

CNN Acc97.143% 
Sen96.522% Sp 
98.883%

M, B

Shen, L. et al. [18] 
2019

Mammography DL CNN AUC 0.91 Sen 86.1% 
Sp 80.1%

M, B

Yuezhong Zhang 
et al. [19] 2020

CT lung, liver, brain SVM with RBF CNN Acc 93% N, A

Huseyin Polat and 
Homay Danaei 
Mehr [20] 2019

CT lung Hybrid 3D-CNN with 
SVM

CNN Acc 91.81%, Sen 
88.53% Pr 91.91%

N, A

W. Li et al. [21] 2018 Hyperspectral PBP CNN Acc 93.14% Assign a class label to 
each pixel

T. Agrawal et al. [22] 
2019

GI Transfer learning CNN 87% correlation GI landmarks

Keita Saito et al. [23] 
2019

MRI heart DL CNN Acc 96.17% Heart diseases

Samir S. Yadav et al. 
[24] 2019

chest X-ray (ORB and SVM) 
Transfer learning

(VGG16-
INV3)
Caps Net

CNN Acc 77.6%
Acc 92.3%
Acc 87.5%
Acc 85.6%

Normal
and Pneumonia

Feng-Ping An et al. 
[25] 2019

Mammography/ MRI 
brain/

Weight Initialization-
Sliding Window 
Fusion

CNN Acc 98.2%
Acc 95.71%

M, B
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efficiency and training time. In addition to using a general 
model that works on various data, its implementation is real-
istic, easy, and guaranteed. The main contributions of the 
present study are as follows:

• Development of three AlexNet, VGG-16, and VGG-19 
transfer learning models for classifying multitype medi-
cal images.

• Employing several pre-trained CNN models with fine-
tuning and applying them to four different datasets, 
namely MRI, X-ray, Us, and CT with or without using 
data augmentation technique.

• Develop a proposed CNN architecture built from scratch 
that is characterized by low complexity and low training 
time.

• Apply the proposed CNN architecture consisting of 3 × 3 
kernels and 1 stride to all convolutional layers, unlike 
other more complex models. The proposed model also 
achieved higher diagnostic accuracy compared to the 
state-of-the-art models.

The rest of this paper is organized as follows. Sect. "Con-
volutional neural networks (CNN)" gives short notes about 
CNN. Sect. "Material and methods" describes the material 
and methods used in our work. Sect. "Deep features extrac-
tion and classification via transfer learning" gives short 
notes on the transfer learning methodology. Sect. "Proposed 
CNN Model" illustrates the proposed model architecture. 
Sect. "Experimental results and discussion" shows the exper-
imental results and discussion. Sect. "Conclusions and future 
work" provides the conclusions followed by references.

Convolutional neural networks (CNN)

In the past few years, he showed that interest in the medi-
cal field is a priority for human beings. Therefore, a lot of 
research has been developed in the medical field. Most of 
the new research focused on the use of artificial intelli-
gence in many medical branches because of its superiority 
over traditional techniques. The CNN architecture consists 
of an input layer, a convolution layer, a classification layer, 
and an output layer [4, 5, 26–29]. The input layer consists 
of the dimensions of the input images. The convolution 
layer is the main layer that performs two operations of 
feature extraction and feature selection. It also depends on 
the trainable filters, and each filter consists of a number 
of weights that adapt to the images entered during train-
ing. The convolution layer also contains padding, which 
is adding rows and columns of zeros to the borders of 
the entered images so that the image dimensions do not 
change. In addition, the number of convolutional layers 
reflects the complexity of the network. At the end of each 

convolution layer is a sub-layer called an activation layer. 
The activation layer is responsible for selecting the best 
values or weights for the filters used in the convolutional 
layers. The choice of values varies by choosing the type 
of activation layer, and the most used is the ReLU layer, 
which chooses the values of weights between zero and 
infinity. The ReLU layer carries out a threshold process 
for each one of the inputs, and the values that are smaller 
than zero are replaced by zero.

As mentioned earlier, convolutional layers select the best 
features, yet features are reduced relatively slowly. There-
fore, pooling layers such as max-pooling, mean-pooling, and 
average-pooling are usually used. Pooling layers reduce the 
number of features without training, so they do not count in 
memory. Classification layers are neural networks (NNs) and 
are called fully connected layers (FC). FC layers combine 
all the features you learned in the previous layers to identify 
patterns and then classify the images. The output layer is 
based on the SoftMax activation function. In addition, the 
output layer calculates the cross-entropy loss.

where 0 ≤ yr ≤ 1 and 
∑k

j=1
yj.

