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Abstract This paper recovers cubic—quartic optical soli-
tons for perturbed Lakshmanan—Porsezian—Daniel model.
This is for both with and without polarization. The sine-
Gordon equation approach is the scheme adopted to
retrieve the soliton solutions. A full spectrum of soliton
solutions have emerged.
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Introduction

The most fundamental feature that sustains soliton forma-
tion and its stability is the existence of a delicate balance
between chromatic dispersion (CD) and self-phase modu-
lation (SPM). Once this balance is compromised, solitons
fail to exist. Therefore, it is imperative to maintain the
perfect harmony between the two key elements, CD and
SPM. Occasionally, it may so happen that CD runs low. In
such a situation, a new form of technology has been pro-
posed. When CD was replaced by fourth-order dispersion
(40D), pure-quartic solitons were studied. However, for
such solitons there is a limitation. No analytical closed-
form soliton solution was available unless it is a stationary
soliton. To overcome such shortcomings, cubic—quartic
(CQ) solitons were proposed where, in addition to 40D,
third-order dispersion (30D) effect was included. An
abundance of results from CQ solitons have emerged and
successfully floated across telecommunications industry, at
least theoretically. Subsequently, the concept of CQ soli-
tons, during such a crisis situation, was applied to a variety
of other models that describe successful soliton transmis-
sion through optical fibers across trans-continental
distances.

One of the models that describe soliton transmission
through a variety of waveguides is perturbed Lakshmanan—
Porsezian—Daniel (LPD) model, where the perturbation
terms are all of Hamiltonian type [1-25]. This model first
appeared during 1988 in the context of Heisenberg spin
chain [18]. Later, it gained popularity in soliton studies and
has been extensively studied in various contexts using a
wide variety of mathematical methodologies. These
include rogue waves, Darboux transform, collective vari-
ables, Adomian decomposition, semi-inverse variational
principle, Jacobi’s elliptic function expansion, exponential
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function expansion, trial equation approach, method of
undetermined coefficients, Riccati equation approach and
so on. The model was successfully studied in both contexts,
namely polarization-preserving fibers as well as birefrin-
gent fibers. Today’s paper will be addressing CQ solitons
with perturbed LPD model, in both such forms of fibers, for
the very first time. Sine-Gordon equation approach will be
the integration scheme that is adopted here. This will reveal
a spectrum of soliton solutions in both such fibers that are
exhibited along with their respective existence criteria. The
algorithm is illustrated and the extensive details of the
mathematical phenomenon follow through.

Optical solitons

The retrieval of soliton solutions will be split into two
subsections that deal with polarization-free fibers and when
pulse polarization occurs. In both of the subsections, sine-
Gordon equation approach will be employed to recover a
wide spectrum of solitons. The details are exhibited in the
next subsections.

Polarization-preserving fibers

The LPD equation in polarization-preserving fibers is:

iUy + (AU + bty + c|u|2u = oc(ux)zu*

+ﬁ|ux‘2”+y|u|2uxx""')Luzu;x (1)
+ Olul*u
where x and ¢ that, respectively, stand for the spatial and

temporal variables are independent variables. Linear tem-

poral evolution is stood for the first term and i = v/—1. The
complex valued function u(x,t) represents optical solitons
in polarization-preserving fibers. a gives the coefficient of
30D, while b is the coefficient of 40D. Next, ¢ stands for
the coefficient of SPM and J corresponds to two-photon
absorption. Lastly, o, f8, y and 1 are the coefficients of the
nonlinear dispersion terms.

