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surface [1–3].Their electromagnetic fields decay exponen-
tially in the direction perpendicular to the metal surface. The 
result is that SPPs can overcome the diffraction limit and 
have the ability to modulate light in nanoscale [4, 5]. There-
fore, many kinds of photonic devices have been investigated, 
such as filters [6, 7], absorbers [8], all-optical switches [9], 
and sensors [10–15]. Compared with traditional devices, 
plasmonic devices have a smaller size to be suitable for 
integration [4].

Among the plasmonic waveguides, metal–insulator–metal 
(MIM) waveguides have low transmission loss and are more 
advantageous of strongly confined the light [16–18]. The 
sensors based on these structure are basically composed of 
MIM waveguide coupled with resonators [18–23]. Sensitiv-
ity and figure of merit (FOM) are usually used to evaluate 
the quality of optical sensors. In order to obtain a higher 
sensitivity and FOM sensor, many photonic devices based 
on Fano resonance have been proposed [18–23]. Fano reso-
nance is quite sensitive to the change in refractive index; the 
refractive index sensors can achieve a higher sensitivity [18]. 
At the same time, Fano resonance has a typically asymmet-
ric and sharp spectral line shape, to achieve a narrower full 
width at half maximum (FWHM) [20–26]. However, Fano 
resonance is unstable and easily disturbed by environmental 
changes. Some works with simple and tunable structure to 
improve sensing performance have been proposed [27–30].

In this paper, the plasmonic refractive index sensors with 
a structure composed of MIM waveguide coupled with con-
centric ring and disk resonator (CRDR) are proposed. In 
the near-infrared region, a high sensitivity of 1039 nm/RIU 
with ultra-high FOM of 401 is realized. The influence of the 
structural parameters of the plasmonic coupling system on 
sensing properties has also been investigated.

Abstract A plasmonic refractive index sensor based on 
metal–insulator–metal (MIM) waveguide coupled with con-
centric ring and disk resonator (CRDR) is proposed in this 
work. The plasmonic refractive index sensor with a sensitiv-
ity of 1039 nm/RIU and a high figure of merit (FOM) of 401 
in the near-infrared region is numerically investigated using 
a finite element method (FEM). The physical mechanism of 
high Q factor of the mode of CRDR can be explained by the 
coupled mode theory. The structural parameters of the plas-
monic sensor are also discussed. The structural parameters 
can be changed to adjust the sensor properties. Furthermore, 
the application of proposed plasmonic sensor in bio-sensing 
is analyzed.

Keywords Plasmonics · Refractive index sensor · Figure 
of merit · Coupled mode theory

Introduction

Surface plasmon polaritons (SPPs) are charge density waves 
propagating along the metal–dielectric interface caused by 
the coupling between photons and electrons on the metal 
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Structural model and computational method

Figure 1 illustrates the schematic of the 2D metallic micro-
cavity composed of the MIM waveguide and the CRDR. The 
radius of the cavity is expressed as R, the coupling distance 
between the MIM waveguide and the CRDR is g, and the 
gap width between the concentric ring and disk is G. The 
widths of the MIM waveguide and the ring cavity are fixed 
at w = 50 nm, to ensure that only the fundamental transverse 
magnetic mode is supported in the MIM waveguide [31].

The white areas and gray areas represent dielectric and 
metal, respectively. The medium of the dielectric is assumed 
to be air, and the metal is set to be silver. The dispersion 
equation of the fundamental TM mode in the MIM structure 
can be described as follows [32, 33]:

where w is the width of waveguide, �spp is the propagation 
constant of SPPs, neff = �spp∕k0 means effective refractive 
index of SPPs,  k0 = 2�∕� refers to wave number, � is the 
wavelength of incident light, �i and �m are relative permittiv-
ity of dielectric and metal. The relative permittivity of silver 
can be characterized by the Drude model [34, 35]:

here �P is the bulk plasma frequency; the bulk plasma fre-
quency ωp depends on the carrier (holes) density Nh as given 
in the equation �p =

(
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mass.Υ is damping frequency of the electron oscillation, 
and � is the incident electromagnetic radiation angular fre-
quency. The parameters of Eq. (2) are �P = 1.37 × 10

16 Hz 
and Υ = 3.21 × 10

13 Hz.
For a single ring resonator, the resonating wavelength can 

be obtained theoretically by the equation [28]:
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2 , �0 refers to the permeability in the 
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eff
∕�0  is the frequency-dependent effective rela-
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n
  are the first kind Bessel function 

with the order n and its derivative to the argument (kr); 
Nn   and N ′
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  are the second kind Bessel function with the 

order  n and its derivative to the argument (kr), 
respectively.