The SoftMax function is:
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(
cr
||x, �

)
≤ 1 and 

∑k

j=1
P
�
cj
���x, �

�
= 1 d.

Moreover, ar = ln(P
(
x, �|cr

)
P
(
cr
)
), P

(
x, �|cr

)
 is the sam-

ple conditional probability of the given class r, and P
(
cr
)
 is 

the probability of the class. The SoftMax function output 
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using the cross-entropy function [19]:

where N is the number of samples, tij is the indicator that 
the ith sample belongs to the  jth class, and yij is the output 
for sample i for class j , which, in this case, is the value from 
the SoftMax function. That is, it is the probability that the 
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Material and methods

In this paper, a simple CNN structure is proposed to classify 
tumors in multimedia medical images. In this section, all the 
proposed data sets in this research are described. Table 1 
also summarizes the details of the databases.

Dataset

Simulation results are conducted on four different exam-
ples of medical images (Us breast images [30], X-ray 
(mammogram) images [31], CT chest images [32], and 
MRI brain images [33]), and each dataset contains differ-
ent numbers of benign and malignant images. Each data set 
is divided into 70% training set and 30% test set. So that 
the training set is used to train the proposed model. The 
test set is also used to verify the model training results. A 
sample from all datasets is shown in Fig. 1.

Image processing data augmentation

One of the most important problems facing any training 
process is the lack of training data, which is the key to 
achieving the best classification accuracy. Therefore, a 
data augmentation technique was used, where the images 

of the model are entered in each epoch differently. The 
possible five augmentation techniques employed here 
are resizing and rotation followed by adding speckle and 
Gaussian noise, blur, sharpening, and filtering [4–21, 34]. 
Table 2 shows the dataset’s image numbers and their speci-
fications before and after data augmentation.

Deep features extraction and classification 
via transfer learning

The main function of using pre-trained networks is to trans-
fer the values   of weights, which is called transfer learning. 
Most of the pre-trained networks are trained on the Ima-
geNet dataset, which contains various types of images. Then, 
the trained weights are transferred to be applied to smaller 
data sets to take advantage of the previously trained weights. 
Then, the last layers of the previously trained model, FC, are 
changed only to adjust the model for the task of classifying 
tumors [35–40]. The learning transfer procedure is shown 
in Fig. 2.

The transfer learning models used in this research are 
VGG16-19 and AlexNet. Transfer learning networks are 
also applied to the proposed datasets with and without data 
augmentation, and the results are compared. These networks 
are explained as follows:

Fig. 1  Samples of Us, X-ray, 
CT, and MRI tumors images: a 
Benign tumor images; b Malig-
nant tumor images

Table 2  Medical image 
datasets and their specifications 
before and after data 
augmentation

Datasets Us X-ray CT MRI

Before After Before After Before After Before After

Number of Images 130 1056 100 1200 70 563 160 1160
Images Per Class 

benign/malignant
40/90 418/638 50/50 600/600 35/35 318/245 80/80 580/580

Images Size 227 × 227
Images Type JPG BMP DCM BMP
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VGG‑16 architecture

VGG16 [35, 36, 39, 40] is a primitive CNN consisting of 13 
convolutional layers and three FC layers interspersed with 
five max-pooling layers, ending with a soft-max output layer. 
The VGG16 network contains about 138 million parameters, 
which is a very large number, but it guarantees a stable and 
relatively high classification accuracy. The VGG16 network 
was used to win the ImageNet competition in 2014. Figure 3 
contains all the details of the VGG16 network.

VGG‑19 architecture

The VGG19 [35, 37–45] is similar to the VGG16 network in 
layer arrangement but differs in the increase in the number 

of convolutional layers which is 16 layers. Figure 4 contains 
all details of the VGG19 network. The VGG19 network con-
tains about 143 million parameters.

AlexNet architecture

The AlexNet architecture [35, 37–40] consists of five bypass 
layers and three FC layers. AlexNet also contains about 60 
million parameters. Figure 5 contains all AlexNet details.

