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Abstract This paper obtains cubic—quartic optical solitons
of generalized Kudryashov’s law of refractive index. The
included perturbation terms are with maximum intensity.
The retrieved soliton solutions are with the aid of F-ex-
pansion, exp-expansion and Riccati equation methods.
Finally, the conservation laws of the model are also
recovered and listed.
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Introduction

There are quite a few innovative concepts in optical soli-
tons that have encapsulated the field of nonlinear optics
[1-20]. These ideas range from fiber Bragg gratings [5, 11]
when chromatic dispersion runs low, highly dispersive
optical solitons [7, 19], pure—cubic optical solitons [17],
pure—quartic optical solitons [4], cubic—quartic (CQ) opti-
cal solitons [3, 6, 16], Kudryashov’s law of refractive index
[9-13], generalized Kudryashov’s law of refractive index
[8]. This paper is an infusion of two such concepts to
formulate a model that is with CQ optical solitons modeled
by generalized Kudryashov’s equation (GKE). In the past,
CQ solitons with Kudryashov’s equation (KE) have been
studied and its conservation laws have been reported as
well [3]. This paper addresses CQ—GKE by the aid of three
innovative integration schemes, and they are Riccati
equation method, F-expansion scheme and the exp-ex-
pansion method. These algorithms retrieve bright, dark and
singular soliton solutions as well as a couple of forms for
combo optical solitons. The paper closes with a list of
conserved quantities that are recovered. The details are
enumerated in the rest of the paper, once the model is
introduced with the inclusion of perturbation terms that are
all of Hamiltonian type and appear with maximum
intensity.

Governing model

The cubic—quartic generalized Kudryashov’s equation
(CQ-GKE) with the perturbation terms is [3]:
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In (1), the independent variables are spatial x and temporal
t, while the dependent variable is g(x, ¢) that represents the
complex valued wave profile. Next, a is the coefficient of
third—order dispersion (30D), b is the coefficient of fourth—
order dispersion (40D), and i = v/—1. The constants ¢;j for
1 <j <8 are the coefficient of nonlinearity effects. Then, A
represents self—steepening term, while 6 and p are the
coefficients of higher—order dispersion and nonlinear dis-
persion. Finally, m represents maximum intensity and n is
the power nonlinearity parameter which is in the range
0<n<1/2. It must be noted that the parameter m is not
unbounded. Its bounds are determined by Benjamin—Feir
stability analysis and is a whole different project by itself
which is on the bucket list for now.

+ + ¢slq|"+celg”"

Mathematical analysis

The starting point for decomposing the governing equation
into real and imaginary parts is:

qlx,1) = U(&)e?™) (2)
where
E=x—wt (3)

and v is the speed of the wave. From the phase component,
o(x, 1) = —kx+ ot +{ 4)

where k, w, { stand for the frequency, wave number and
phase center, respectively. Insert (2) into (1). Real part
yields
bU"" + 3k(a — 2bx)U" — (0 + ai® — bx*)U
+ C] U174Vl + C2U173}’l +C3U172n
+ C4U1—n+CSU1+n+C6U1+2n+C7U1+3n
+ CSU1+4n _ K(,u + )v)UlJer -0

)

while imaginary part causes

(a — 4bk)U" + (4bi® — 3ax* — v) U’ )
— (A4 u+20m+22m)U'U*™ = 0.

Form Eq. (6), the constraint conditions are recovered as
a = 4bk (7)
A4+ u+20m+2/im=0 (8)
and then the velocity is
v = —8bi>. 9)
So, the real part equation given by (5) turns into
bU//// + 6bK2 U//

— (0 +3bx U + ;U

+ C2U173n+C3U172n+C4U17n (10)

+ CSU1+n < C6Ul+2n + C7UI+3n + CSU1+4n

— k(u+ AU =0,

By virtue of the transformation U = Q%, Eq. (10) changes
to

(1—=n)(1 =2n)(1 = 3n)(Q)*
+6n(1 —n)(1 - 21)Q(Q')*Q"
+3n%(1 — n)QZ(Q”)2

+4n2(1 _ n)QZQ/Q/// + n3Q3Q////
+ 6bK*n*Q? ((1 - n)(Q')2+nQQ") (11)
—nt (a) + 3bK4)Q4 + it + en*Q + exn* Q?
+ C4I’l4Q3 + c5n4Q5 + 66n4Q6 + C7n4Q7
+ cgn 0 — ntk(h+ p)QFt =0.

b

The last equation will now be studied by three integration
schemes in next subsections.

