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Introduction

Gold nanoparticles (AuNPs) can be created by alternative 
techniques, such as physical irradiation process, laser abla-
tion, electrochemical, chemical methods, and biological 
method, microorganisms, plants [1–3]. As a result nanopar-
ticles/porous Si (NP/PS) systems made of metal have been 
investigated in enhancing their sensing capabilities [4, 5] and 
luminescent [6–8] PS substrates surface enhanced Raman 
scattering covered in noble metal nanoparticles, such as 
Gold and Silver, have also been widely researched [9–14]. 
Hydrodynamic disturbances on polished Si substrates, also 
the thin-film thickness fluctuations, voids occur in the film, 
with little effect from the substrate topography [15–21]. Sur-
face Plasmon Resonance (SPR) is one of the most important 
optical properties of metallic nanoparticles. It is formed of 
collective oscillations of conduction electrons caused by the 
electromagnetic field of incident light [22]. Nanoparticles 
have several properties which aren’t found in bulk materials 
[23]. The shape and size of nanoparticles have a profound 
effect on their properties (electrical, optical, and magnetic) 
[24]. AuNPs are interesting nanomaterial with a large range 
of applications in basic research. [25, 26] AuNPs, for exam-
ple, have been employed in single electron devices and scan-
ning laser microscopy studies of cellular mechanisms [27, 
28]. Ultrasensitive biosensors, catalysis in the manufacture 
of self-assembling nanomaterial, photovoltaic devices, and 
nonlinear optics [29–34]. Nanoscale materials can be used 
in a range of applications, such as optomechanical sensors, 
chemicals, and natural cycles [35–37]. Laser ablation in liq-
uids has recently been mentioned as a possible source of 
nanoparticles by a few authors [38–41]. Gold nanoparticles 
(AuNPs) are particularly essential in metal nanoparticles 
due to their great effectiveness of (SPR) [42–45]. AuNPs 
have electrical, mechanical, and physical properties due to 
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with ultra-high sensitivity using a laser ablation process. 
Formed AuNPs by Nd: YAG laser wavelength of 1064 nm 
and 532 nm, 500 pulses and different energies on porous 
silicon etched for 18 min. Morphology, structural, optical 
and J–V characteristic for AuNPs/PS has been investigated. 
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their wide range of applications [46–48]. The absorption of 
AuNPs is influenced by their diameter, the electrical insu-
lator’s center, and the chemical environment [49, 50]. In 
AuNPs, the conduction band and valence bar are closely 
enough, permitting electrons to pass freely across them. 
These free electrons absorb the Surface Plasmon Resonance 
(SPR), which also is formed by the amplitude fluctuating of 
the electrons of nanoparticles in resonance with the optical 
wave [51, 52]. A new approach to produce nanoparticles 
that can be employed in a variety of applications is to use 
laser ablation in liquid. PLAL has been used to generate a 
variety of nanoparticles, including metals, oxides, alloys, 
and semiconductors [53–59]. In the current work, AuNPs 
that were prepared using laser ablation technology approach 
and deposited on PS to create ultra-high sensitivity photo 
detector nanostructures. Investigations have been done into 
the electric, optical, and structural characteristics.

Experimental details

AuNPs have been made using laser ablation (Nd:YAG) 
1 Hz pulse repetition rate with wavelengths of 1064 nm and 
532 nm, energies (600, 800, 1000)mJ. High pure gold plate 
was washed by ethanol and distilled water then placed in 
vessel with solution of PVA and distilled water after mixing 
it to the point of homogeneity using the stirrer. Production 
of gold nanoparticles in PVA by nanosecond laser incidence 
on gold plate. To obtain an appropriate concentration of gold 
nanoparticle solution, this experiment has been carried out 
multiple times, via casting technique the Au/PVA in differ-
ent energies solution dripping on the porous silicon care-
fully prepared using photoelectrochemical etching (PECE) 
in 18 min. The (J–V) in dark and (Jph–V) in light properties 

of the structural elements Si, PS and AuNPs/PS were investi-
gated, taking into account the light and dark current density. 
These samples were illuminated with a halogen lamp at a 
range of light power density of (5, 20, 60, and 125) mW/cm2 
with reverse voltages between (− 6 and + 6) Volt.