AlexNet is significant because it is the first neural net-
work to win the 2012 ImageNet competition. AlexNet is 
also the first to use ReLU instead of the sigmoid or hyper-
bolic tangent function. AlexNet also provided a solution to 
the overfitting problem by applying a dropout between FC 
layers.

Fig. 2  The procedure of trans-
fer learning (TL)

Fig. 3  VGG-16 architecture

Fig. 4  VGG-19 architecture
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Proposed CNN model

In the proposed model, we intend to use a smaller number 
of parameters than the rest of the pre-trained models that 
were previously explained. It is known that if the depth of 
a neural network increases, the accuracy, and performance 
of the neural network increase. However, memory and GPU 
consumption increase, and sometimes neural network per-
formance does not improve.

As shown in Fig. 6, our proposed model consists of three 
convolutional layers and one FC layer interspersed with 
three batch normalization layers and two max-pooling lay-
ers. You can know the details of each layer in Fig. 6. The 
major advantage of the proposed model is the use of batch 
normalization layers to speed up the training process while 
reducing the number of parameters.

The training option and the hyperparameters can be 
specified as follows: We will employ the stochastic gradi-
ent descent with momentum (SGDM) optimizer with 0.9 
Momentum while training the VGG-16, VGG-19, AlexNet, 
and the proposed model. A relatively average learning rate 
of  10–5 was used, with 10 epochs during training. The num-
ber of iterations is one step that was taken in the gradient 
descent algorithm toward minimizing the loss function using 
a mini-batch based on the dataset images number, i.e., 740, 
740, 440, and 700 for Us, X-ray, CT, and MRI datasets, 
respectively. The training data are shuffled before each train-
ing epoch. The mini-batch size used here for each training 
iteration is 10. The L2 regularization is the contribution of 
the gradient step from the previous iteration to the current 

iteration of the training, specified as a scalar value from 0 
to 1.

Experimental results and discussion

In this section, the experimental results of the proposed 
CNN model, as well as the pre-trained models, are presented 
for the different medical image datasets classification. The 
effect and benefits of using augmentation techniques are 
discussed.

Without data augmentation

The validation accuracies, validation loss, and training time, 
for each dataset without data augmentation using VGG-
16, VGG19, AlexNet models, and the proposed model are 
shown in Table 3. It can be observed that the accuracies 
when applying the VGG16 model are 52.6%, 50%, 100%, 
and 100% on Us, X-ray, CT, and MRI datasets, respectively, 
and the accuracies of applying the VGG19 model are 68.4%, 
53.3%, 100% and 100% on Us, X-ray, CT and MRI datasets, 
respectively, and the accuracies of applying AlexNet model 
are 89.47%, 60.00%, 100% and 100% on Us, X-Ray, CT 
and MRI datasets, respectively. When applying the proposed 
model to Us, X-ray, CT, and MRI datasets, the accuracies 
are 75%, 63.3%, 100%, and 100%, respectively. Also, it can 
achieve the lowest validation loss.

The results for the Us and X-ray datasets are not convinc-
ing enough due to the low image quality of the Us and X-ray; 

Fig. 5  AlexNet architecture

Fig. 6  The proposed CNN 
model
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also, the properties of the two classes are very similar and 
the number of images in each dataset is small. On the other 
hand, the four models perform very well with CT and MRI 
datasets due to the high variance between the two classes 
and the good image quality. The CPU time illustrates the 
complexity of the models. As can be shown in Table 3, the 
proposed model can obtain the lowest system complexity 
due to its simple architecture.

With data augmentation

In this section, the effect of using data augmentation on 
transfer learning models and the proposed model are dis-
cussed. As a result, evaluation results are more compel-
ling for use in real-world applications. When applying the 
VGG16 model, the accuracy for the Us dataset is increased 
from 52.6% to 58.3% and for the X-ray dataset from 50% 
to 54.7%. Similarly, the accuracy for Us and X-ray for the 
VGG19 model is increased from 68.4% to 75%, and 53.3% 
to 63.8%, respectively.

For the AlexNet, the accuracies increased from 83.47% 
to 89.9% for the Us database and from 60% to 70.6%. The 
overall accuracy obtained for the proposed model is 92.7% 
and 91.1% for Us and X-ray datasets which are much greater 
than the accuracies achieved without data augmentation. 
Thus, the experiments illustrate that the data augmentation 
techniques have an apparent effect on classification accu-
racy. In Figs. 7 and 8, the training and validation curves and 
confusion matrices of the proposed CNN model are shown 
with data augmentation.