The resonating wavelength of the disk-shaped nanocavity 
can be obtained theoretically by the equation [29]:

here ki,m = k
(

�i,m
)

1

2 refers to the wave vectors in the dielec-
tric disk or metal, �i  and �m  are the relative permittivity of 
the dielectric and metal, and  k  means the wave number. r  
stands for the radius of the cavity. Jn  and J′

n
  mean the first 

kind Bessel function with the order n and its derivative; H(1)
n

  
and H(1)

n

,  refer to the first kind Hankel function with the 
order n and its derivative, respectively.

In this study, commercial software (COMSOL Multiphys-
ics) of the finite element method (FEM) is used to research 
the transmission spectra. The two-dimensional (2D) FEM 
with perfectly matched layer (PML) boundary condition is 
adopted to simulate this structure and investigate the prop-
erties of the refractive index sensing. The transmittance of 
power is defined to be T = (S21)

2 , where S21 is the transmis-
sion coefficient from Pin to Pout[3].

Results and discussion

In this part, the transmission spectra of the MIM waveguide 
coupled with CRDR are simulated under varying param-
eters of the structure. Figure 2a shows the simulated trans-
mission spectrum of this structure with n = 1, R = 350 nm, 
g = 10 nm and G = 30 nm. n is the refractive index of the 
dielectric. Mode 1 and mode 2 can be considered as super-
modes in which the inner disk and outer ring can resonate 
simultaneously [27]. The FWHM of mode 1(λ1=965 nm) is 
17.86 nm, and that of mode 2(λ2=1038 nm) is 2.59 nm; the 
Q factors are 54, 401, respectively. Figure 2b and c plots the 
steady-state magnetic field Hz distributions of the plasmonic 
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Fig. 1  2D schematic of the plasmonic sensor filled with air
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coupling system of mode 1 and mode 2. The ratio of energy 
confined in the inner disk and the outer ring in mode 1 is 
2.78 ×10−3 , and in mode 2 it is 52.1. Energy of CRDR is 
mainly confined in the inner disk in mode 2, in the out ring 
in mode 1. The ratio of energy confined in the inner disk 
and the outer ring is defined as: R = ∫ H2

in
dSin∕ ∫ H2

out
dSout , 

where Hin is the magnitude in the inner disk, Hout is the 
magnitude in the outer ring, Sin is the area in the inner disk, 
and Sout is the area in the outer ring.

The coupled mode theory [36] is used to explain the prin-
ciple of high Q factor formation of mode 2 in this paper. 
Figure 3a shows the transmission spectra of the proposed 
plasmonic refractive index sensor with inner disk resonator, 
outer ring resonator or CRDR. Figure 3b plots the steady-
state magnetic field Hz distributions of the TM6 mode of 
the outer ring resonator. Figure 3c shows the steady-state 
magnetic field Hz distributions of the TM2 mode of the inner 

disk resonator. The transmission spectrum of the CRDR is 
almost the superposition of the outer ring transmission spec-
tra and inner disk transmission spectra. In order to meet the 
angular momentum matching condition, the strong coupling 
is more prone to take place between the same order modes 
between the inner disk and outer ring. Figure 4 presents 
the diagram of mode coupling between the TM2 modes of 
the inner disk and outer ring of the CRDR. Mode 2 is cor-
responded to quasi-in-phase CRDR mode. Owing to the 
asymmetry between the inside and outside of the CRDR 
structure, the resonance frequency difference between dif-
ferent order modes of inner disk and outer ring becomes 
smaller as shown in our results. Thus, TM6 mode of the outer 
ring resonator has an impact on the quasi-in-phase CRDR 
mode. The final simulation result shows that Quasi-in-phase 
mode 2 has a narrow resonance dip and exhibits a little red 
shift. This phenomenon can be explained by the fact that the 

