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Abstract This paper obtains optical soliton solutions of

the Kudryashov’s model with arbitrary refractive index.

Three integration algorithms collectively revealed a full

spectrum of single solitons along with a straddled soliton.

The constraint conditions for the existence of such solitons

are also listed. Finally, the only conserved quantity, sup-

ported by the model, is penned down.
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Introduction

The captivating theory and dynamics of optical solitons

forms an engineering marvel in telecommunications

industry [1–10]. There are several forms of self-phase

modulation (SPM) structures that make this dynamics a

reality. While several new models are being continuously

proposed, abundant models have been lately introduced by

Kudryashov [1, 3–9]. A couple of them have been recently

labeled as Kudryashov’s law of refractive index and

Kudryashov’s generalized law of refractive index. The

current paper is another form of SPM that was proposed by

Kudryashov and it was coined as arbitrary refractive index

[8, 9]. Thus, the title of the manuscript is kept as such. This

form of SPM is a combination of two or three types of

previously studied laws. It linearly combines dual-power

law and non-local nonlinearity but with any arbitrary

exponent, odd or even, either way. This proposed law of

nonlinear refractive index will be explored in today’s paper

with the governing nonlinear Schrödinger’s equation

(NLSE) that is going to be addressed in presence of

chromatic dispersion (CD).

The paper will integrate NLSE using a few algorithms

that will reveal soliton solutions to the model and thus will

make the model a viable candidate for soliton transmission

through optical fibers or other such form of equivalent

waveguides. There is only one form of conservation law

that is also recovered from this model and is exhibited at

the end. The presence of the generalized form of non-local

form of nonlinearity prevents the retrieval of additional

forms of conservation law.

Three well-known powerful integration schemes are

adopted in the paper to handle the model from its inte-

grability perspective. These integration schemes imple-

mented in the paper are Riccati equation method, F-
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expansion scheme and finally the trial equation algorithm.

These methodologies collectively retrieved a full spectrum

of single solitons and in addition F-expansion revealed a

straddled singular soliton structure. The existence criteria

for such solitons are also listed as their respective param-

eter constraints. Surface plots of bright and dark solitons

are also included for visual illustration. The analytical

details of these are discussed in the remainder of the paper

after a quick intro to the governing model.

Governing model

The dimensionless form of NLSE Kudryashov’s form of

arbitrary refractive index is [8]:

iqt þ aqxx þ b1 qj jnþb2 qj j2nþb3 qj jnð Þxx
n o

q ¼ 0 ð1Þ

where x represents spatial variable while t represents

temporal variable. Then, q x; tð Þ is the complex-valued

dependent variable and it stands for the soliton profile.

Next, a is the coefficient of CD and i ¼
ffiffiffiffiffiffiffi
�1

p
. The con-

stants bj for 1� j� 3 are the coefficients of SPM and n is

the power-law nonlinearity parameter.

Mathematical analysis

In order to locate soliton solutions, the following decom-

position in phase-amplitude format is carried out:

qðx; tÞ ¼ UðfÞeiuðx;tÞ ð2Þ

where

f ¼ g x� vtð Þ ð3Þ

and v is the soliton velocity. Next, from the phase

component

uðx; tÞ ¼ �jxþ xt þ h0 ð4Þ

where j, x and h0 are, respectively, the frequency, wave

number and phase constant. Substitute (2) into (1). Real

part gives

xþ aj2
� �

U � ag2U00 � g2nb3U
nU00 þ g2b3n 1 � nð Þ

� U0ð Þ2
Un�1 � b1U

nþ1 � b2U
2 nþ1 ¼ 0

ð5Þ

, while imaginary part leads to the speed of the soliton as

v ¼ �2aj: ð6Þ

By the use of U ¼ Q
1
n, Eq. (5) changes to

n2 xþ aj2
� �

Q2 � ag2 1 � nð Þ Q0ð Þ2þnQQ00
� �

� n2g2b3Q
2Q00 � n2b1Q

3�n2b2Q
4 ¼ 0:

ð7Þ

Application to NLSE

This section recovers soliton solutions to the model by the

application of three algorithms that are detailed in the

subsequent subsections.

Riccati equation method

This scheme assumes that Eq. (7) has the formal solution as

QðfÞ ¼
XN
i¼0

AiV
iðfÞ ð8Þ

where N is the balance number, Ai for 0� i�N are con-

stants and VðfÞ ensures

V 0ðfÞ ¼ S2V
2 fð Þ þ S1V fð Þ þ S0; S2 6¼ 0 ð9Þ

with constants S2, S1 and S0. Also, it should be noted that

the solutions of Eq. (9) are:

V fð Þ ¼ � S1

2S2

�
ffiffiffi
r

p

2S2

tanh

ffiffiffi
r

p

2
fþ f0

� �
; r[ 0;

V fð Þ ¼ � S1

2S2

�
ffiffiffi
r

p

2S2

coth

ffiffiffi
r

p

2
fþ f0

� �
; r[ 0

ð10Þ

where f0 is a constant and r ¼ S2
1 � 4S0S2.

