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confinement effect, low cost, easy fabrication, large active 
area, and charge transport [1–4].

Gas sensor is an instrument that detects the presence of 
various gases in an area, particularly those that are poten-
tially dangerous to humans and animals. In recent years, the 
development of gas sensor technologies for monitoring envi-
ronmental contamination has gotten a lot of attention [5].

The characteristics of the sensing materials used are well 
recognized to influence chemical gas sensor performance 
parameters such as selectivity, temporal response, sensi-
tivity, stability, durability, and repeatability [6]. The spe-
cific surface of sensing materials has a significant impact 
on chemical gas sensor sensitivity. The sensor sensitivity 
increases as the specific surface of the detecting material 
increases [7–9]. Semiconductor and metallic nanoparticles 
gas sensors continue to play an important part in their appli-
cations [10]. Because of their low cost, distinctive structure, 
ease of production, and outstanding physicochemical char-
acteristics, transition metal oxide semiconductor substances 
like TiO2, ZnO, and CuO are a potential class of sensors 
[11–14].

TiO2 is an n-type semi-material with a high resistance and 
a band gap of roughly 3.2 eV. It has gained a lot of attention 
for its use in gas sensors, photo-catalysis, and solar cells [10, 
15]. This semiconductor of n-type has been investigated to 
employ in the sensing of H2S; it is produced in significant 
amount from both human and natural processes, particularly 
in crude oil refineries with the extraction of acid natural gas 
[17–19].

Inhaling H2S has been demonstrated to have significant 
health consequences on the respiratory system; also, H2S 
poisons the human body and can cause death at concentra-
tions greater than 250 ppm [20, 21].

Other desirable characteristics of TiO2 include its strong 
photocatalytic activity, superior chemical and physical 

Abstract  In this study, a novel, simple method has been 
used for fabricated of Au:TiO2 nanoparticles. The manu-
facture consisted of two steps: first, ablating a gold (Au) 
target immersed in CTAB solution to produce colloidal Au 
NPs and then inserting a titanium (Ti) target in the solution 
to prepare Au:TiO2 NPs via laser ablation in liquid (LAL) 
at various laser energies. Then, it was placed on porous-Si 
(PS). PS is made by etching n-type crystalline c-Si wafers 
by photo-electrochemical etching (PECE). The XRD, TEM, 
AFM, PL analyses were employed to characterize the sam-
ples. Lastly, the impact of varying operation temperature 
of hydrogen sulfide (H2S) and nitrogen dioxide (NO2) gas 
sensors fabricated from prepared specimens on the sensors 
sensitivity, response time, and time to recover was explored. 
We found the greatest sensitivity of Au:TiO2 NPs/PS when 
ablated at 1000 mJ. The synthesized Au/TiO2 NPs thin films 
show high sensitivity 94.12% and 42.69% with fast response 
and recovery of H2S and NO2 gas at for low concentration 
12.6 and 64.5 ppm, respectively.
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Introduction

Nano-materials are used to manufacture devices such as gas 
sensors, photo-detector, and solar cell, due to the quantum 
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stability, ease of oxygen adsorption on its surface, ease of 
preparation, and low cost. Because of its excellent appli-
cation stability, TiO2 offers a lot of potential for NO2 gas 
sensing [22].

NO2 is a harmful air pollutant for plants and the respira-
tory systems of humans and animals. Furthermore, NO2 
emissions have resulted in major environmental issues such 
as acid rain and photochemical smog [23, 24]. The develop-
ment of inexpensive, small, sensitive, and reliable gas sen-
sors to monitor and manage NO2 gas concentrations from 
automobiles and industrial processes is critical to preserve 
human life [25, 26].

Laser ablation of large materials in a liquid medium is a 
common, simple, and cost-effective method for formation 
nanoparticles [27, 28]. Throughout the laser ablation in solu-
tion approach, a high-power laser pulse was focused on the 
face of a bulk object submerged in a solution. Ionization, 
atomization, and decomposition of the target are all caused 
by irradiation [27, 29].