Fig. 2  a Transmission 
spectra of MIM wave-
guide coupled with CRDR 
with n = 1, R = 350 nm, 
g = 10 nm and G = 30 nm; 
steady-state magnetic field Hz 
distributions of the MIM wave-
guide coupled with CRDR at 
wavelengths of (b) 964.88 nm; c 
1038.49 nm

Fig. 3  a Transmission spectra 
of the proposed plasmonic 
refractive index sensor with 
inner disk resonator, outer ring 
resonator or CRDR. b Steady-
state magnetic field Hz distribu-
tions of TM6 mode of the outer 
ring resonator at wavelengths 
of 948.19 nm. c Steady-state 
magnetic field Hz distributions 
of TM2 mode of the inner disk 
resonator at wavelengths of 
1034.96 nm
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quasi-in-phase mode is closer to the inner disk mode and the 
energy of electromagnetic wave mainly confines in the inner 
disk. Because of the outer ring, the energy in the inner disk 
is more difficult to loss and is beneficial for energy storage. 
Therefore, the resonance dip induced by the quasi-in-phase 
mode 2 is very narrow which leads to ultra-small FWHM 
and ultra-high Q factor.

To research the effect of the refractive index of dielectric 
on the structure, we use different media to fill the structure; 
the transmission spectra are presented in Fig. 5a. The n is 
increased from 1 to 1.08 by the step 0.02. A red shift the 
transmission spectrum can be observed with an increase in n. 
The increase in the resonance wavelength is in line with the 
theoretical calculation result of formula 4 [29]. In this study, 
we use S and FOM to measure the sensing performance. 
They are defined as follows [37, 38]:

As shown in Fig. 5b, the sensitivity can be calculated 
by linear fitting. For mode 1, S is 971 nm/RIU; FOM is 
54. For mode 2, S is 1039 nm/RIU; FOM is 401. Mode 2 
is further investigated then in view of its excellent sensing 
performance in the near-infrared region.

To investigate the influences of different cavities on the 
transmission spectra and sensor performance, R is var-
ied from 330 to 370 nm at intervals of 10 nm with n = 1, 
g = 10 nm and G = 30 nm. Figure 6a plots the transmis-
sion spectra of the structure of R = 330, 340, 350, 360 and 

(5)S =
Δ�

Δn

(6)FOM =
S

FWHM

Fig. 4  Schematic of the mode 
coupling between the TM2 
modes of the inner disk and 
outer ring of the CRDR

Fig. 5  a Transmission spectra for the MIM waveguide coupled with CRDR with changing n while R = 350 nm g = 10 nm and G = 30 nm; b fit-
ting curve between refractive index and resonant wavelength
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370 nm. With the increasing radius of the cavity, the trans-
mission spectrum exhibits a red shift as shown in Fig. 6a. 
The increase in the resonance wavelength of mode 1 and 
mode 2 also accords with the theoretical calculation results 
of formulas 3 and 4 [29, 32]. As the radius increases, the 
shape of the transmission spectrum remains nearly con-
stant. Figure 6b shows S and FOM of the plasmonic sen-
sor for different values of R. Obviously, S and FOM of the 
plasmonic sensor can be improved by increasing the size of 
CRDR. When R = 370 nm, the sensor gets the maximum S 
and FOM, S = 1107 nm/RIU, FOM = 434.

The coupling distance between the MIM waveguide and 
the CRDR is changed to study its influences on the trans-
mission spectra and sensor performance. The coupling 
distance g is increased from 6 nm to 14 in steps of 2 nm 
while the other parameters are fixed at n = 1, R = 350 nm 
and G = 30  nm. The transmission spectra of different 

coupling distance are shown in Fig. 7a. The simulation 
results show that for mode 2, when g increases from 6 to 
14 nm, the transmittance of the resonance dip is significantly 
increased. This outcome can be explained the increase in 
coupling distance allows less energy to enter the CRDR, 
resulting in a higher transmittance. At the same time, the 
transmission spectrum also has a slight blue shift, which is 
consistent with the results in reference [29]. Figure 7b shows 
S and FOM of the plasmonic sensor for different values of g. 
The sensitivity of the plasmonic sensor is almost unchanged 
as the g increases, but the value of FOM can be significantly 
increased because of the narrower resonance dip. Maximum 
sensitivity of 1040 can be reached when g = 6 nm/RIU, and 
the value of the maximum FOM is 433 when g = 14 nm.