From, the balancing principle, the solution (8) becomes

Q fð Þ ¼ A0 þ A1V fð Þ þ A2V
2 fð Þ: ð11Þ

Substituting (11) with (9) into (7) yields

A0 ¼ �
3b3 ag2S1

2 � n2aj2 � n2x
� �

2ab2

;

A1 ¼ �6g2S1S2b3

b2

;

A2 ¼ �6g2S2
2b3

b2

;

S0 ¼ ag2S1
2 � n2aj2 � n2x

4g2S2a
;

b1 ¼ �3 aj2n4b3
2 � 3 n4x b3

2 þ a2nb2 þ 2 a2b2

3n2ab3

:

ð12Þ

Plugging (12) along with (10) into (11), one recovers dark

and singular solitons, respectively

qðx; tÞ ¼ 3b3n
2 aj2 þ xð Þ
2ab2

� 3b3n
2 aj2 þ xð Þ
2ab2

�

� tanh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 aj2 þ xð Þ

4a

r
xþ 2ajtð Þ

" #!1
n

ei �jxþxtþh0ð Þ

ð13Þ

and
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qðx; tÞ ¼ 3b3n
2 aj2 þ xð Þ
2ab2

� 3b3n
2 aj2 þ xð Þ
2ab2

�

� coth2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 aj2 þ xð Þ

4a

r
xþ 2ajtð Þ

" #!1
n

ei �jxþxtþh0ð Þ

ð14Þ

with

a aj2 þ x
� �

[ 0: ð15Þ

F-expansion scheme

This methodology suggests that the formal solution of

Eq. (7) is:

Q fð Þ ¼
XN
i¼0

AiF
i fð Þ ð16Þ

where N is the balance number, Ai for 0� i�N are con-

stants and the function FðfÞ provides

F0 fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PF4 fð Þ þ QF2 fð Þ þ R

p
ð17Þ

with constants P, Q and R. Also, it needs to be mentioned

that some solutions of Eq. (17) are listed as:

F fð Þ ¼ sn f ¼ tanh f; P ¼ m2; Q ¼ �ð1 þ m2Þ; R ¼ 1; m ! 1;

F fð Þ ¼ ns f ¼ coth f; P ¼ 1; Q ¼ �ð1 þ m2Þ; R ¼ m2; m ! 1;

F fð Þ ¼ cn f ¼ sech f; P ¼ �m2; Q ¼ 2m2 � 1; R ¼ 1 � m2; m ! 1;

F fð Þ ¼ ds f ¼ csch f; P ¼ 1; Q ¼ 2m2 � 1; R ¼ �m2 1 � m2
� �

; m ! 1;

F fð Þ ¼ ns f� ds f ¼ coth f� csch f; P ¼ 1

4
; Q ¼ m2 � 2

2
; R ¼ m2

4
; m ! 1:

ð18Þ

With the help of the balancing principle, the solution of

Eq. (7) reduces to

Q fð Þ ¼ A0 þ A1F fð Þ þ A2F
2 fð Þ: ð19Þ

Putting (19) with (17) into (7) leads to

P ¼ Q2

4R
; g ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2n2 aj2 þ xð Þ

4Qa

s
;

A0 ¼ 3 aj2 þ xð Þn2b3

2b2a
; A1 ¼ 0;

A2 ¼ 3n2 aj2 þ xð ÞQb3

4aRb2

;

b1 ¼ �3 aj2n4b3
2 � 3 n4x b3

2 þ a2nb2 þ 2 a2b2

3an2b3

:

ð20Þ

Inserting (20) along with (18) into (19), one reveals the

solutions to the governing model in the forms:

Dark soliton is

qðx; tÞ ¼ 3 aj2 þ xð Þn2b3

2b2a
� 3 aj2 þ xð Þn2b3

2b2a

�

� tanh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 aj2 þ xð Þ

4a

r
xþ 2ajð Þ

" #!1
n

ei �jxþxtþh0ð Þ

ð21Þ

singular soliton is

qðx; tÞ ¼ 3 aj2 þ xð Þn2b3

2b2a
� 3 aj2 þ xð Þn2b3

2b2a

�

� coth2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 aj2 þ xð Þ

4a

r
xþ 2ajð Þ

" #!1
n

ei �jxþxtþh0ð Þ

ð22Þ

and combo singular solitons are

qðx; tÞ

¼

3 aj2 þ xð Þn2b3

2b2a
� 3 aj2 þ xð Þn2b3

2b2a

� coth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n aj2 þ xð Þ

a

r
xþ 2ajð Þ

" #
� csch

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n aj2 þ xð Þ

a

r
xþ 2ajð Þ

" # !2

0
BBBBB@

1
CCCCCA

1
n

� ei �jxþxtþh0ð Þ

ð23Þ

with

a aj2 þ x
� �

[ 0: ð24Þ

Trial equation algorithm

According to this form of integration norm, the solution of

Eq. (7) is adopted as

Q0 fð Þð Þ2¼
XN
i¼0

AiQ
i fð Þ ð25Þ

where N is the balance number, Ai for 0� i�N are con-

stants and Q fð Þ is a function that needs to be determined

later.

Utilizing the balancing principle gives

Q0 fð Þð Þ2¼ A0 þ A1Q fð Þ þ A2Q
2 fð Þ þ A3Q

3 fð Þ: ð26Þ

Then, plugging (26) into (7), one procures the results

A0 ¼ 0; A1 ¼ 0; A2 ¼ n2 aj2 þ xð Þ
ag2

; A3 ¼ � 2b2

3g2b3

;

b1 ¼ �3 aj2n4b3
2 � 3 n4x b3

2 þ a2nb2 þ 2 a2b2

3an2b3

:

ð27Þ

Next, substituting the solution set (27) into (26) brings bout
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� f� f0ð Þ ¼
Z

dQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 aj2 þ xð Þ

ag2
Q2 � 2b2

3g2b3

Q3

s :
ð28Þ

Consequently, integrating Eq. (28) with respect to Q, bright

and singular solitons fall out as

qðx; tÞ ¼ 3b3n
2 aj2 þ xð Þ
2ab2

�

� sech 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 aj2 þ xð Þ

4a

r
xþ 2ajð Þ

" #!1
n

ei �jxþxtþh0ð Þ

ð29Þ

and

qðx; tÞ ¼ � 3b3n
2 aj2 þ xð Þ
2ab2

�

� csch 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 aj2 þ xð Þ

4a

r
xþ 2ajð Þ

" #!1
n

ei �jxþxtþh0ð Þ

ð30Þ

with

a aj2 þ x
� �

[ 0: ð31Þ

The following two surface plots represent bright and dark

single solitons, respectively. The parameter values chosen

are: a ¼ �0:4; b2 ¼ 0:3; b3 ¼ �1; n ¼ 1; j ¼ 2; x ¼
0:2 (Figs. 1, 2).

Conservation law

Invariance of (1) under translation in time t and space x (ot
and ox), (1) does not admit any Hamiltonian and linear

momentum conservation unless b3 ¼ 0. That is, the

derivative of jqjn with respect to x annihilates the con-

served Hamiltonian/momentum densities. The notion of

approximate conservation is still being developed and we

may study these in the future with b3 relatively ‘small.’

Thus, the only conservation is the ‘power,’ with density

jqj2. Noting that the bright 1-soliton solution to (1) is

written as:

qðx; tÞ ¼ A sech
2
n½Bðx� vtÞ�ei �jxþxtþh0ð Þ ð32Þ

where A is the amplitude and B is its inverse width, the

power (P) of the soliton is:

P ¼
Z 1

�1
qj j2dx ¼ A2

B

C 2
n

� �
1
2

� �

C 2
n þ 1

2

� � : ð33Þ

Conclusions

This work applies three mathematical algorithms to secure

a range of soliton solutions to NLSE that carries arbitrary

refractive index form for SPM as proposed by Kudryashov.

A full spectrum of soliton solutions, including combo-

singular type, has emerged from the scheme that are

exhibited along with their existence criteria. The only

conservation law that has been located is presented. This

work therefore paves the pathway for further development

Fig. 1 Profile of dark soliton

(13)
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in this regard. One avenue of research would be to address

the current model with perturbation terms that would lead

to the evolution of additional information. While the pro-

spect of applying soliton perturbation theory no longer

exists, because the model does not yield more than one

conserved quantity, there are nevertheless additional ave-

nues to venture. This would include application of semi-

inverse variational principle and other algorithms to handle

perturbation terms that are of Hamiltonian type

[11–16, 16–20]. The research-rich crew members are thus

preoccupied to disseminate these upcoming precious novel

results of the model, due to Kudryashov, for gaining

momentum, with full throttle, in the fields of quantum

optics and telecommunications engineering.
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