In presence of perturbation terms, the LPD equation for
polarization-preserving fibers is:

iUy + (AU + DUy + c|u|2u
= a(ue)’u" + Plu|u

+ oy |u Pty + w4 Olultu 2)
e (me) ()

X X
+p|u|2mux]

where ( represents the self-steepening term, while u and p
are, respectively, the coefficients of the higher-order

dispersion and nonlinear dispersion effects. Finally, full
nonlinearity parameter is indicated by m.
To obtain the soliton solution, we set

u(x,t) = U(E)e, E=x—vt, @x,t) = —xx+ ot + 0y
(3)

where the speed is denoted by v, while the frequency, wave
number and phase center are stood for by k, @ and 0y,
respectively. Also, the soliton amplitude and its phase
component are, respectively, represented by U() and

@(x, 1).
Plugging Eq. (3) into Eq. (2) yields the real equation

bU™) + (3ax — 6bK*)U" — (4. + y)UU"
— (a4 BU)U + (c + o 4y 4 1 — pi2) U
+ (b;c4 —ax® — w)U
—0U° — (k + kp) U™ =0
(4)
and the imaginary equation
(a — 4bk)U" + (4bic® — 3ax® — v) U’
+ 2K(y + o — A U'U? (5)
—(p+ 4+ 2mu+2mHU'U™ = 0.
Equations (4) and (5) are reduced to
bU™ + 6bk*U" — (3bi* + w)U

+ (¢ — 4y + 2k + 260) UP (6)
—SU° =0
with
m=1, (7)
a = 4bx, (8)
o= -2y, 9)
p=—2u— 3 (10)
A=y, (11)
B =2y, (12)
v =—8bi>. (13)

Equation (6) can be integrated in order to designate the
soliton profile, while Eq. (13) yields the soliton speed and
Egs. (7)—(12) gives the constraints.

The sine-Gordon equation method admits that the
solution form of Eq. (6) is:
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U(&) = cos" V(&) [Bisin(V(E))
i=1

+A;cos(V(E))] + Ao

(14)

where A; and B; (0 <i<N) are constants, N represents the
balance number and V(&) ensures

V(&) = sin(V(&)) (15)
with

sin(V(&)) = sech (&) or sin(V(&)) =1 csh (),
cos(V(&)) =tanh(&), or cos(V(&)) = coth(¢).

By virtue of the balancing principle applied in Eq. (6),
Eq. (14) becomes

U(&) = By sin(V(&)) + Ay cos(V(E)) + Ao. (17)

Putting Eq. (17) with Eq. (15) into Eq. (6) leads to
Case-1

3(dyi® — ¢ — 2uep — 2iL)
2b(3k2 — 10)*
= —b(3x* + 12«* — 16), Ay =0, (18)

4b(3K2 — 1
Alzi\/ b(31K2 — 10)
-

)

B, = 0.

4y + 2k (p + ¢)

Plugging Eq. (18) with Eq. (16) into Eq. (17) leads to the
dark soliton

- 4b(3x — 10)
u(x, 1) _i\/ ¢ — 4K + 2k(p+ () (19)

tanh(x + 8bK3t)ei(—wxfb(3x4+12xzf16)t+00)

and the singular soliton

- 4b(3k2 — 10)
u(x, t) = i\/ c—4’))K2+2K(,u+C) (20)

coth(x + SbKSI)ei(—;cxfb(31<4+121<2716)t+00).

These solitons are valid for

b(3x* —10) (c — 4yi* + 2x(u+0))
<0.

Case-2

@ Springer

3(dyr? — ¢ — 2Kkp — 2KC)2
2b(3K2 +5)°
=—b(3k* — 6> — 1), Ag=0, (22)

4b(3° +5
A =0, Bi=+ ) N
c—ape 2k (u 1 0)

5:

)

Inserting Eq. (22) with Eq. (16) into Eq. (17) causes to the
bright soliton

B 4b(3K% +5)
u(x, 1) = i\/c_4y1<2 +2k(u+0) (23)

sech (X—|— 8bK3t)ei(ffcxfb(3;c476)czfl)t+00)

and the singular soliton

- 4b(3K2 + 5)
u(x,1) = :l:\/ c— 42+ 2k(u+ ) (24)

csch (X+ 8bK3t)ei(fh‘xfb(SK“f@cz71)t+60).

