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Abstract This paper obtains cubic–quartic optical solitons

of generalized Kudryashov’s law of refractive index. The

included perturbation terms are with maximum intensity.

The retrieved soliton solutions are with the aid of F-ex-

pansion, exp-expansion and Riccati equation methods.

Finally, the conservation laws of the model are also

recovered and listed.

Keywords Generalized Kudryashov’s equation � Cubic–

quartic solitons � Perturbation

Introduction

There are quite a few innovative concepts in optical soli-

tons that have encapsulated the field of nonlinear optics

[1–20]. These ideas range from fiber Bragg gratings [5, 11]

when chromatic dispersion runs low, highly dispersive

optical solitons [7, 19], pure–cubic optical solitons [17],

pure–quartic optical solitons [4], cubic–quartic (CQ) opti-

cal solitons [3, 6, 16], Kudryashov’s law of refractive index

[9–13], generalized Kudryashov’s law of refractive index

[8]. This paper is an infusion of two such concepts to

formulate a model that is with CQ optical solitons modeled

by generalized Kudryashov’s equation (GKE). In the past,

CQ solitons with Kudryashov’s equation (KE) have been

studied and its conservation laws have been reported as

well [3]. This paper addresses CQ–GKE by the aid of three

innovative integration schemes, and they are Riccati

equation method, F-expansion scheme and the exp-ex-

pansion method. These algorithms retrieve bright, dark and

singular soliton solutions as well as a couple of forms for

combo optical solitons. The paper closes with a list of

conserved quantities that are recovered. The details are

enumerated in the rest of the paper, once the model is

introduced with the inclusion of perturbation terms that are

all of Hamiltonian type and appear with maximum

intensity.

Governing model

The cubic–quartic generalized Kudryashov’s equation

(CQ–GKE) with the perturbation terms is [3]:
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In (1), the independent variables are spatial x and temporal

t, while the dependent variable is q x; tð Þ that represents the

complex valued wave profile. Next, a is the coefficient of

third–order dispersion (3OD), b is the coefficient of fourth–

order dispersion (4OD), and i ¼
ffiffiffiffiffiffiffi
�1

p
. The constants cj for

1� j� 8 are the coefficient of nonlinearity effects. Then, k
represents self–steepening term, while h and l are the

coefficients of higher–order dispersion and nonlinear dis-

persion. Finally, m represents maximum intensity and n is

the power nonlinearity parameter which is in the range

0\n\1=2: It must be noted that the parameter m is not

unbounded. Its bounds are determined by Benjamin–Feir

stability analysis and is a whole different project by itself

which is on the bucket list for now.

Mathematical analysis

The starting point for decomposing the governing equation

into real and imaginary parts is:

qðx; tÞ ¼ UðnÞeiuðx;tÞ ð2Þ

where

n ¼ x� vt ð3Þ

and v is the speed of the wave. From the phase component,

uðx; tÞ ¼ �jxþ xt þ f ð4Þ

where j, x, f stand for the frequency, wave number and

phase center, respectively. Insert (2) into (1). Real part

yields

bU0000 þ 3j a� 2bjð ÞU00 � xþ aj3 � bj4
� �

U

þ c1U
1�4 n þ c2U

1�3 n þ c3U
1�2 n

þ c4U
1�n þ c5U

1þn þ c6U
1þ2 n þ c7U

1þ3 n

þ c8U
1þ4 n � j lþ kð ÞU1þ2m ¼ 0;

ð5Þ

while imaginary part causes

a� 4bjð ÞU000 þ 4bj3 � 3aj2 � v
� �

U0

� kþ lþ 2hmþ 2kmð ÞU0U2m ¼ 0:
ð6Þ

Form Eq. (6), the constraint conditions are recovered as

a ¼ 4bj ð7Þ

kþ lþ 2hmþ 2km ¼ 0 ð8Þ

and then the velocity is

v ¼ �8bj3: ð9Þ

So, the real part equation given by (5) turns into

bU0000 þ 6bj2U00

� xþ 3bj4
� �

U þ c1U
1�4 n

þ c2U
1�3 n þ c3U

1�2 n þ c4U
1�n

þ c5U
1þn þ c6U

1þ2 n þ c7U
1þ3 n þ c8U

1þ4 n

� j lþ kð ÞU1þ2m ¼ 0:

ð10Þ

By virtue of the transformation U ¼ Q
1
n, Eq. (10) changes

to

b

1 � nð Þ 1 � 2nð Þ 1 � 3nð Þ Q0ð Þ4

þ6n 1 � nð Þ 1 � 2nð ÞQ Q0ð Þ2Q00

þ3n2 1 � nð ÞQ2 Q00ð Þ2

þ4n2 1 � nð ÞQ2Q0Q000 þ n3Q3Q0000

0
BBB@

1
CCCA

þ 6bj2n2Q2 1 � nð Þ Q0ð Þ2þnQQ00
� �

� n4 xþ 3bj4
� �

Q4 þ c1n
4 þ c2n

4Qþ c3n
4Q2

þ c4n
4Q3 þ c5n

4Q5 þ c6n
4Q6 þ c7n

4Q7

þ c8n
4Q8 � n4j kþ lð ÞQ2m

n þ4 ¼ 0:

ð11Þ

The last equation will now be studied by three integration

schemes in next subsections.

Application TO CQ–GKE

Riccati Equation Method

This methodology suggests the formal solution of Eq. (11)

as

QðnÞ ¼
XN
i¼0

AiV
iðnÞ ð12Þ

where N is the balance number, Ai for 0� i�N are con-

stants, and the function VðnÞ holds

V 0ðnÞ ¼ S2V
2 nð Þ þ S1V nð Þ þ S0; S2 6¼ 0 ð13Þ

with constants S2, S1 and S0. Also, it needs to be mentioned

that Eq. (13) has the solutions as follows:
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V nð Þ ¼ � S1

2S2

�
ffiffiffi
r

p

2S2

tanh

ffiffiffi
r

p

2
nþ n0

� �
; r[ 0;

V nð Þ ¼ � S1

2S2

�
ffiffiffi
r

p

2S2

coth

ffiffiffi
r

p

2
nþ n0

� �
; r[ 0;

V nð Þ ¼ � S1

2S2

þ
ffiffiffiffiffiffiffi
�r

p

2S2

tan

ffiffiffiffiffiffiffi
�r

p

2
nþ n0

� �
; r\0;

V nð Þ ¼ � S1

2S2

�
ffiffiffiffiffiffiffi
�r

p

2S2

cot

ffiffiffiffiffiffiffi
�r

p

2
nþ n0

� �
; r\0;

V nð Þ ¼ � S1

2S2

� 1

S2nþ n0

; r ¼ 0

ð14Þ

where n0 is a constant and r ¼ S2
1 � 4S0S2.

