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Abstract This paper studies highly dispersive bright and

dark optical solitons from a numerical perspective by

variational iteration method. This is a very efficient algo-

rithm that has gained popularity to numerically address

model equations from a range of physical phenomena

including photonics sciences. The current paper studies

highly dispersive optical soliton solutions that are consid-

ered with quadratic–cubic nonlinear form of refractive

index, modeled by the nonlinear Schrödinger’s equation.

The novelty of this approach is that it recovers bright and

dark soliton solutions to the model numerically, and the

error of approximation has also been presented. The

algorithm displays the solutions with an impressive error

measure.

Keywords Nonlinear Schrödinger equation � Quadratic–
cubic nonlinearity � Higher-order dispersion � Variational
iteration method

Introduction

Optical solitons have left a lasting impression in the field of

telecommunications. There are a variety of concepts that

stem from soliton studies that are currently studied. A few

of them are dispersion-managed solitons, Bragg gratings,

pure–cubic solitons, pure–quartic solitons, cubic–quartic

solitons, highly dispersive (HD) solitons, quasi-linear pul-

ses and several others. One of the concepts that have been

recently proposed and have gained a lot of attention is HD

solitons. This kind of solitons has been extensively studied

with a variety of forms of nonlinear refractive index

[1–12]. This study has also been extended to the case of

birefringent fibers [13–24]. The conservation laws have

been reported for HD solitons. Moreover, perturbed HD

soliton solutions have been studied by the semi-inverse

variational principle [25, 26]. The current paper will

address HD optical solitons by the aid of variational iter-

ation method (VIM). The governing equation is the non-

linear Schrodingers equation with intermodal dispersion

(IMD), chromatic dispersion (CD), third-order dispersion

(3OD), fourth-order dispersion (4OD), fifth-order disper-

sion (5OD) and sixth-order dispersion (6OD). The law of

nonlinear refractive index is quadratic–cubic (QC) type.

The numerical scheme is exhibited in the subsequent sec-

tion along with an impressive error measure which exposes

the efficiency and accuracy of the numerical scheme. Both

bright and dark soliton solutions are studied today.
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Model description

The nonlinear Schrödinger’s equation (NLSE) for highly

dispersive optical solitons in polarization-preserving fibers

with the quadratic–cubic law is given by [4, 11, 27–29]:

iqt þ ia1qx þ a2qxx þ ia3qxxx þ a4qxxxx þ ia5qxxxxx

þ a6qxxxxxx þ ðb1jqj þ b2jqj2Þq ¼ 0;
ð1Þ

where q ¼ qðx; tÞ is a complex-valued function of x (space)

and t (time). In Eq. (1), the first term stands for linear

temporal evolution with i ¼
ffiffiffiffiffiffiffi

�1
p

. The next six terms are

dispersion terms that make the solitons highly dispersive.

These are given by the coefficients of ak for 1� k� 6

which are IMD, CD, 3OD, 4OD, 5OD and 6OD, respec-

tively. Finally, the constants b1 and b2 are coefficients of

the quadratic and cubic terms, respectively.

It must be noted that the model equ. (1) produces sub-

stantial radiation that will shed the energy of the soliton as

it propagates down the fiber. However, soliton radiation is

not considered in this paper. These can be studied by the

aid of ‘‘variational principle’’ or ‘‘beyond all-order

asymptotics’’ or by the implementing the ‘‘theory of

unfoldings,’’ and they can be independently addressed in a

different research publication. Another aspect that has been

excluded from this study is the issue of collision-induced

timing jitter of intra-channel collision that can be con-

trolled by quasi-particle theory. Today’s paper stays

focused on the core of the soliton in a polarization-pre-

serving fiber.