The bright soliton will exist provided the following con-
straint condition remains valid:

b(3k* +5) (c — 4yk* + 2k(u+ 0)) > 0. (25)

while the singular soliton will exist provided the condition
(26) holds:

b(3x* +5) (c — 4yi® + 2k (u+ {)) <O. (26)
Case-3
_6(4yk? — ¢ — 2Kp — ZKC)2
b(6K2 —5)* ’
=—b(3x* +3k* — 1), Ag=0,
2 _ 27
A= b(6x* — 5) B, (27)
2(c —4yr? + 2k(un+0))

i\/ b(6K> — 5)
-V 2(e =4 4 2x(p 4 0))

Inserting Eq. (27) with Eq. (16) into Eq. (17) yields the
combo singular soliton
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u(x, 1)

b(6K* —5)
jE\/ 2(c — 492 + 2k(u + Q) coth(x + 8bic’r)

(6x% —5)
i\/ e dp + e ) - (< F )
ei(*Kxfb(Sw‘UrSlcz—l),H,»O) .
(28)

The combo singular soliton is valid for

b(61* —5) (c — 4y’ 4 2xc(p + {)) <O0. (29)

Birefringent fibers

The coupled system derived from the equation (2) for
birefringent fibers without four-wave mixing is:

iq; + ia1 G + D1 G + (cl |q|2+d1|r\2)q
—{u@)+41(r) }a
+ (nlaP+2ln)a+ (dilaP+G1r?) an
+ (H1q2+01"2)%*@x
+ (f1lql4+g1|q|2|r|2+h1|r|4)q
+ i[m (Iqlzq)xﬂ% (Irlzr)x
)10 (17) J
+(nilaP+oilr? ) g,
ir, + iasree + boreoe + (cz|r| +d>|q| )
{062 ry) +ﬁz qx 2}r
+ (vabrP+alal) r + (SalrP+Golg ) e

+ (2 + pad’) 1
+ (Al +alrPlal+halgl)

T i['”]z (IV\zr)X“92 (|Q|2q)x
{0 o)
+(wlrP+oalal )

where the complex valued functions g(x,7) and r(x, )
account for optical solitons in birefringent fibers. For
1= 1,2, a; are the coefficients of 30D, while b; represent
the coefficients of 40D. Then, ¢; and f; stands for the
coefficients of SPM, while d;, g; and h; account for the
coefficients of cross-phase modulation. Lastly, o, B, ;. A1s

(31)

o1, Cis Uys p1> 3> U4, 04, &1, 77 and oy are the coefficients of the
nonlinear dispersion terms.

To look for soliton solution to the governing model, the
solution hypothesis picked is:

Q(xa t) = Ul(é)emv r(x7 t) = Uz(f)ei‘P, ¢
=x—vt, @(x1)=—Kx+ wr+ 0.

Inserting Eq. (32) into Egs. (30) and (31) yields the real
equation

(32)

biU™ + (3ka; — 613b) UY

— (p+ QHUYY

— (614 w) UL U}

— (o +7)(U))* Uy

— B+ U (U]) (2B, — Ky -

+&20 + K2y + dy — K0, U U}

+ (k' — 1Pa) — 0) U,

+ (cl + 126, + 1Koy + Kz,ul

—i7y — Kk — k1) Uy — kU2
—qU U = iU} =0

- hU,U}

and the imaginary equation

(a1 — 4xb)U)" + (4K3b1 —3Kq; — v)U;

+ (2K — 2Kp; — 0,)U,U} (34)
+ (2Koy + 2K0; — 21, — 3, — T — 291)U,’U12
+ (218, — 2¢)UUU; — 39,UTUE = 0

where [ = 1,2 and [ = 3 — . Egs. (33) and (34) reduce to

blU;iv) + 6K2b1Ul” — (3!(?4[71 + (U) U,

+ (di 4 e — 43 + 0K
(di+c—4(6+ )x 3 (35)
+2K(e + 0+ 0+ 9))U;
—(h+g+f)U; =0
with
Ur= U, (36)
a, = 4Kb1, (37)
o = —f; —26, -2
L T o1 264 200+ 30, + 39, (38)
2K ’
Y= —A+ 20, +2(
U + o7+ 2¢ + 20, + 3n, + 3 (39)
2K ’
f=—pr— 01—, (40)
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v = —8K3b1. (41)