Application TO CQ-GKE

Riccati Equation Method

This methodology suggests the formal solution of Eq. (11)
as

0(8) =Y Avi(e) (12)
=0

where N is the balance number, A; for 0 <i <N are con-
stants, and the function V(&) holds
V(&) =SVHE) +SiV(E) + S0, S2#0 (13)

with constants S,, S and Sy. Also, it needs to be mentioned
that Eq. (13) has the solutions as follows:
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S1 o I B _b(A’S: — 1S +A4%80) (= )Br—1)2n—=1) (16
V( )—2S2—252tanh<25+50>, J>O, m=2n, ¢ = n4A14 ( )
S 2b(2 40> — A1S1) (Ao®S2 — AoA1S) +Ar2S0) (n — 1)(2n — 1)(3n — 2)
Ve =3 VPm(Vietg,), o>0, (= e
28, 25, 2 ! (a7)
S1 \/ —a \/ —0
V(&) =— 25, + 7S tan( 3 E+ 50), 0<0, 6 K2m2A1% + 36 12407827 — 36 12ApA, 512
2 2 B(AS: — AoiS) + A20) (1 — 1) +812A12808: + 7 n?A1281% — 56 nAo*S,?
S N/ —0 N/ —0 052 Aofis ¥ ArSe) 56 nA0A1S1Sz — 8nA 12508z — 121A,2S,2
V(é) =1 _ cot &+ fo , 0<0, ) +28 40252 — 28 AgA 1515, + 4A1250S, + 6A,2S,2
252 2S2 2 a= A
S1 1 (18)
V()= ——— =0
O =35 516 ’

(14)

where &, is a constant and ¢ = S% —48,5>.
According to the balancing principle, the solution of

6K21%A,% + 12n°A¢2S,*
—12n2A0A1515> + 8 n?A1280S>
+n2A1281% — 14nAy>S,?
+14nA0A181S, — 6nA;2SpS>
—2nA1%S)% + 14A0%S,*
—14A0A1815: + 6A,250S: +2A,28,?

b(2A0S2 — A151) (A0>S2 — AoA 1S + Ar2So) (n — 2)

=

Eq. (11) is A
(19)
0(&) =Ag+AV(E). (15)
Then, putting (15) along with (13) into (11) yields
6 K2n%A % + 12102402857 — 12124045, 5,
+81n2A1280S, + n2A12S? + 14 nAy2S,?
bSr(2A0S — A1S1)(n+2) 12092 ! 21 0 22 5
—141A¢A,S,Ss + 614,280, + 2 1A %S, (20)
+14A02S2% — 14A0A151S2 + 6 A12S0S, + 24,282
Cy = a4
n A]
6 K2n%A 1% + 36 n2A02S2% — 36 n2A0A 1515,
812412808, + 7Tn?A 28,2 + 56 nAy2S,>
szz(n+1) +n102+n121+ 110222
—561nA0A151S; + 81412508, + 121428, (21)
o +28A0°Sy> — 28A0A 1515, + 44178052 + 64,75,
6 n4A14
208°(3n+2)(2n+1)(n+1)(240S2 — A1S))
c7 = 4 4 (22)
n A]
—KAn*Art — Kk pn*At + 6 b3S, + 11 bn2S,* + 6 bnSy* + bS,*
cg — A 7 (23)
1
3 K4n4A14 — 36 K2n2A02A12S22 + 36 K2n2A0A135152
—12K2n2A,1*SpS, — 6 1K2n2A,%S,% — 50 n2A0%S,*
+10012A03A15152% — 60 1n2A0%A 12850527 — 60 n2A02A1%S,%S,2
b +60 n2A0A13S051522 + 10n2A0A13S|3S2 — 10n2A14S02522 (24)
—10712A4,%S08,%8, — T0A*S,* + 140 Ap°A,S,S,°
—60A40241%50S2> — 90 Ag?A128128,% + 60 AgA 13505552
o +20A0A13S138, — 6A1%S0%8,% — 12414805125, — A*S*

n4A14

Plugging (16)—(24) with (14) into (15), the following
soliton solutions to CQ-GKE are secured:
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Dark soliton is