There is a difference between medical images and natural 
images, which is the gradation of colors. From this point of 
view, the results of training the pre-trained models may not 
be the most suitable choice for classifying medical images 
(Table 4).

Initially, the proposed model achieved relatively low 
training accuracy for the Us and X-ray datasets due to 
the low image quality and the small number of images. 

However, after using the data augmentation technique, the 
accuracy began to gradually increase.

From the simulation results, this paper presents a com-
prehensive comparison between the use of transfer learn-
ing models, which are VGG16, VGG19, and AlexNet, and 
between the use of a simple proposed model with a few 
parameters. The results showed that the proposed model 
outperformed the previously trained models in classifying 
various medical images, but after using the data augmenta-
tion technique. The proposed model also helps the radiolo-
gist make an accurate decision to classify different medical 
images.

Conclusions and future work

In the scientific community, it has become necessary to 
use static models that work on different data sets. So in this 
paper, a relatively simple model with few parameters based 
on neural networks is proposed. Where the proposed model 
is used to classify various data sets such as Us, X-ray, CT, 
and MRI. The proposed model also achieved a classification 
accuracy of 92.7%, 91.1%, 100%, and 100% for the data-
sets Us, X-ray, CT, and MRI, respectively. A comparison 
was made between the proposed simple model with transfer 
learning models such as VGG16, VGG19, and AlexNet. It 
is also possible to use the proposed model on the simplest 
available resources due to the small number of layers with a 
small number of parameters. Medical diagnosis in develop-
ing countries is one of the easiest and most important factors 
for epidemic prevention. Therefore, our proposed model can 
be used on mobile platforms because of the small neural 
network used with high efficiency on different data sets. 
The proposed model can also be used in real-time discov-
ery applications. In future, the performance of the proposed 
model will be tested on recent data sets with better improve-
ments in accuracy and complexity.

Table 3  The accuracy (Acc.) 
and loss of the pre-trained 
models and the proposed model 
for Us, X-ray, CT, MRI datasets 
without data augmentation

Dataset VGG16 VGG19 AlexNet Proposed

Acc CPU (min) Acc CPU (min) Acc CPU (min) Acc CPU (min)

Us 52.6% 27:32 68.4% 32:52 83.47% 8:43 75% 2:50
X-Ray 50% 36:41 53.3% 44:01 60.00% 9:11 63.3% 2:46
CT 100% 24:53 100% 36:45 100% 7:31 100% 2:09
MRI 100% 33:34 100% 42:20 100% 11:34 100% 3:20
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 (a) Training and validation curves for accuracy and loss using the proposed model for the Us dataset..

 (b) Training and validation curves for accuracy and loss using the proposed model for the X-Ray dataset.

Fig. 7  Training and validation curves for accuracy and loss using the proposed model for different datasets after data augmentation
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(c) Training and validation curves for accuracy and loss using the proposed model for the CT dataset.

 (d) Training and validation curves for accuracy and loss using the proposed model for the MRI dataset.

Fig. 7  (continued)
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 (a) The confusion matrices of the proposed CNN model for Us dataset.

 (b) The confusion matrices of the proposed CNN model for X-Ray dataset.

Fig. 8  The confusion matrices of the proposed architecture for differ-
ent datasets

 (c) The confusion matrices of the proposed CNN model for CT dataset.

(d) The confusion matrices of the proposed CNN model for MRI dataset.

Fig. 8  (continued)

Table 4  The accuracy (Acc.) 
and loss of the pre-trained 
models and the proposed model 
for Us, X-ray, CT, MRI datasets 
with data augmentation

Dataset VGG-16 VGG-19 AlexNet Proposed

Acc CPU (min) Acc CPU (min) Acc CPU (min) Acc CPU (min)

Us 58.3% ≅ 840 75% ≅ 1140 89.9% 110:35 92.7% 79:17
X-Ray 54.7% ≅ 1130 63.8 ≅ 1460 70.6% 67:24 91.1% 43:23
CT 100% ≅ 430 100% ≅ 840 100% 33:17 100% 19:38
MRI 100% ≅ 990 100% ≅ 1290 100% 69:31 100% 41:10
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