According to the balancing principle, the solution of

Eq. (11) is

Q nð Þ ¼ A0 þ A1V nð Þ: ð15Þ

Then, putting (15) along with (13) into (11) yields

m ¼ 2n; c1 ¼
b A0

2S2 � A0A1S1 þ A1
2S0

� �4
n� 1ð Þ 3 n� 1ð Þ 2 n� 1ð Þ

n4A1
4

ð16Þ

c2 ¼ �
2b 2A0S2 � A1S1ð Þ A0

2S2 � A0A1S1 þ A1
2S0

� �3
n� 1ð Þ 2 n� 1ð Þ 3 n� 2ð Þ

n4A1
4

ð17Þ

c3 ¼

b A0
2S2 � A0A1S1 þ A1

2S0

� �2
n� 1ð Þ

6j2n2A1
2 þ 36 n2A0

2S2
2 � 36 n2A0A1S1S2

þ8 n2A1
2S0S2 þ 7 n2A1

2S1
2 � 56 nA0

2S2
2

þ56 nA0A1S1S2 � 8 nA1
2S0S2 � 12 nA1

2S1
2

þ28A0
2S2

2 � 28A0A1S1S2 þ 4A1
2S0S2 þ 6A1

2S1
2

0
BBB@

1
CCCA

n4A1
4

ð18Þ

c4 ¼ �

b 2A0S2 � A1S1ð Þ A0
2S2 � A0A1S1 þ A1

2S0

� �
n� 2ð Þ

6 j2n2A1
2 þ 12 n2A0

2S2
2

�12 n2A0A1S1S2 þ 8 n2A1
2S0S2

þn2A1
2S1

2 � 14 nA0
2S2

2

þ14 nA0A1S1S2 � 6 nA1
2S0S2

�2 nA1
2S1

2 þ 14A0
2S2

2

�14A0A1S1S2 þ 6A1
2S0S2 þ 2A1

2S1
2

0
BBBBBBBB@

1
CCCCCCCCA

n4A1
4

ð19Þ

Plugging (16)–(24) with (14) into (15), the following

soliton solutions to CQ–GKE are secured:

c5 ¼

bS2 2A0S2 � A1S1ð Þ nþ 2ð Þ

6 j2n2A1
2 þ 12 n2A0

2S2
2 � 12 n2A0A1S1S2

þ8 n2A1
2S0S2 þ n2A1

2S1
2 þ 14 nA0

2S2
2

�14 nA0A1S1S2 þ 6 nA1
2S0S2 þ 2 nA1

2S1
2

þ14A0
2S2

2 � 14A0A1S1S2 þ 6A1
2S0S2 þ 2A1

2S1
2

0
BBB@

1
CCCA

n4A1
4

ð20Þ

c6 ¼ �

bS2
2 nþ 1ð Þ

6 j2n2A1
2 þ 36 n2A0

2S2
2 � 36 n2A0A1S1S2

þ8 n2A1
2S0S2 þ 7 n2A1

2S1
2 þ 56 nA0

2S2
2

�56 nA0A1S1S2 þ 8 nA1
2S0S2 þ 12 nA1

2S1
2

þ28A0
2S2

2 � 28A0A1S1S2 þ 4A1
2S0S2 þ 6A1

2S1
2

0
BBB@

1
CCCA

n4A1
4

ð21Þ

c7 ¼ 2bS2
3 3 nþ 2ð Þ 2 nþ 1ð Þ nþ 1ð Þ 2A0S2 � A1S1ð Þ

n4A1
4

ð22Þ

c8 ¼ ��j k n4A1
4 � j l n4A1

4 þ 6 bn3S2
4 þ 11 bn2S2

4 þ 6 bnS2
4 þ bS2

4

n4A1
4

ð23Þ

x ¼ �

b

3 j4n4A1
4 � 36 j2n2A0

2A1
2S2

2 þ 36 j2n2A0A1
3S1S2

�12 j2n2A1
4S0S2 � 6 j2n2A1

4S1
2 � 50 n2A0

4S2
4

þ100 n2A0
3A1S1S2

3 � 60 n2A0
2A1

2S0S2
3 � 60 n2A0

2A1
2S1

2S2
2

þ60 n2A0A1
3S0S1S2

2 þ 10 n2A0A1
3S1

3S2 � 10 n2A1
4S0

2S2
2

�10 n2A1
4S0S1

2S2 � 70A0
4S2

4 þ 140A0
3A1S1S2

3

�60A0
2A1

2S0S2
3 � 90A0

2A1
2S1

2S2
2 þ 60A0A1

3S0S1S2
2

þ20A0A1
3S1

3S2 � 6A1
4S0

2S2
2 � 12A1

4S0S1
2S2 � A1

4S1
4

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

n4A1
4

:

ð24Þ
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Dark soliton is

qðx; tÞ ¼ A0 �
A1S1

2S2

� A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1 � 4S0S2

p
2S2

tanh

 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1 � 4S0S2

p
2

xþ 8bj3t
� �" #!1

n

ei �jxþxtþfð Þ

ð25Þ

with

S2
1 � 4S0S2 [ 0: ð26Þ

Singular soliton is

qðx; tÞ ¼ A0 �
A1S1

2S2

� A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1 � 4S0S2

p
2S2

coth

 

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1 � 4S0S2

p
2

xþ 8bj3t
� �" #!1

n

ei �jxþxtþfð Þ

ð27Þ

with

S2
1 � 4S0S2 [ 0: ð28Þ

F-Expansion procedure

This innovative integration algorithm assumes that the

formal solution of Eq. (11) is structured as below:

Q nð Þ ¼
XN
i¼0

AiF
i nð Þ ð29Þ

where N is the balance number, Ai for 0� i�N are con-

stants, and the function FðnÞ satisfies

F0 nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PF4 nð Þ þ QF2 nð Þ þ R

p
ð30Þ

with constants P, Q and R. Also, here, it should be noted

that the solutions of Eq. (30) are:

According to the balancing principle, the solution of

Eq. (11) takes the form of

Q nð Þ ¼ A0 þ A1F nð Þ: ð32Þ

Plugging (32) with (30) into (11) leads to

m ¼ 2n; c1 ¼
b �1 þ nð Þ �1 þ 3 nð Þ �1 þ 2 nð Þ PA0

4 þ QA0
2A1

2 þ RA1
4

� �2

n4A1
4

ð33Þ

c2 ¼ �
2bA0 �1 þ nð Þ �1 þ 2 nð Þ 3 n� 2ð Þ 2PA0

2 þ QA1
2

� �
PA0

4 þ QA0
2A1

2 þ RA1
4

� �
n4A1

4
ð34Þ

c3 ¼

b �1 þ nð Þ

6Pj2n2A0
4A1

2 þ 6Qj2n2A0
2A1

4 þ 6Rj2n2A1
6

þ36P2n2A0
6 þ 40PQn2A0

4A1
2 þ 24PRn2A0

2A1
4

þ7Q2n2A0
2A1

4 þ 4QRn2A1
6 � 56P2nA0

6

�60PQnA0
4A1

2 � 24PRnA0
2A1

4 � 12Q2nA0
2A1

4

�4QRnA1
6 þ 28P2A0

6 þ 30PQA0
4A1

2

þ12PRA0
2A1

4 þ 6Q2A0
2A1

4 þ 2QRA1
6

0
BBBBBBBB@

1
CCCCCCCCA

n4A1
4

ð35Þ

c4 ¼ �

bA0 n� 2ð Þ

12Pj2n2A0
2A1

2 þ 6Qj2n2A1
4 þ 24P2n2A0

4

þ20PQn2A0
2A1

2 þ 12PRn2A1
4 þ Q2n2A1

4

�28P2nA0
4 � 20PQnA0

2A1
2 � 4PRnA1

4

�2Q2nA1
4 þ 28P2A0

4 þ 20PQA0
2A1

2

þ4PRA1
4 þ 2Q2A1

4

0
BBBBBB@

1
CCCCCCA

n4A1
4

ð36Þ

c5 ¼
2A0Pb nþ 2ð Þ 6 j2n2A1

2 þ 12Pn2A0
2 þ 4Qn2A1

2

þ14PnA0
2 þ 3QnA1

2 þ 14PA0
2 þ 3QA1

2

 !

n4A1
4

ð37Þ

c6 ¼ �
2Pb nþ 1ð Þ 3 j2n2A1

2 þ 18Pn2A0
2 þ 2Qn2A1

2

þ28PnA0
2 þ 2QnA1

2 þ 14PA0
2 þ QA1

2

 !