In this study, Au:TiO2 NPs can be combined using laser 
ablation in a liquid medium, after that deposited on porous-
Si, employed for gas sensor applications.

Experimental details

The Au:TiO2 NPs were made using the laser ablation pro-
cess: firstly we put the plate of gold in the bottom of a glass 
container which filled by 3 mL of CTAB solution. Ablation 
of plate was carried out by a single 100 pulse at 1064 nm 
wave length with laser energy 600, 800 and 1000 mJ. Fol-
lowing the ablation technique for validating Au NPs gen-
eration, a Ti target was placed in a glass vial containing 
an Au NPs solution and ablated by the same condition of 

preparation Au NPs, after that the Au:TiO2 NPs colloids 
solution was obtained.

Secondly, we formed PS by using the PECE method [30] 
from n-type silicon wafer with resistivity of 1.5–4 Ω.cm. 
PEACE has been obtained via etching a silicon plate in 16 
percent HF (hydrofluoric acid) as the electrolyte for 15 min 
at a current density of 12 mA/cm2 and illuminating with a 
halogen beam. In the last step, Au:TiO2 suspension dropped 
on this PS.

Results and discussion

The phases and grain size are determined via XRD analysis. 
XRD pattern for the examined Au:TiO2 specimen, which 
was generated via PLAL in CTAB solution at 800 mJ laser 
energy and then deposited on porous-Si substrate, is illus-
trated in Fig. 1. The XRD structure of the sample shows 
a strong peak of x-ray diffracted from the Si substrate at 
2θ = 69◦. The XRD peaks for Au:TiO2 NPs can be identified 
to (fcc) Au (JCPDS card No. 002–1095) and anatase TiO2 
(JCPDS card No. 21–1272).

The peaks were observed at 2θ = 34.05°, 44.4° correspond 
to the (110) and (200) planes of the cubic crystal of Au NPs, 
respectively. The TiO2 NPs’ XRD shows two distinct peaks 
at 37.28° and 62. 9°, which correspond to planes (004) and 
(204), respectively.

The structural characterization of the PS, Au:TiO2 NPs/
PS samples was analyzed using AFM as illustrated in Fig. 2. 
The surface of PS has a sponge-like structure with average 
diameter of 40.33 nm and average roughness of 24 nm as 
shown in Fig. 2A.

Figure 2B depicts Au:TiO2 NPs completely filling or 
entirely covering PS pores. This is due to the surface PS lay-
er’s like-sponge morphology with a large surface region and 

Fig. 1   XRD pattern of Au:TiO2 
NPs/PS laser ablated at 800 mJ 
on PS
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a pores, which makes PS an adhesive substrate for allowing 
Au:TiO2 NPs to enter its pores. As a result, the Au:TiO2 NPs 
behaved like a transparent capping, which also given good 
coverage of a PS substrate, potentially improving the PS 

substrate’s structural strength. The average roughness and 
diameter for Au:TiO2 NPs/PS particles are shown in Table 1.

Figure 3 shows TEM images of Au:TiO2NPs. Laser abla-
tion with a laser energy of 800 mJ/pulse was used to generate 
Au:TiO2 NPs. Au:TiO2NPs, which are virtually spherical 
shape, with different in size from 7 to 55 nm, as can be 
observed. The creation of the core shell structures is con-
firmed by complementary contrast in TEM images. The Au 
NPs were responsible for the black core, whereas the TiO2 
shell was responsible for the grey color.

Photoluminescence (PL) studies provide knowledge on 
distinct energy states available between valence band and 
conduction band responsible for irradiative recombination. 