Utilizing the balancing principle in Eq. (35), Eq. (14)
changes to
Ui(&) = Bisin(Vi(¢))

+ Ay cos(Vi(&)) + Ap. (42)

Substituting Eq. (42) with Eq. (15) into Eq. (35) leads to
Case-1

o= —b(3x* +12«* — 16), Ag=0, B =0,

- 4by(3K2 — 10)
' cr+dp — 42 (01 + §) 4 2x(e +my + 0+ 91)

1
fi=- 2b,(3k% — 10)

—48i* 5,2 — 481 F — 12K%¢/

— 126?n,% — 12620, 4 200b,g; + 200b,h; + 18k byg,
+ 18x*bihy — 120K%byg; — 120K by

— 12k ¢/ — 12xdie; — 12xdim; — 12xd,0; — 12xd)0,
— 96K*6,, + 4813 91 + 48K351’71

+ 48135,0, + 48138,0, + 4813 €,

+ 4813, + 4813 0,0, + 4813 (0; + 2417 ¢ + 2413 il
+ 241%d)5, + 24K*d)(; — 2413 e, — 2413 €,0,

— 241tV — 24x%,0,

— 241709, — 2417019

— 12kcie; — 12kem; — 12K¢16)).

(=3c* = 3d? — 126*9) — 6¢id,

(43)

Plugging Eq. (43) with Eq. (16) into Eq. (42) leads to the
dark solitons

q(x,1)

. 4by (3% — 10)
- C1+d1—4K2(51+C1)+2K(61+171+91+191)

tanh(x + 8b1K3t)ei(ficx7b] (3K4+12K2716)t+90)’

(44)

r(x, 1)

. 4> (3K — 10)
o oy +dy — 4K2(52 + CZ) + 2K(€2 +n, + 0, + 192)

tanh(x + 8b2K3t)ei(—1cx—h2(31c4+121c2—16)t+00)

(45)

and the singular solitons

@ Springer

q(x,1)
. 4b; (3K —10)
B ci+di =42 (61 + ) +2x (e +11, + 01 +9)

coth (x+8b1K3t)ei(—tcx—b1 (3t 1212~ 16) 140, )

| (40)

r(x,1)

:i\/ 4by (32 — 10)
2+ dy = 4Kk (02 + (o) +26(€2 + 1y + 02 +102)
tanh (x+8b2K3t)ei(—zcx—b2(3x4+12x2—16)z+60)_
(47)
These solitons are valid for
bi(31% = 10) (c; + dy — 413 (S + &) + 2x(eg + my + 0, + 9,)) <O.
(48)
Case-2
o=-b(3k*—6x* - 1), Ag=0, A =0,

5 - i\/ 4by(3K2 + 5)
cr+dp— 420+ &) + 2x(e +m + 0+ 0))
1
=GR s)
— 48k*9,7 — 48K (P — 12i%¢?
— 1262 — 12620, + 50b,g; + 50b,h; + 18x*big,
+ 181 byhy + 6012 byg; + 602 bk
— 12xc/9; — 12xd1e; — 12xdim; — 12xd,0; — 12kd;9,
— 96K*,(; + 4813 51€; + 48135y,
+ 4813 6,0, + 4812 9,9, + 481 €
+ 4810, + 48153 0,8, + 48139 + 24P ¢,
+ 2413 ), + 2413 dyd; + 2413 diC; — 24K e,
— 24130, — 241 €9 — 2417 ,0,
— 241 — 2412009,
— 12Kcie; — 12k — 12k¢10;).