AiS1 A1/S? — 45,5,
— — tan

q(x,t) = | Ag h According to the balancing principle, the solution of
25, 25, (25) Eq. (11) takes the form of
1
/2 _ " = Ao +AF(&). 32
w (x + 8bK3[) ei(ficx+wt+§) Q(é) 0 1 (6) ( )
Plugging (32) with (30) into (11) leads to
with o b(—1+n)(=1 +3n)(—1 + 2n) (PA)* + QA%A> + RA*)’
N ’ n4A14
St — 45,8, > 0. 26
1 092 ( ) (33)
Singular soliton is oy AL )1+ 2m) (30— 2)(2PA) + 0A%) (PAG* + QAVAY +RAL') (34)
2= At
2 _
q(x, t) = Ao — AlSl — Al Sl 4S052 coth 6 Pitn?Ag* A2 + 6 QK2n2A02A14 + 6 Ri2n2A,°®
PAY) 25, 36 P2n2Ag® + 40 POn?Ag* A2 + 24 PRi*Ag%A*
; 1 (27) b1+ 1) 17 0*n2AGPA* + 4 QRn2A,S — 56 P2nAyS
o VST — 4805, (x " 8b;c3t) ei(—Krtwrt) —60 POnAg*Ai* — 24 PRnAG’A* — 12 0%nAg* A
2 —4 QRnA,® + 28 P2A° + 30 PQA(*A, >
o= +12 PRAG’A* + 6 Q*Ag’A\* + 2 ORA,°
with n'A*
(35)
S2 — 48,8, > 0. (28)
12 Pi2n2A02A, 2 + 6 Ok*n?A* + 24 P2n?Agt
+20 POR2AGA 2 + 12 PRR2AY + O%n?A 4
F-Expansion procedure bAg(n—2)| —28P%nA¢* — 20 POnAg*A,> — 4 PRnA;* (36)
—20%nA* + 28 PPAg* + 20 POA(*A,?
4 24 4
This innovative integration algorithm assumes that the — ¢, = 4 41; R’f‘ 2o
. . n
formal solution of Eq. (11) is structured as below: '
2,24 .2 24 2 24 .2
N . 2Aon(n+2)( 6”?1 ;rnpf Ao +4gnA] z) (37)
Q(é) _ ZAzFl(f) (29) o5 = +14 PnAy” + 3 0OnA,~ + 14 PAy” + 3 QA
i=0 n4’
. . 312n2A % + 18 Pn?Ag? + 2 On*A 2
where N is the balance number, A; for 0 <i <N are con- 2Pb(n+ 1) ! 0 !
: , +28 PnAg? + 2 0nA\? + 14 PAG? + QA2 (38)
stants, and the function F(&) satisfies 6= Y
nA;
/
F'(&) = /PFY(&) + QF*(¢) +R (30) o _ADP*A(3n+2)2n+ 1)(n+ 1) (39)
.=
. . aq.4
with constants P, Q and R. Also, here, it should be noted nA;
that the solutions of Eq. (30) are:
Case P o) R F(¢) F(&) (m—1) F(¢) (m — 0)
1 m? —(1+m?) 1 sn ¢ tanh & sin ¢ 31)
2 1 —(1+m?) m? ns ¢ coth ¢ csc é
3 1 —m? 2 —m? 1 scé sinh & tan &
4 1 2 —m? 1—m? csé csch & coté
5 —m? 2m* —1 1 —m? ené sech ¢ cos &
6 1 2m* — 1 —m*(1 —m?) ds¢ csch é cscé
7 1 —m? 2m* —1 —m? ncé cosh ¢ sec &
8 1 —(1 +m?) m? ns¢ coth ¢ csc é
9 i m72 2 V'Tf nsé £ dsé coth¢& 4 csché 2cscé
10 mTQ m =2 mTz sné+icné tanh ¢ +isech ¢ siné +icosé
11 i %W % nsé 4 csé coth& & csché cscé £ coté
12 17("2 % lf4mz ncé+scé cosh ¢ & sinh & sec +tané
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—xkAn*A* — kun*A* + 6 bn* P? + 11 bn*P? 4 6 bnP? + P%b