n4A1
4

ð38Þ

c7 ¼ 4bP2A0 3 nþ 2ð Þ 2 nþ 1ð Þ nþ 1ð Þ
n4A1

4
ð39Þ

Case P Q R FðnÞ FðnÞ ðm ! 1Þ FðnÞ ðm ! 0Þ

1 m2 �ð1 þ m2Þ 1 sn n tanh n sin n (31)

2 1 �ð1 þ m2Þ m2 ns n coth n csc n

3 1 � m2 2 � m2 1 sc n sinh n tan n

4 1 2 � m2 1 � m2 cs n csch n cot n

5 �m2 2m2 � 1 1 � m2 cn n sech n cos n

6 1 2m2 � 1 �m2 1 � m2ð Þ ds n csch n csc n

7 1 � m2 2m2 � 1 �m2 nc n cosh n sec n

8 1 �ð1 þ m2Þ m2 ns n coth n csc n

9 1
4

m2�2
2

m2

4
ns n� ds n coth n� csch n 2 csc n

10 m2

4
m2�2

2
m2

4
sn n� i cn n tanh n� i sech n sin n� i cos n

11 1
4

1�2m2

2

1
4

ns n� cs n coth n� csch n csc n� cot n

12 1�m2

4
1þm2

2
1�m2

4
nc n� sc n cosh n� sinh n sec n� tan n
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c8 ¼ ��j k n4A1
4 � j l n4A1

4 þ 6 bn3P2 þ 11 bn2P2 þ 6 bnP2 þ P2b

n4A1
4

ð40Þ

x ¼

b

�3 j4n4A1
4 þ 36Pj2n2A0

2A1
2 þ 6Qj2n2A1

4

þ50P2n2A0
4 þ 30PQn2A0

2A1
2 þ 10PRn2A1

4

þ70P2A0
4 þ 30PQA0

2A1
2 þ 2PRA1

4 þ Q2A1
4

0
B@

1
CA

n4A1
4

:

ð41Þ

As a consequence, inserting (33)–(41) along with (31) into

(32), soliton solutions to the model are revealed as:

Dark soliton is

qðx; tÞ ¼ A0 þ A1 tanh xþ 8bj3t
� �� �1

nei �jxþxtþfð Þ: ð42Þ

Singular soliton is

qðx; tÞ ¼ A0 þ A1 coth xþ 8bj3t
� �� �1

nei �jxþxtþfð Þ: ð43Þ

Bright soliton is

qðx; tÞ ¼ A0 þ A1 sech xþ 8bj3t
� �� �1

nei �jxþxtþfð Þ: ð44Þ

Singular soliton is

qðx; tÞ ¼ A0 þ A1 csch xþ 8bj3t
� �� �1

nei �jxþxtþfð Þ: ð45Þ

Combo singular soliton is

qðx; tÞ ¼ A0 þ A1 coth xþ 8bj3t
� ���

� csch xþ 8bj3t
� ���1

nei �jxþxtþfð Þ:
ð46Þ

Exp-expansion method

The solution of Eq. (11) according to this form of inte-

gration norm is taken to be:

QðnÞ ¼
XN
i¼0

Ai exp �VðnÞð Þf gi ð47Þ

where N is the balance number, Ai for 0� i�N are con-

stants, and the function VðnÞ ensures

V 0ðnÞ ¼ exp �VðnÞð Þ þ S exp VðnÞð Þ þ R ð48Þ

with constants S and R. Also, it should be remarked that

Eq. (48) has the solutions

V nð Þ ¼ ln � R

2S
�

ffiffiffi
r

p

2S
tanh

ffiffiffi
r

p

2
nþ n0ð Þ

� �	 

;

S 6¼ 0; r[ 0;

V nð Þ ¼ ln � R

2S
�

ffiffiffi
r

p

2S
coth

ffiffiffi
r

p

2
nþ n0ð Þ

� �	 

;

S 6¼ 0; r[ 0;

V nð Þ ¼ ln � R

2S
þ

ffiffiffiffiffiffiffi
�r

p

2S
tan

ffiffiffiffiffiffiffi
�r

p

2
nþ n0ð Þ

� �	 

;

S 6¼ 0; r\0;

V nð Þ ¼ ln � R

2S
�

ffiffiffiffiffiffiffi
�r

p

2S
cot

ffiffiffiffiffiffiffi
�r

p

2
nþ n0ð Þ

� �	 

;

S 6¼ 0; r\0

ð49Þ

where n0 constant and r ¼ R2 � 4S.