Summary of variational iteration method (VIM)

The variational iteration method transforms the differential

equation to a recurrence sequence of functions, and the

limit of the sequence, if exists, is considered as the solution

of the differential equation. Consider the following non-

linear partial differential equation:

Lwðx; tÞ þ Rwðx; tÞ þ Nwðx; tÞ ¼ hðx; tÞ;
wðx; 0Þ ¼ w0ðxÞ:

�

ð2Þ

where L ¼ o
ot, R and N are linear and nonlinear operators,

respectively, and h(x, t) is an inhomogeneous term (or

source). The variational iteration method admits the use of

the correction functional for Eq. (2) which can be written

as

wnþ1ðx; tÞ ¼wnðx; tÞ þ
Z t

0

kðnÞ
�

Lwnðx; nÞ

þ R ~wnðx; nÞ þ N ~wnðx; nÞ
� hðx; nÞ

�

dn; n� 0:

ð3Þ

where kðnÞ is a general Lagrange multiplier, which can be

identified optimally via the variational theory [30–33] and

~wn is considered as a restricted variation, i.e., d ~wn ¼ 0:

According to the variational iteration method, the terms

of a sequence fwng are constructed such that this sequence

converges to the exact solution. The successive approxi-

mations wnþ1, n� 0, of the solution w will be readily

obtained by suitable choice of trial function w0. Conse-

quently, the solution is given as

lim
n!1

wnðx; tÞ ¼ wðx; tÞ: ð4Þ

The VIM was proved by many to be very effective and can

be used in a direct manner without any need to lineariza-

tion of the nonlinear terms that may change the physical

feature of the problem. As we have said before, we will use

the VIM to determine bright and dark optical solitons for

the NLSE with the quadratic–cubic law (1) for a variety of

given initial conditions.

Implementation of the proposed method
to the model (1)

Substituting qðx; tÞ ¼ uðx; tÞ þ ivðx; tÞ, where u(x, t) and

v(x, t) are real functions of x and t, in Eq. (1), results in the

following coupled system of partial differential equations

ut þ a11ux þ a12vxx þ a13uxxx þ a14vxxxx þ a15uxxxxx þ a16vxxxxxx þ v½b12ðu2 þ v2Þ þ b11
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

� ¼ 0;

vt þ a21vx � a22uxx þ a23vxxx � a24uxxxx þ a25vxxxxx � a26uxxxxxx � u½b22ðu2 þ v2Þ þ b21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

� ¼ 0;

(

ð5Þ

with the following initial conditions

uðx; 0Þ ¼ f ðxÞ; vðx; 0Þ ¼ gðxÞ: ð6Þ

According to Eq. (3), the variational iteration algorithm for

the problem (5) with the following initial conditions (6) has

the form

Table 1 Coefficients of Eq. (1)

for bright highly dispersive

solitons

Cases a1 a2 a3 a4 a5 a6 b1 b2 j h0 N j Max Error j

B-1 1.50 �0:01 0.05 0.35 0.23 1.60 �0:85 0.51 0.30 �1:80 12 3:0� 10�7

B-2 1.10 0.30 0.09 0.80 0.25 1.90 �1:90 0.33 0.64 �1:92 14 4:0� 10�9

B-3 1.25 �0:10 0.12 �0:20 0.05 2.10 1.15 0.62 0.10 �2:35 16 2:0� 10�10
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unþ1ðx; tÞ ¼ unðx; tÞ þ
Z t

0

k1ðsÞ
�

uns

þ a1ûnx þ a2v̂nxx þ a3ûnxxx

þ a4v̂nxxxx þ a5ûnxxxxx þ a6v̂nxxxxxx

þ v̂n
�

b12ðû2n þ v̂2nÞ þ b11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

û2n þ v̂2n

q

�

	

ds;

vnþ1ðx; tÞ ¼ vnðx; tÞ þ
Z t

0

k2ðsÞ
�

vns

þ a21v̂nx � a22ûnxx þ a23v̂nxxx

� a24ûnxxxx þ a25v̂nxxxxx � a26ûnxxxxxx

� ûn
�

b22ðû2n þ v̂2nÞ þ b21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

û2n þ v̂2n

q

�

	

ds;

ð7Þ

where k1ðsÞ and k2ðsÞ are general Lagrange multipliers.