cg =
n4A14

(40)
—3K*n* At + 36 PkPn?Ag%A 2 + 6 OkEntA Lt
b| +50P*n?Ap* + 30 POn?A*A,% + 10 PRn*A %
+70 P2Ay* + 30 POA*A > + 2 PRA* + 0%A*
n4A14

(41)

As a consequence, inserting (33)—(41) along with (31) into
(32), soliton solutions to the model are revealed as:
Dark soliton is

q(x,t) = (Ao + A tanh (x + SbKSI))”le"(*’C”“’”Q. (42)
Singular soliton is
q(x,1) = (Ap + A coth(x + SbKSt))ﬁe"(”‘”ng). (43)
Bright soliton is
q(x,1) = (Ao + A; sech (x + 8bK3t))%ei<’K”“”+Q. (44)
Singular soliton is
q(x, 1) = (Ao + Ay esch (x + 8b;c3t))%e"<”“+”’+:). (45)
Combo singular soliton is

3
q(x,1) = (Ao + A; (coth (x + 8br’t) (a6)

+csch (x + 8bx t))) i(—Kx+or+l)

Exp-expansion method

The solution of Eq. (11) according to this form of inte-
gration norm is taken to be:

=3 Adexp(~V (&)} (47)
i=0

where N is the balance number, A; for 0 <i <N are con-
stants, and the function V(&) ensures

V(&) = exp(=V(¢)) + Sexp(V(¢)) + R

with constants S and R. Also, it should be remarked that
Eq. (48) has the solutions

(48)
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V(e =~ 5o - Yam (Y (¢ + 20 |

S#£0,0 >0,
V(e) = ln{—R—\/Ecoth< (+ & )

28 2§ }
)
)

S#0,0 >0,
PER A ( !
é+50 }

S#0,6<0

where & constant and ¢ = R? — 4.
From the balancing principle, Eq. (11) has the solution
form given by

0(&) =Ao+Arexp(—V(&)).

Inserting (50) with (48) into (11), the following results are
obtained:

(50)

b(—14n)(=1+3n)(=1+2n) (RAoA; — SA> — Ap)*
m=2n, ¢} = T d
}’lA]
(51)
2b(—14n)(—142n)(3n —2)(RA| — 2A0) (RA¢A| — SA,* 7A02)3
2= }14Al4
(52)

TR*n*A% + 6 K*n*A,> — 12R*nA %

—36 Rn?AgA; + 8Sn*A,%> + 6R?A,?

+56 RnAgA| — 8 SnA % + 36 n2Ay?
—28 RApA| +4SA,> — 56 nAy> + 28 Ay?

(=14 n)(RAoA; — SA% — Ag2)’

3 =
At

(53)

R*n?A% 4 6k2n%A,2 — 2 R*nA 2
—12Rn*A¢A; + 8Sn?A;> + 2 R?A %
+14RnAgA; — 6 SnA,2 + 12 n%Aq?

—14RA0A, + 6SA12 — 14nAo? + 14A%
At

b(n — 2)(RA; — 2A¢) (RAoA| — SA2 — Ag?)

(54)

R*2A% + 6 kA% + 2 R%nA
—12RnAoA; + 8Sn?A\> + 2 R?A,?
—14RnAgA| + 6 SnA % + 12n2A4?