From the balancing principle, Eq. (11) has the solution

form given by

Q nð Þ ¼ A0 þ A1 exp �VðnÞð Þ: ð50Þ

Inserting (50) with (48) into (11), the following results are

obtained:

m ¼ 2n; c1 ¼
b �1 þ nð Þ �1 þ 3 nð Þ �1 þ 2 nð Þ RA0A1 � SA1

2 � A0
2

� �4

n4A1
4

ð51Þ

c2 ¼ �
2b �1 þ nð Þ �1 þ 2 nð Þ 3 n� 2ð Þ RA1 � 2A0ð Þ RA0A1 � SA1

2 � A0
2

� �3

n4A1
4

ð52Þ

c3 ¼

b �1 þ nð Þ RA0A1 � SA1
2 � A0

2
� �2

7R2n2A1
2 þ 6 j2n2A1

2 � 12R2nA1
2

�36Rn2A0A1 þ 8 Sn2A1
2 þ 6R2A1

2

þ56RnA0A1 � 8 SnA1
2 þ 36 n2A0

2

�28RA0A1 þ 4 SA1
2 � 56 nA0

2 þ 28A0
2

0
BBB@

1
CCCA

n4A1
4

ð53Þ

c4 ¼ �

b n� 2ð Þ RA1 � 2A0ð Þ RA0A1 � SA1
2 � A0

2
� � R2n2A1

2 þ 6j2n2A1
2 � 2R2nA1

2

�12Rn2A0A1 þ 8 Sn2A1
2 þ 2R2A1

2

þ14RnA0A1 � 6 SnA1
2 þ 12 n2A0

2

�14RA0A1 þ 6 SA1
2 � 14 nA0

2 þ 14A0
2

0
BBB@

1
CCCA

n4A1
4

ð54Þ

c5 ¼ �

b nþ 2ð Þ RA1 � 2A0ð Þ

R2n2A1
2 þ 6 j2n2A1

2 þ 2R2nA1
2

�12Rn2A0A1 þ 8 Sn2A1
2 þ 2R2A1

2

�14RnA0A1 þ 6 SnA1
2 þ 12 n2A0

2

�14RA0A1 þ 6 SA1
2 þ 14 nA0

2 þ 14A0
2

0
BBB@

1
CCCA

n4A1
4

ð55Þ

c6 ¼ �

b nþ 1ð Þ

7R2n2A1
2 þ 6 j2n2A1

2 þ 12R2nA1
2

�36Rn2A0A1 þ 8 Sn2A1
2 þ 6R2A1

2

�56RnA0A1 þ 8 SnA1
2 þ 36 n2A0

2

�28RA0A1 þ 4 SA1
2 þ 56 nA0

2 þ 28A0
2

0
BBB@

1
CCCA

n4A1
4

ð56Þ

c7 ¼ �2b 3 nþ 2ð Þ 2 nþ 1ð Þ nþ 1ð Þ RA1 � 2A0ð Þ
n4A1

4
ð57Þ
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c8 ¼ ��j k n4A1
4 � j l n4A1