Fig. 2   3D AFM image for (A) PS, (B) Au:TiO2 NPs/PS samples generated at 800 mJ/ 100 pulses deposited on PS

Table 1   The value of average rough nesses and diameter of PS and 
Au:TiO2 NPs/PS samples

Samples Average diameter (nm) Average 
roughness(nm)

PS 40.33 24
Au:TiO2 NPs/PS 30.44 17.7

Fig. 3   TEM images of Au:TiO2 NPs at different magnification images at (a) 30 nm and (b) 60 nm
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The PL spectra of Au:TiO2 NPs prepared by laser ablation 
in ethanol solution deposited on PS substrate are shown 
in Fig. 4. The intensity of the photoluminescence spectra 

illumination of 602 nm is shown in Fig. 4, whereas the blue 
shift in a band gap depending on the Si wafer has been seen, 
because the last comes from quantum confinement effects 
(QCEs). The PL spectrum at room temperature for speci-
mens Au:TiO2 NPs/PS prepared PL bands at 350 – 550 nm 
on PS. The PL gave three peaks that were observed after 
the deposition of Au:TiO2 NPs as compared to PS. Photo-
luminescence emission peaks at 417 nm (2.97 eV) which 
matched to the an anatase TiO2 NPs at 497 nm correspond-
ing to band edge of 2.5 eV for Au NPs PL spectral locations.

The quantum size effects from the Au:TiO2 NPs are 
responsible for the significant blue-shift in the sharp peaks 
of plasmon absorption.

The sensor sensitivity is stated as (S = (Ro-Rg) / Rg), 
where Rg represents the sensor resistance when exposed to 
a test gas and Ro denotes the sensor resistance while exposed 
to air. Figure 5 displays the sensitivity of Au:TiO2 NPs/PS 
thin prepared with the previously mentioned conditions 
by using the LAL technique for NO2 and H2S gases as a 
function of operating temperature. The figure illustrates 
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Fig. 5   Sensitivity as a function of the generated Au:TiO2/PS gas sensor for H2S and NO2 gases at an operating temperature
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that as the working temperature increases in the scope 
30 – 300 °C, the sensitivity of H2S and NO2 gases increases. 
The Au:TiO2/PS thin film at 1000 mJ have greater sensitiv-
ity for H2S and NO2 with temperature of 250 – 300 °C. The 
Au:TiO2/PS films exhibit gradual raise in gas sensitivity, 
reaching a maximum sensitivity about 42.69% at 300 °C of 
64.5 ppm NO2 gas responsivity.

Similar results are achieved when H2S is employed as the 
investigating gas: the optimum sensitivity of the Au:TiO2/
PS film at 1000 mJ gas sensor to 12.6 ppm of H2S may 

achieve at 94.12%, and the optimal sensor temperature of 
the Au:TiO2/PS sensing is around 250° C. Tables 2 and 3.

There are difference in reaction times and recovery period 
for various laser ablation energy as a function of working 
temperature. The time recovery is the time that it takes for 
the specimen to back to its initial state, in other words the 
specimen state before pumping the gas, and the response 
time seems to be the time it takes for the specimen to 
respond to the gas.

Fig. 6   Response and recovery 
period of Au:TiO2 NPs/PS 
specimen formed with various 
energy lasers of 600, 800 and 
1000 mJ.
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The response and recovery cycles of Au:TiO2 NPs toward 
64.5 ppm NO2 and 12.6 ppm H2S, air mixed ratio have been 
explored. The results are shown in Fig. 6. Response and 
recovery times of devices were calculated and are indicated 
in Tables 2 and 3.

Conclusions

In this works, laser ablation of Au:Ti target immersed 
in (CTAB) solution is a promising and environmentally 
friendly method for preparing Au:TiO2NPs. As deduced 
by their XRD and TEM analysis and AFM properties were 
employed to characterize the samples. The enhancement in 
sensitivity of gas sensor increases, with increases the laser 
energy used to ablate an Au:TiO2 nanoparticles deposited on 
PS. The gas sensor should be highly selective when it comes 
to analytic gas. As a result, we evaluated an Au:TiO2 NPs/
PS thin film gas sensor for various gases at various concen-
trations, including H2S and NO2. The Au:TiO2 NPs/PS thin 

film sensor has a better response to H2S gas, with a response 
of 94.12% when exposed to 12.6 ppm H2S.
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