Results and discussion

UV–Vis absorption-based solutions using PVA were inves-
tigated for their effectiveness in both 532 nm and 1064 nm 
with (600, 800, 1000) mJ and 500 pulse Fig. 1 their results 
are compared. The intensification of the increase in laser 
energy can also lead to an increase in absorption spectra 
attributed to the rise in nanoparticles concentration. Absorb-
ance is calculated using Beer-Lambert equation and the con-
centration of the solution. The formation of some more than 
one gap in nanoparticles, on the other hand, can result in 
a particle size increase. In this work, PVA 1064 nm was 

Fig. 1   Absorption spectra of AuNPs colloidal prepared with various laser energies, at 500 shots. a 532 nm, b 1064 nm laser wavelength

Table 1   The UV–Vis characteristics for Au NPs in PVA prepared by 
laser ablation 532 nm and 1064 nm laser wavelength

Sample Energy (mJ) λ max (nm) Abs FWMH

400 522.5 0.080589 63.1
Au NPs-532 nm 600 513.2 0.335331 109.6

800 516.7 0.36068 119.3
1000 512.5 0.971448 143
400 508.1 0.248426 98
600 508.7 0.398437 124

Au NPs-1064 nm 800 511.8 0.417838 146
1000 520.3 0.595543 157
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selected for better results, as from Table 1 and compared 
with the rest of the table it was seen, the spectrum shows 
strong absorption between (500 and 550) nm and shifts 
toward shorter wavelengths (blue shift) with an increasing 
laser energy due to reduce the nanoparticles size.

XRD was used to investigate the crystalline degree of 
AuNPs/PS at 1064 nm and 532 nm in 1000 mJ. The XRD 
measurements for PS show a very strong peak in 2θ = 69°, 
60° in 532 nm and 2θ = 69°, 70° in 1064 nm for 1000 mJ 
observed through Fig. 2. There are peaks in the XRD pat-
tern for the AuNPs/PS layers, from the creation of crys-
talline AuNPs on the PS substrate, and the results for the 
AuNPs/PS layers we can see the layers exhibited a peak at 
2θ = 37.900° to the PS (111) layer in 532 nm 2θ = 38.200° 
in 1064 nm matching to the (111) crystal planes of crystal-
line AuNPs, demonstrating the discovery of AuNPs when 
deposited on PS.

Table 2 displays the discovered crystallite sizes in Au/
NPs/PS in 532 nm in 1000 mJ and PS etched in 18 min 

calculated by Scherrer equation show a considerable 
increase in crystallite size with decreasing in FWHM in 
all wavelengths.

Different laser energies (600 mJ, 800 mJ, and 1000 mJ) 
were used to examine the PL spectra of porous silicon and 
AuNPs at room temperature, at two wavelengths 532 nm 
and 1064 nm as Fig. 3. There is only one unique emis-
sion band at (581, 588, 591) nm in 532 nm, and 1064 nm 
(581, 582, 588) nm. As laser pulse energy increases from 
400 mJ, 600 mJ, to 1000 mJ. When comparing of two 
crystals, the crystal with the shorter wavelength 532 nm 
has a larger refractive index with longer wavelengths and 
lower energies, and we note in it the greatest wavelength 
in the visible region at 591 nm and peaks shifted to higher 
wavelength.

(1)E =
hc

�

Fig. 2   X-ray diffraction patterns of the Au NPs/PS prepared by laser ablation with a 532 nm laser wavelength, b 1064 nm laser wavelength

Table 2   Values obtained from 
measurements using XRD peaks 
for Au NPs/PS in PVA prepared 
by laser ablation with 532 nm 
and 1064 nm laser wavelength

Sample Miller indices 2 theta (°) FWHM (°) dhkl (Å) Crystallite 
size (nm)

(111) 37.9 1.79 2.37 4.7
(200) 44.7 1.72 2.02 5.0

Au NPs/PS-532 nm (220) 64.5 1.60 1.44 5.9
(311) 77.2 1.50 1.23 6.8
(111) 38.2 2.40 2.35 3.5
(200) 44.7 2.10 2.02 4.1

Au NPs/PS-1064 nm (220) 64.4 1.90 1.44 4.9
(311) 77.5 1.60 1.23 6.4
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(2)n =

√

1 +
A

B + Eg

A = 13.6 eV and B = 3.4 eV; h, Plank constant; c, speed of 
light.

Using Eq. (1) [60], as the energy rate rises, the band gap 
(Eg) narrows, and the wavelength increases as a result the 
quantum confinement phenomenon when the refractive 
index raises Eq. (2) [61, 62]. Excitation value for PL spec-
tra of 591 nm in 532 nm and 585 nm in 1064 nm is visible, 
showing a change to blue in the band gap when contrasted to 
bulk Si, for which the quantum confinement effect is respon-
sible as shown in Table 3.