Moreover,

ûn; ûnx; ûnxx; ûnxxx; ûnxxxx; ûnxxxxx; ûnxxxxxx

and

v̂n; v̂nx; v̂nxx; v̂nxxx; v̂nxxxx; v̂nxxxxx; v̂nxxxxxx

denote restricted variations, i.e.

dûn ¼dûnx ¼ dûnxx ¼ dûnxxx
¼dûnxxxx ¼ dûnxxxxx ¼ dûnxxxxxx ¼ 0

and

dv̂n ¼dv̂nx ¼ dv̂nxx ¼ dv̂nxxx
¼dv̂nxxxx ¼ dv̂nxxxxx ¼ dv̂nxxxxxx ¼ 0:

Making the above correction functionals stationary, we

obtain the following stationary conditions:

1þ k01ðsÞjs¼t ¼ 0; k01ðsÞjs¼t ¼ 0;

1þ k02ðsÞjs¼t ¼ 0; k02ðsÞjs¼t ¼ 0;

(

ð8Þ

Therefore, the Lagrange multipliers can be identified as

k1ðsÞ ¼ k2ðsÞ ¼ �1. Substituting this value of the

Lagrangian multiplier into functional Eq. (7) gives the

iterative formulas

unþ1ðx; tÞ ¼ unðx; tÞ �
Z t

0

�

uns þ a11ûnx

þ a12v̂nxx þ a13ûnxxx

þ a14v̂nxxxx þ a15ûnxxxxx þ a16v̂nxxxxxx

þ v̂n
�

b12ðû2n þ v̂2nÞ

þ b11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

û2n þ v̂2n

q

�

	

ds;

vnþ1ðx; tÞ ¼ vnðx; tÞ �
Z t

0

�

vns þ a21v̂nx � a22ûnxx

þ a23v̂nxxx

� a24ûnxxxx þ a25v̂nxxxxx � a26ûnxxxxxx

� ûn
�

b22ðû2n þ v̂2nÞ þ b21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

û2n þ v̂2n

q

�

	

ds;

ð9Þ

where n� 0 and u0ðx; tÞ ¼ uðx; 0Þ, v0ðx; tÞ ¼ vðx; 0Þ: The
VIM solutions u(x, t) and v(x, t) can be expressed as

lim
n!1

unðx; tÞ ¼ uðx; tÞ and lim
n!1

vnðx; tÞ ¼ vðx; tÞ;

ð10Þ

where un and vn will be determined recursively.

Application to bright highly dispersive solitions

We first consider the nonlinear Schrödinger Eq. (1) with

the initial condition

uðx; 0Þ ¼
�

a1 þ b1sechðxÞ þ c1sech
3ðxÞ

	

eið�jxþh0Þ ð11Þ

vðx; 0Þ ¼
�

a2 þ b2sechðxÞ þ c2sech
3ðxÞ

	

eið�jxþh0Þ: ð12Þ

Here we will use the initial condition as derived in [13] and

aj, bj and cj are constants related to system coefficients (5)

for every j ¼ 1; 2.

The correction functionals for (5) are given as in Eq. (9).

Consequently, we obtain the successive approximations as

follows:
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u0ðx; tÞ ¼
�

a1 þ b1sechðxÞ þ c1sech
3ðxÞ

	

eið�jxþh0Þ;

v0ðx; tÞ ¼
�

a2 þ b2sechðxÞ

þ c2sech
3ðxÞ

	

eið�jxþh0Þ;

u1ðx; tÞ ¼ u0ðx; tÞ �
Z t

0

�

u0s þ a11û0x

þ a12v̂0xx þ a13û0xxx

þ a14v̂0xxxx þ a15û0xxxxx

þ a16v̂0xxxxxx

þ v̂0
�

b12ðû20 þ v̂20Þ þ b11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

û20 þ v̂20

q

�

	

ds;

