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Introduction

Many frontier research regimes have been opened up due to 
the rapid advancement of intense laser technology in recent 
years. Compact short pulse terawatt laser systems have been 
made possible with constant improvement in laser systems 
[1, 2]. In this regard, the laser electron interaction depends 
on the intensity distribution of the selected laser beam. 
According to Hartemann et al. [3], electron’s kinetic energy 
remains lower where lower-intensity regime enhances at 
higher-intensity region. This is due to the fact that electron 
experiences better trapping owing to intense laser field. 
Many researchers presented theoretical and experimen-
tal schemes to attain higher energetic electrons due to the 
aid of ultra-intense lasers [4–6]. The energy enhancement 
for Hermite–Gaussian (HG) laser beams much encounters 
experimentally and theoretically in laser and plasma phys-
ics in different-different conditions. One decade earlier, 
researchers have observed self-focusing of dark hollow 
Gaussian electromagnetic beams in plasma [1–3]. Various 
studies depict the electron acceleration due to Gaussian laser 
due to its potential to produce narrow beams of reduced 
divergence with restricted energy spread [7, 8]. Carbajo et al. 
[9] have experimentally observed direct electron accelera-
tion due to radially polarized (RP) laser beam and achieved 
highly directional longitudinal accelerating gradients above 
the GeV/m range. Several researchers have also analyzed 
the behavior of the HG laser beam. The higher-order cor-
rections are derived and studied for the electron acceleration 
by tightly focused HG beam in vacuum [10]. For HG modes 
in the cavity, in case of inhomogeneous intensity distribu-
tion, the comparison of standing waves of conventional 
Fabry–Perot cavities and the cavity’s compactness led to 
different scaling for laser parameters compared to conven-
tional mode-lock lasers [11].
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Self-focusing of HG laser beams in plasma under plasma 
density ramp becomes much strong as the propagation dis-
tance increases [12]. The strong self-focusing occurs when 
the HchG beam propagates deeper inside the nonlinear 
medium as the spot size shrinks due to highly dense plasma 
[13]. Ghotra and Kant [14] have investigated electron accel-
eration due to CP HG laser and highlighted the utility of 
intensity distribution of TEM modes and laser beam width 
parameter of this laser on electron energy gain. The solu-
tions obtained from Maxwell’s equations were constructed 
in terms of the paraxial scalar wave equation (done experi-
mentally) for the polarization structure of HG laser beams 
[15]. HG beams have large numbers of applications also 
they used for air vehicle communication systems in verti-
cal paths of weak atmospheric turbulent medium [16]. In 
this paper, we employed a HChG laser beam for efficient 
electron acceleration in a vacuum. In the laboratory, we can 
create such a profile using Gaussian, Hermite–Gaussian, and 
cosh-Gaussian beams. As a result, the HChG beam is the 
generic kind that encompasses all of the above beams. The 
HChG profiles have a lot of advantages in the laser–plasma 
interaction because they have more adjustable parameters 
like the Hermite polynomial mode indexes (order) and the 
decentered parameter, which provides more control over the 
self-focusing phenomenon. The higher-order modes of the 
Hermite–Gaussian beams, on the other hand, have a particu-
lar intensity distribution that forces a better electron trapping 
at the focus than the Gaussian mode beam.

In the present manuscript, we have analyzed the com-
parative study of CP and LP HchG laser pulse in vacuum 
for improved electron energy gain. In this study, it has been 
observed that for CP HchG laser pulse the energy enhance-
ment is higher as compared to LP HchG laser pulse. The 
electron energy dependence is analyzed laser decentered 
parameter b and  pz0, and energy enhancement is observed 
with higher value of decentered parameter.

Electron dynamics

Consider the propagation of a HchG laser with electric and 
magnetic field as given below:
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Here, � = �t − kz is the initial phase of laser, s is the 
mode index associated with the Hermite polynomial Hs, E0 
is the amplitude of HchG laser beam for central position at 
r = z = 0 , r0 is the initial spot size of the laser, and b is the 
laser’s decentered parameter and r2 = x2 + y2 Here, � = 0 for 
LP laser pulse and � = 1 for the CP laser pulse; the magnetic 
field concerned with the laser is calculated by Maxwell’s 
equation,∇ × � = −��∕�t.
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 using the relativistic New-

ton–Lorentz equations of motion. The electron momentum 
and energy can be deduced from the following equations:

These Eqs.  (5)–(8) have been solved by fourth-order 
Runge–Kutta (RK-4) method with variable time step size 
using MATLAB software. Here, � is the Lorentz factor, 
Px = γm0vx, Py = γm0vy, Pz = γm0vz. Throughout this paper, we 
normalized time by 1/ω, length by 1/k and velocity by 1/c. 
We have used the following normalized parameters, a0 = e 
E0/m0ωc, where e is the electronic charge and m0 is the rest 
mass of electron.

Results and discussion

Figure 1a–b depicts the variation of electron energy γ with 
the laser initial intensity parameter a0 with different values 
of electron’s initial velocity vz0. The normalized values of 
vz0 are taken as 0, 0.5 and 1.0 for different values of laser’s 
decentered parameter or modal parameter b. The comparison 
has been made for CP and LP HchG laser for effective elec-
tron energy gain. Hermite-cosh-Gaussian (HchG) beam can 
be generated in the laboratory by the superposition of two 
decentered Hermite-Gaussian beams as cosh-Gaussian ones. 
HchG laser beam focuses earlier than any other laser beams. 
That is why it is very much effective to transfer energy to 
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electrons. The self-focusing of HchG laser beam can be con-
trolled by the mode indices and the decentered parameter, as 
the decentered parameter is more sensitive to self-focusing.