The particle size of AuNPs is seen in TEM images in 
Fig. 4. The AuNPs were created using a laser with pulse 
energy of 1000 mJ, 500 pulse rate in two crystal wave-
length 532 nm and 1064 nm. It can be seen that prepared 
AuNPs nearly has a spherical shape. Complementary con-
trast was visible in TEM images, confirming the creation 
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Fig. 3   PL spectra of the Au/NPs porous silicon, different laser pulse energies, Nd: YAG laser at a 532 nm, b 1064 nm laser wavelength

Table 3   Values of PL peaks AuNPs/PS prepared with varying laser 
pulse energies at (a) 532  nm laser wavelength (b) 1064  nm laser 
wavelength

Sample Energy (mJ) Λ (nm) Eg (ev) n

600 581.2 2.133 1.853
Au NPs/PS-532 nm 800 588.2 2.108 1.862

1000 591.2 2.097 1.863
600 581.1 2.133 1.859
800 582.3 2.129 1.859

Au NPs/PS-1064 nm 1000 585.3 2.118 1.861

Fig. 4   TEM image for AuNPs colloidal prepared using PLAL synthesis at E = 1000 mJ a 532 nm, b 1064 nm laser wavelength
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Fig. 5   SEM image of AuNPs/PS synthesized by laser ablation a 532 nm, b 1064 nm laser wavelength

Fig. 6   J–V characteristic under the dark of bulk Si, PS and AuNPs/PS with various laser pulse energies a 532 nm, b 1064 nm laser wavelength

Fig. 7   log(J) with bias voltage 
of c-Si, PS and AuNPs Porous 
silicon at various laser energies, 
500 pulses and laser wavelength 
(a) 532 nm, (b) 1064 nm on PS 
substrate under dark
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of the core shell structures, it can be suggested that the 
uniform layer covers the spherical core the second phase. 
When comparing the two crystals, it becomes clear that 
at the wavelength of 532 nm the size of the particles is 
greater than 1064 nm.

The SEM images of the AuNPs Porous silicon structure 
in two crystals of different wavelengths and constant energy 
were used at 1000 mJ and the etching time of the porous 
silicon was fixed in 18 min the particle size increase with 
the crystal of 532 nm and decrease with 1064 nm so it is an 
inverse relationship Fig. 5.

The J–V characteristics of AuNPs/PS/n-Si occur in Fig. 6 
in dark circumstances with a current density of 20 mA/cm2, 
an etched time of 18 min, and an HF of 16%. At laser ener-
gies of 600, 800, and 1000 mJ, it appears the current rises 
with the presence of AuNPs on the PS layer. Because of high 
electrical conductivity of the AuNPs, current increases with 
compared to the PS sample and decreases in contrast to bulk 
Si due to the high degree of crystallized form.

The streaming recombination current is not uniformly 
spread through the structure, as seen Fig. 7 by the com-
parison log (J) with bias voltage of AuNPs porous silicon 
usually at local area. The ideal factor and barrier height ΦBn 
calculated according to Eqs. (3) and (4) because electrons do 
not have enough energy to cross the barrier height, there is 
a lot of recombination between excited electrons and holes. 
The most recent is known as diffusion current, which occurs 
at higher voltages and results in an exponential rise in output 
current [63].

Table 4   Value of saturation current, ideality factor, and barrier 
height of c-Si, PS and AuNPs/PS samples at various laser energies, 
etching time 18 min with varied laser wavelength

Sample Wavelength 
(nm)

n Js (μA/cm2) ΦBn (eV)

Bulk Si 1.932 25 0.659
PS 1.326 18 0.667
AuNPs 

(600 mJ)/PS
 532  2.288 23 0.601

AuNPs 
(800 mJ)/PS

1.262 70 0.632

AuNPs 
(1000 mJ)/PS

1.374 73 0.631

AuNPs 
(600 mJ)/PS

 1064 1.173 37 0.679

AuNPs 
(800 mJ)/PS

0.8448 34 0.651

AuNPs 
(1000 mJ)/PS

1.809 36 0.649

Fig. 8   Jph–V curve of AuNPs/PS n-type substrate when light with varied laser wavelength (a) 532 nm, (b) 1064 nm
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J, forward current density (μA/cm2), kB, Boltzmann constant 
(1.38 × 10−23 J/K), V, the applied voltage, A**, represents 
the value of Richardson’s constant (112 A/cm2 K).