v1ðx; tÞ ¼ v0ðx; tÞ �
Z t

0

�

v0s þ a21v̂0x

� a22û0xx þ a23v̂0xxx

� a24û0xxxx þ a25v̂0xxxxx � a26û0xxxxxx

�û0
�

b22ðû20 þ v̂20Þ

þb21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

û20 þ v̂20

q

�

	

ds; u2ðx; tÞ ¼ u1ðx; tÞ �
R t

0

�

u1s þ a11û1x

þa12v̂1xx þ a13û1xxx

þa14v̂1xxxx þ a15û1xxxxx þ a16v̂1xxxxxx þ v̂1
�

b12ðû21 þ v̂21Þ

þb11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

û21 þ v̂21

q

�

	

ds; v2ðx; tÞ ¼ v1ðx; tÞ �
R t

0

�

v1s þ a21v̂1x

�a22û1xx þ a23v̂1xxx � a24û1xxxx þa25v̂1xxxxx � a26û1xxxxxx

�û1
�

b22ðû21 þ v̂21Þ þb21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

û21 þ v̂21

q

�

	

ds; ..
.
unþ1ðx; tÞ

¼ unðx; tÞ �
R t

0

�

uns þ a11ûnx þa12v̂nxx þ a13ûnxxx

þa14v̂nxxxx þ a15ûnxxxxx þ a16v̂nxxxxxx þv̂n
�

b12ðû2n þ v̂2nÞ

þb11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

û2n þ v̂2n

q

�

	

ds; vnþ1ðx; tÞ

¼ vnðx; tÞ �
R t

0

�

vns þ a21v̂nx

�a22ûnxx þ a23v̂nxxx � a24ûnxxxx þ a25v̂nxxxxx � a26ûnxxxxxx

�ûn
�

b22ðû2n þ v̂2nÞ þ b21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

û2n þ v̂2n

q

�

	

ds:

Application to dark highly dispersive solitions

We first consider the nonlinear Schrödinger Eq. (1) with

the initial condition

uðx; 0Þ ¼
�

a1 þ b1tanhðxÞ þ c1tanh
3ðxÞ

	

eið�jxþh0Þ ð13Þ

vðx; 0Þ ¼
�

a2 þ b2tanhðxÞ þ c2tanh
3ðxÞ

	

eið�jxþh0Þ: ð14Þ

Here we will use the initial condition as derived in [13] and

aj, bj and cj are constants related to system coefficients (5)

for every j ¼ 1; 2.

The correction functionals for (5) are given as in

Eqs. ((9)). Consequently, we obtain the successive

approximations as follows:

u0ðx; tÞ¼
�

a1þb1tanhðxÞ

þ c1tanh
3ðxÞ

	

eið�jxþh0Þ;

v0ðx; tÞ¼
�

a2þb2tanhðxÞ

þ c2tanh
3ðxÞ

	

eið�jxþh0Þ;

u1ðx; tÞ¼ u0ðx; tÞ�
Z t

0

�

u0sþa11û0x

þa12v̂0xxþa13û0xxx

þa14v̂0xxxxþa15û0xxxxxþa16v̂0xxxxxx

þ v̂0
�

b12ðû20þ v̂20Þþb11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

û20þ v̂20

q

�

	

ds;

v1ðx; tÞ¼ v0ðx; tÞ�
Z t

0

�

v0sþa21v̂0x

�a22û0xxþa23v̂0xxx

�a24û0xxxxþa25v̂0xxxxx�a26û0xxxxxx

� û0
�

b22ðû20þ v̂20Þþb21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

û20þ v̂20

q

�

	

ds;

u2ðx; tÞ¼ u1ðx; tÞ�
Z t

0

�

u1sþa11û1x

þa12v̂1xxþa13û1xxxþa14v̂1xxxxþa15û1xxxxxþa16v̂1xxxxxx

þ v̂1
�

b12ðû21þ v̂21Þþb11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

û21þ v̂21

q

�

	

ds;

v2ðx; tÞ¼ v1ðx; tÞ�
Z t

0

�

v1sþa21v̂1x

�a22û1xxþa23v̂1xxx�a24û1xxxx

þa25v̂1xxxxx�a26û1xxxxxx

�û1
�

b22ðû21þ v̂21Þþb21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

û21þ v̂21

q

�

	

ds;

..