For the investigation of the effect of the different gap 
width between the concentric ring and disk on the trans-
mission spectra and sensor performance, G is increased 

Fig. 6  a Transmission spectra of the MIM waveguide coupled with CRDR with changing radius of the cavity; b sensitivity and figure of merit 
of the sensor structure for different values of R

Fig. 7  a Transmission spectra of the MIM waveguide coupled with CRDR with changing coupling distance between the MIM waveguide and 
the CRDR; b sensitivity and figure of merit of the sensor structure for different values of g
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from 20 to 40 nm at 5-nm intervals, with n = 1, R = 350 nm 
and g = 10 nm. The transmission spectra of the structure 
with the different gap width of G are shown in Fig. 8a. 
With the increasing gap width, blue shifts in the trans-
mission spectrum can be observed. The blue shift of the 
mode 2 resonance wavelength is caused by the decrease in 
the radius of the inner circular cavity. And for the mode 
2, the transmittance of the dip is significantly increased as 
G increasing. This phenomenon can be explained that the 
increase in the gap width allows less energy to enter the 
inner circular cavity, which leads a higher transmittance. 
Figure 8b presents S and FOM of the plasmonic sensor with 
increasing G. Although the sensitivity shows a decrease as 
G increases, the FOM still improves because of the nar-
rower resonance dip. There is a compromise between high 
sensitivity and high FOM. The maximum sensitivity of the 
structure when G = 20 nm is 1085 nm/RIU, and the maxi-
mum FOM is 471 when G = 40 nm. With the increasing 
gap width, blue shifts in the transmission spectrum can be 
observed. And for the mode 2, the transmittance of the dip 
is significantly increased as G increasing. This phenomenon 
can be explained that the increase in the gap width allows 
less energy to enter the inner circular cavity, which leads 
a higher transmittance. When G is nearly to 0, the mode 1 
with energy concentrated in the outer ring disappears, and 
the transmission spectra become the transmission spectra of 
the disk resonator.

To discuss the application of the proposed plasmonic sen-
sor in bio-sensing, another simulation is performed near the 
refractive index of 1.33. The n is increased from 1.30 to 
1.38 with the step 0.02 while the other parameters are fixed 
at R = 350 nm g = 10 nm and G = 30 nm; the transmission 
spectra are presented in Fig. 9. It can be seen that the sen-
sitivity and FOM of the plasmonic sensor near the refrac-
tive index of water can still reach 1035 nm/RIU and 234, 
showing excellent sensing performance. Table 1 presents 

the comparison of the S and the FOM in our work and in 
some other recent works; our work shows ultra-high FOM.

Conclusions

In this work, a plasmonic refractive index sensor based on 
MIM waveguides coupled with CRDR is proposed. Our 
proposed plasmonic structure presents ultra-high Q factor 
in the quasi-in-phase mode. With the increase in the radius 
of the cavity, both sensitivity and the value of FOM show 
an obvious increase. As the coupling distance increases, the 
sensitivity of the plasmonic sensor remains nearly constant, 
but the value of FOM can be significantly improved. With 
an increase in the gap width between the concentric ring and 
disk, the FOM of the plasmonic sensor shows an increase, 

Fig. 8  a Transmission spectra of the MIM waveguide coupled with CRDR with changing gap width between the concentric ring and disk; b 
sensitivity and figure of merit of the sensor structure for different values of G

Fig. 9  Transmission spectra for the MIM waveguide coupled with 
CRDR with changing n while R = 350 nm g = 10 nm and G = 30 nm



126 J Opt (March 2023) 52(1):120–127

1 3

but sensitivity decreases. High sensitivity with ultra-high 
FOM can be reached in the near-infrared region. The max 
refractive index sensitivity of the sensor is 1107 nm/RIU, 
and the FOM can reach 471. In addition, this plasmonic 
structure has great potential in bio-sensing and can be easily 
integrated with other photonic devices.
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