4 þ 6 bn3 þ 11 bn2 þ 6 bnþ b

n4A1
4

ð58Þ

x ¼

b

�3 j4n4A1
4 þ 6R2j2n2A1

4 � 10R3n2A0A1
3

þ10R2Sn2A1
4 � 36Rj2n2A0A1

3 þ 12 Sj2n2A1
4

þR4A1
4 þ 60R2n2A0

2A1
2 � 60RSn2A0A1

3

þ10 S2n2A1
4 þ 36 j2n2A0

2A1
2 � 20R3A0A1

3

þ12R2SA1
4 � 100Rn2A0

3A1 þ 60 Sn2A0
2A1

2

þ90R2A0
2A1

2 � 60RSA0A1
3 þ 6 S2A1

4

þ50 n2A0
4 � 140RA0

3A1 þ 60 SA0
2A1

2 þ 70A0
4

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

n4A1
4

:

ð59Þ

Plugging (51)–(59) along with (49) into (50), the solutions

for (1) are discovered as:

Singular soliton is

qðx; tÞ ¼ A0�
A1

R

2S
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 4S

p

2S
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 4S

p

2
xþ 8bj3t
� �" #

0
BBBB@

1
CCCCA

1
n

ei �jxþxtþfð Þ

ð60Þ

with

R2 � 4S[ 0: ð61Þ

Dark soliton is

qðx; tÞ ¼ A0�
A1

R

2S
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 4S

p

2S
coth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 4S

p

2
xþ 8bj3t
� �" #

0
BBBB@

1
CCCCA

1
n

ei �jxþxtþfð Þ

ð62Þ

with

R2 � 4S[ 0: ð63Þ

A surface plot of a bright soliton is given here (Fig. 1).

Conservation laws

In the complex system (1) above, we let q ¼ uþ iw to

obtain a system two pdes whose conserved flows ðTt; TxÞ
are established employing the multiplier approach. It turns

out that a single multiplier M ¼ ð�u; vÞ giving rise to the

‘power’ conserved density

Tt
1 ¼ 1

2
u2 þ v2
� �

ð64Þ

so that a corresponding conserved density for (1) is

T t
1 ¼ jqj2: ð65Þ

Also, if k ¼ �h, we have linear momentum and Hamilto-

nian conservation too. Then following conserved density,

Tt
2, for linear momentum is

Tt
2 ¼ � 1

2
uxv þ

1

2
vxu ð66Þ

and the ‘momentum density’ for (1) is

T t
2 ¼ Iðq�qxÞ: ð67Þ

The conserved density corresponding to ‘Hamiltonian’, T t
3,

is rather lengthy and the calculation for the conserved

quantity would be meaningless; we will not produce it

here.

Noting that bright soliton solution to (1) is of the form:

qðx; tÞ ¼ A sech
1
n½Bðx� vtÞ�ei �jxþxtþh0ð Þ ð68Þ

where A is the amplitude and B is its inverse width, the two

conserved quantities, power (P) and linear momentum (M),

respectively, are

P ¼
Z 1

�1
qj j2dx ¼ A2

B

C 1
n

� �
1
2

� �
C 1

n þ 1
2

� � ð69Þ

and

M ¼ ij
Z 1

�1
qq�x � q�qx
� �

dx ¼ jA2

B

C 1
n

� �
1
2

� �
C 1

n þ 1
2

� � : ð70Þ

Fig. 1 The plot of (44) setting all arbitrary parameters to unity except

n ¼ 0; 3
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Conclusions

This paper obtained CQ optical soliton solutions to GKE

by utilizing three forms of integration norms. A wide range

of soliton solutions are secured. The conservation laws are

finally identified for the model. These con laws will be of

great value to probe into the model further along. One

immediate area to extend this study is to consider soliton

perturbation theory, both deterministic and stochastic.

Thus, one can study soliton cooling effect and the effect of

stochastic perturbation by addressing the corresponding

Langevin equations. Another avenue of obvious extension

is to take a look at the aspect of modeling CQ–GKE with

Bragg gratings and in birefringent fibers as well as

DWDM/UDWDM networking. Additional, and yet pow-

erful, mathematical tools such as Lie symmetry and others

are going to be implemented in future as applied earlier in

several other areas of physics [21–25]. These would lead to

several avenues of research. Such studies are under way,

and the results are going to be visible sooner than later.
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