.
unþ1ðx; tÞ¼ unðx; tÞ�

R t

0

�

unsþa11ûnx

Table 2 Coefficients of Eq. (1)

for dark highly dispersive

solitons

Cases a1 a2 a3 a4 a5 a6 b1 b2 j h0 N j Max Error j

D-1 1.20 0.69 0.15 0.25 0.80 �0:08 0.45 1.55 0.14 2.20 12 1:5� 10�7

D-2 1.80 �0:09 0.52 0.38 �0:75 0.65 0.25 1.04 2.02 3.34 14 3:0� 10�9

D-3 2.10 0.10 �0:44 0.90 0.56 �1:25 0.12 0.35 0.50 1.80 16 4:0� 10�10
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þa12v̂nxxþa13ûnxxx þa14v̂nxxxxþa15ûnxxxxx þa16v̂nxxxxxx

þv̂n
�

b12ðû2n þv̂2nÞþb11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

û2nþ v̂2n

q

�

	

ds;vnþ1ðx; tÞ
¼ vnðx; tÞ�

R t

0

�

vnsþa21v̂nx

�a22ûnxxþa23v̂nxxx�a24ûnxxxx þa25v̂nxxxxx�a26ûnxxxxxx

Fig. 1 Numerically computed bright highly dispersive soliton (a), corresponding density plot (b) and absolute error (c) for case B-1

Fig. 2 Numerically computed bright highly dispersive soliton (a), corresponding density plot (b) and absolute error (c) for case B-2

Fig. 3 Numerically computed bright highly dispersive soliton (a), corresponding density plot (b) and absolute error (c) for case B-3
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�ûn
�

b22ðû2nþ v̂2nÞ þb21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

û2nþ v̂2n

q

�

	

ds:
The approach introduced above will illustrated through

examples in the following section.

Fig. 5 Numerically computed dark highly dispersive soliton (a), corresponding density plot (b) and absolute error (c) for case D-2

Fig. 6 Numerically computed dark highly dispersive soliton (a), corresponding density plot (b) and absolute error (c) for case D-3

Fig. 4 Numerically computed dark highly dispersive soliton (a), corresponding density plot (b) and absolute error (c) for case D-1
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Numerical experiments and graphical results

In this section, we consider some different cases for the

nonlinear Schrödinger equation with the quadratic–cubic

law given in (1) to illustrate the application of the VIM

scheme we presented in the above section. The numerical

solutions will be obtained, and the results will be graphi-

cally illustrated. In all these examples, software MATHE-

MATICA version 11 has been used for calculations and

graphs.

Bright highly dispersive solitons

The result and the profile of two cases are graphically

illustrated in Table 1 and in Figs. 1, 2, and 3.

Dark highly dispersive solitons

The result and the profile of two cases are graphically

illustrated in Table 2 and in Figs. 4, 5, and 6.

Conclusions

This paper studied HD optical solitons by VIM where the

nonlinear refractive index is of QC type. The adopted

numerical scheme displayed surface plots and the error

graphs that are of the order of 10�9. The error measure

stands impressively small. The results of this manuscript

are therefore strongly encouraging to look at HD solitons

that appear with additional forms of refractive index. Later,

HD solitons will be addressed in birefringent fibers for a

variety of nonlinear refractive index. These results are

currently awaited and will be disseminated across a variety

of journals. In future, several additional models that

describe soliton dynamics will also be addressed numeri-

cally. These include Kudryashovs equation, Chen–Lee–Liu

equation, Kaup–Newell equation, Gerdjikov–Ivanov

equation, Lakshmanan–Porsezian–Daniel model and sev-

eral others. These are all in the bucket list for now.
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