Ideality factor (n) calculated heterojunctions have bar-
rier heights (Bn) between (0.60 and 0.62) eV in 532 nm and 
increasing from 0.64 to 0.679 eV in 1064 nm. These values 
range from 1. 2 to 2.2 for 532 nm and from 1.1 to 1.8 for 
1064 nm. Applied low applied voltage to the saturation cur-
rent density is obtained from the linear region of the semi-
log forward I–V curves (Js) (Table 4).

Figure 8 demonstrates the sandwich structure with a 
reverse bias voltage and some light. When PS is coated 
with Au film using various wavelengths of laser deposi-
tion, photocurrent increases (532 and 1064 nm). By shining 

(3)ΦBn =
KBT

q
ln

(

A∗∗T2

J

)

(4)n =
q

KBT

d�

d(ln J)

light on the junctions additionally, the reverse bias current 
was improved, which is anticipated of the formation of 
electron–hole pairs in the zone of energy depletion of the 
incoming photons exceeds the sandwich structure’s smallest 
immediate band gap. Conclusions of the previous studies 
clearly reveal that these sandwich arrangements possess a 
good light response, making it a better material for optoelec-
tronic device fabrication.

Figure 9 shows the spectra of AuNPs divided two distinct 
portions the first shows responsiveness as a result of the 
near infrared ~ 600 nm wavelength region of Au nanopar-
ticle absorption. Responsivity, the second section, shows 
how the PS layer absorbs visible light 850 nm. These find-
ings enhanced the compatibility of Au with PS structures, 
enhancing the performance of porous silicon. The responsiv-
ity is calculated by using Eq. (5)

(5)R� =
Iph

Pin

Fig. 9   Responsivity of AuNPs produced on PS substrate with varied laser wavelength (a) 532 nm, (b) 1064 nm
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Iph, current of the optical container, Pin, input power, Spec-
tral responsivity Rλ is the detector signal.

Figure  10 demonstrates measurement of detectiv-
ity D* at various wavelengths nm, to altered wavelength 
laser deposition 532 nm, and 1064 nm. The highest values 
are around (0.39260385, 0.497405712, and 0.945842868) 
(cm Hz1/2/W) × 1012, which increase with increasing energies 
600, 800, 1000 mJ in wavelength 532 nm, and (0.815409152, 
0.85192001, and 0.973185088) in wavelength 1064, which 
match to visible energies of (532, 1064) nm, including both. 
Calculated detectability by Eq. (6) [64, 65].

The detector active area (Sdet), which represents the noise 
equivalent power, and detectivity (D*), which reflects the 
response of the frequency.

(6)D∗ =

√

SdetΔf

NEP

The link between the quantum effectiveness of the device 
and the wavelength of the incident light is depicted in Fig. 11. 
Quantum efficiency increased as the band gap of the structure 
widened. It was high at the time because quantum efficiency is 
proportional to R. Maximum quantum efficiency is determined 
to be 29.9% in 600 mJ, 49.7% in 800 mJ, and 94.5 in 1000 mJ 
at wavelength 800 nm and (66.7%, 85.1%, 95.6%) in 1064 nm 
crystal (600, 800, 1000 mJ). The spectral responsiveness and 
the quantum efficiency are determined by Eq. (7) [66–68].

As the bandgap of the structure grew larger, the quantum 
efficiency improved. The highest efficiency was 95.6%when 
separate lasers, 532 nm and 1064 nm, were used to dep-
osition thin layer. The efficiency increased with energy 
gap dropped, laser deposition wavelengths expanded. The 

(7)� =
h�

q
R�

Fig. 10   Detectivity of AuNPs produced on PS substrate with varied laser wavelength (a) 532 nm, (b) 1064 nm
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quantum efficiency of relationships inside a system deter-
mines it.

Conclusion

The pore size of porous silicon (PS) films increases as the 
laser wavelength decreases; from the (J–V) characteristic, it is 
evident that the current increased when AuNPs were present. 
At laser energy of 600, 800, and 1000 mJ ablated on the PS 
layer. This is caused by the AuNPs high conductivity of the 
layer, this due to the current rise in comparison the PS sample 
and decrease in comparison with bulk Si. When employing 
PS layer instead of c-Si, the responsibility has improved, and 
it has improved even more after doping the AuNPs. The Au-
NPs can be deposited on the PS surface to assist improve light 
absorption, reduce resistance, and improve overall conversion 
efficiency. These findings show that a low-cost visible pho-
todetector based on this high-quality photodiode could be a 
feasible option in commercial photoelectric applications.
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