(—36‘12 — 3d12 — 12K21912 — 6C]d1

(49)

Inserting Eq. (49) with Eq. (16) into Eq. (42) causes to the
bright solitons

q(x,1)

. 4b1 (32 + 5)
- Ve +di = 4k2(8y + G) + 26(er + 0y + 0r + D)

sech (X + 8b1K3t)ei(—Kx—b1(3164—6K2—l)t+90),

(50)
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r(x,1) w:—b[(3K4+3K2—1), Ap=0,

-4 4b2(31€2 +5) A=+ b[(6l€2—5)
cr+dy —4K2(02 + (o) + 2K(ea + 11, + 0 + 197) ' 2(ci+di — 420+ () +2ic(er+m,+ 0, +9)))

sech (x + 8by1c’t) ¢ (—rx=ba (314 =612 1)1+00) by(6K>—5)
(51) hi= \/Z(Cl+dz4K2(51+Cz)+2K(€1+111+91+791))’
and the singular solitons fi= _%(_&12 —6d)> —24K%9 — 12¢,d,
bi(61K2 —5)
qx.1) 96145 — 96142 — 2413
_ 4 \/ 4b1 (3% +5) — 242 — 24K07 +25byg +25bily + 361 big)
cr+di —4k2(01 + (1) 4 2k(er + 1y + 01 + 1) 36k by — 60 b — 60 bk,
csch (x + 8by it el (b1 (3! =6 1)rsn) — 2dicendy — 2dicdie) — 2icdpy — 2idy0; — 2dicdyd),
(52) —192i*6,{, + 961,61+ 961301,
r(x, 1) +96139,0,+ 961 0,9, 4+ 961 €,
\/ 4by(3K2 + 5) +9613 1,8, + 961 0,(, 4+ 96139, + 4813 ¢,
B cr+dy — 412(0 4 () + 2K(€2 + 11y + 05 + 1) 4812 ¢, + 4817 d) 5, + 481 dy — 48K e,
esch (x + 8byi*r) el (et (3! =68 —1)et0). — 481% €0, — 48K> ), — 4817, 0,
(53) — 4817, — 48K7 0,9,

—24kcie — 24icm; —24Kc10)).
The bright solitons are valid for
(56)
(54) Substituting Eq. (56) with Eq. (16) into Eq. (42) yields the
combo singular solitons

b; (C[ +d; — 4K?2(5[ + )+ 2x(er+n,+ 60+ 19[))
>0

while the singular solitons are valid for

b, (C[ +d; — 4K2(51 + él) +2x(e+n;+ 60+ 19[))

55
<0. (53)
Case-3
by (6% — 5)
+ th(x + 8b; k3t
\/2(61+d14K2(51+C1)+2K(61+171+91+191))CO (x -+ 8buic’s)
q(x,1) =

by (6x* —5) , (57)
+ h (x + 8by it
\/ 20ci +dy — 4200, + 0y) + 2k + 1 + 01+ 07)) o (x+8byx°1)

ei(—lcx—bl (3K4+3K2— 1 )t+00)
b

by(6K2 — 5)

+ th(x + 8byx3t
\/ 2er+do— 4205 + o) + 26(ea + 1o+ 02 1 02)) (x + 8by1c’1)

r(x, 1) =

by (61> — 5) ; (58)
+ h (x + 8byic’t
\/ Aer +ds — 4202+ L) 4 2nlea my 1 B2 1 9)) o S

ei(—lcx—bz(3K4+3K2—1)t+00)
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The combo singular solitons are valid for

bi(6k* —5) (c;+dy — 4> (5, + () + 2x(er + 1, + 0, + 9))
<0.

(59)

Conclusions

This paper secures CQ solitons with perturbed LPD model
for both polarization-preserving fibers and birefringent
fibers. The sine-Gordon equation approach has made this
retrieval of the complete spectrum of soliton solutions
possible. The results thus form a new list in the data bank
of nonlinear evolution equations and its soliton solutions.
The list opens up a floodgate of opportunities with CQ
solitons for LPD model. This would include locating the
conservation laws and identifying the respective conser-
vative quantities. One would also need to address the
perturbation theory to form the adiabatic dynamics of
soliton perturbation. Next, CQ solitons with Bragg gratings
in presence of dispersive reflectivity for LPD model is a
possibility. Additional integration methods, such as semi-
inverse variational principle or Lie symmetry, would give a
new perspectives to the model. A further extension is to
address such dynamics with DWDM topology would be
absolutely necessary. The results of such studies would
gradually and sequentially be reported.
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