—14RA)A| + 6 SA 2 + 14nAy* + 14 Ay?
At

b(n+2)(RA| — 2A)

C5 =

TR*n?A,2 + 6 12n2A,2 + 12 R*nA,?
—36 Rn*AogA; + 8 Sn*A;%> + 6R?A,?
—56 RnAgA| + 8 SnA % + 36 n?Ay?
—28 RAoA| + 4 SA, + 56 nAy? + 28 Ay?
At

2b(3n+2)2n+1)(n+ 1)(RA; — 2 A)
n4A14

bn+1)

Ce =

Cc7 =

(57)
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—kAn*Ayt —cpn*Ayt +6bn* + 11> +6bn+b  T' = |g|*. (65)
cg = a4
A
e 58 Also, if 1 = —0, we have linear momentum and Hamilto-
(58) nian conservation too. Then following conserved density,
3 n%A Y + 6 REEnAY — 10 R n%A0A° T3, for linear momentum is
+10R2Sn?A* — 36 RKk2n?A¢A > + 12 Sk?nA 4 1
444 204 242 24 43 Ty =—Suw+ v (66)
+R*A1" + 60 R n"Ap"A;” — 60 RSn~ApA, 2 2
bl  +108%n*A* + 36 K2n’Ag’A;* — 20 R3ApA and the ‘momentum density’ for (1) is
+12R*SA;* — 100 Rn*Ag* A1 + 60 Sn?Ag*A, .
o 100Rw A OSTACAT ) — (g, (67)
+90R“Ap“A1” — 60 RSAQA|” + 6 5°A,
24 4 3 24 2 4 The conserved density corresponding to ‘Hamiltonian’, 775,
o — +50n°A¢" — 140 RAy°A; + 60 SA(°A” + 70 Ay

n4A14
(59)
Plugging (51)—(59) along with (49) into (50), the solutions

for (1) are discovered as:
Singular soliton is

q(x, 1) = | Ao— PR A‘R2 — el —rtortD)
TRARET: tanh{ o (r+ 86)
(60)
with
R* — 4S8 > 0. (61)
Dark soliton is
= - Ar i(—rextor+l)
R 25 L YRS | VR4S (x + 8bx1) )
S 28 2
(62)
with
R*—45>0. (63)

A surface plot of a bright soliton is given here (Fig. 1).

Conservation laws

In the complex system (1) above, we let ¢ = u + iw to
obtain a system two pdes whose conserved flows (7", T)
are established employing the multiplier approach. It turns
out that a single multiplier M = (—u,v) giving rise to the
‘power’ conserved density

T, = % (u2 + v2) (64)

so that a corresponding conserved density for (1) is

is rather lengthy and the calculation for the conserved
quantity would be meaningless; we will not produce it
here.

Noting that bright soliton solution to (1) is of the form:

q(x,1) = Asech[B(x — vr)]e!(-tertlo) (68)

where A is the amplitude and B is its inverse width, the two
conserved quantities, power (P) and linear momentum (M),
respectively, are

00 2 1) (1
P= [ g dx = %—rr(%l(i)) (69)
and
00 2 1) (1

5 A
lg(x, )] X

Fig. 1 The plot of (44) setting all arbitrary parameters to unity except
n=20,3
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Conclusions

This paper obtained CQ optical soliton solutions to GKE
by utilizing three forms of integration norms. A wide range
of soliton solutions are secured. The conservation laws are
finally identified for the model. These con laws will be of
great value to probe into the model further along. One
immediate area to extend this study is to consider soliton
perturbation theory, both deterministic and stochastic.
Thus, one can study soliton cooling effect and the effect of
stochastic perturbation by addressing the corresponding
Langevin equations. Another avenue of obvious extension
is to take a look at the aspect of modeling CQ-GKE with
Bragg gratings and in birefringent fibers as well as
DWDM/UDWDM networking. Additional, and yet pow-
erful, mathematical tools such as Lie symmetry and others
are going to be implemented in future as applied earlier in
several other areas of physics [21-25]. These would lead to
several avenues of research. Such studies are under way,
and the results are going to be visible sooner than later.
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