Figure 1a, b shows the effect of initial electron veloc-
ity vz on electron maximum energy gain for fixed values of 
initial beam waist, decentered parameter and Hermite order. 
The variation of maximum energy gain ( �m ) with normal-
ized intensity parameter ( a0 ) at an optimum value of laser 
beam waist width ( r0) = 50, decentered parameter (b) = 1 and 
Hermite order or index (s) = 1 keeping the z component of 
electron velocity vz = 0 and 0.4, respectively, for LP and 
CP HchG laser beam has been plotted. From the graphs, it 
is evident that electron’s maximum energy gain is more pro-
nounced for CP HchG laser beam than that of LP HchG laser 
beam. The ponderomotive force is a function of intensity 
distribution of laser’s electric field, due to which electron 
is captured by laser more effectively and oscillates in its 
electromagnetic field. In the leading edge of the laser pulse, 
electron enhances its energy, and in the trailing edge of the 
laser pulse, electron’s energy is almost saturated. In case of 
pre-accelerated electron, transfer of energy from laser pulse 
to electron occurs smoothly. Due to axial symmetry, electron 
can gain more energy in case of CP laser beam in com-
parison with LP laser beam. It has been noticed that with 
an increase in the intensity parameter ( a0 ), the �m increases 
along the direction of propagation of the beam. The maxi-
mum energy gain for CP laser with electron initial velocity, 
vz = 0.4 is approximately 84% enhanced as compared to LP 
laser for similar set of parameters.

Figure 2 depicts the variation of electron’s energy ( � ) 
in MeV with normalized time ( t′ ) for the fixed value of 
a0 = 5, 10 and 15, respectively, and z component of veloc-
ity vz = 0 and 0.5 in each case. Other parameters like 

r0 = 50, b = 1, s = 1 are same for other plots. At optimum 
value of laser parameters, initially pre-accelerated electron 
interacts with laser pulse: When electron interacts with the 
rising part of the laser pulse, electron gains its energy and on 
the falling part of laser pulse electron’s energy is saturated. 
As we increase intensity of laser beam, electron spends more 
time with laser’s electromagnetic field; as a result, interac-
tion time increases and the longitudinal force is increased 
on the electron, and hence, electron gains significant energy 
and retains the same gained energy for both longer duration 
and distance.

Decentered parameter of laser plays a crucial role on 
electron acceleration as depicted in Fig. 3. In these graphs, 
we have shown the variation of maximum energy gain ( �m ) 
in MeV with decentered parameter. The values of ‘b’ are 
varied from 0.5 to 2.5 with an interval of 0.5. Figure 3a is 
for a0 = 15 , r0 = 100 , s = 1 , vz = 0 , whereas Fig. 3b is for 
vz = 0.4 and other parameters are unchanged. Increase in ‘b’ 
implies that the distribution of intensity in the axial direction 
increases. This intense and increase in focal depth and cor-
rugation of the focal spot sharply enhance the energy gain 
by the electrons. A maximum energy gain of 1.254 GeV 
is observed for b = 0.5 which increases to 7.948 GeV for 
b = 2.5 at vz = 0 and 1.678 GeV for b = 0.5 and 12.791 GeV 
for b = 2.5 and vz = 0.4 . We have noticed the two important 
phenomena: self-focusing and better trapping throughout the 
study. Throughout the whole study, LP HchG laser beam is 
not so attractive for electron acceleration as compared to CP 
HchG laser beam. As the decentered parameter is increased, 
the intensity distribution grows in the axial direction. It dem-
onstrates that the focus depth has increased and the focusing 
point has shrunk, leading to a significant rise in electron 
energy. This can be shown in the next variation that how 
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lesser maximum energy gain is observed for LP HchG laser 
as compared to CP HchG laser.

Figures 4 and 5 represent separate variations for LP and 
CP HchG laser pulse for maximum energy gain vs decen-
tered parameter for different values of vz , i.e., velocity in 
the longitudinal direction. It is evident with the figures that 

in both cases, the maximum energy gain enhances with 
vz with the rest of the parameters same. However, for CP 
HchG laser, the gain is prominent as compared to that of 
LP HchG laser due to the symmetrical intensity distribu-
tion in case of CP laser.
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Conclusion

The present investigation deals with the comparative study 
of electron energy gain due to LP and CP Hermite-cosh-
Gaussian laser pulse in vacuum. In this study, it has been 

found that for circularly polarized HchG laser pulse, the 
energy enhancement is higher as compared to that of linearly 
polarized HchG laser pulse. The beam width depends upon 
the normalized propagation distance for different values 
of ‘b’; larger b and higher is the energy enhancement. The 
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energy enhancement is investigated and found progressively 
increased with b and  vz0. For the electron energy enhance-
ment, the decentered parameter plays very important role. 
The laser field employed here has a great potential in the 
various fields of self-focusing, electron acceleration, THz 
radiation generation, etc. [17–22]. This research work may 
have significant applications in remote sensing, beam split-
ting techniques, air vehicle communication systems and 
free-space optical communications that involves HchG laser 
beam.
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