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Abstract In this study, we analyze full photonic band gap

formation and properties of two-dimensional photonic

crystals with square lattice, composed of anisotropic tel-

lurium rods with different geometric shapes in a plasma

background. Using the finite-difference time-domain

method, we discuss the tunability of the full photonic band

gap width as a function of the plasma frequency for dif-

ferent values of tellurium rod’s parameters. The calculated

results show that our proposed structures represent full

photonic band gaps with considerable width, which are

dependent on plasma frequency.

Keywords Photonic band gap material � Plasma photonic

crystals � Anisotropic tellurium material � Finite-difference
time-domain method

Introduction

During the past decades, photonic crystals (PCs) have

inspired great interest of researchers due to their novel

electromagnetic (EM) properties and potential application

in several scientific and technical areas such as filters,

optical switches, cavities and design of more efficient

lasers. [1–3]. The conventional PCs are artificial materials,

in which the different dielectrics are periodically arranged

in one- two-, or three dimensions of space. The key

motivation behind the proposal of PCs is the possibility of

modifying the propagation of EM wave by creating a fre-

quency region where EM waves cannot propagate through

the structure, named photonic band gap (PBG) [4]. Two-

dimensional (2D) PCs are important because they can be

fabricated fairly easily and result in devices, such as

waveguides and channel drop filters, which can be part of

an all-optical chip [5–7]. It is well known that the EM wave

can be decomposed into the E-polarization (TM-mode) and

H-polarization (TE-mode) modes for 2D structures. A full

PBG exists for a 2D PC only when the PBG for both

polarization modes is presented and overlaps with each

other [8]. Many potential applications of PCs rely on their

photonic band gaps. So, it is of great interest to design PCs

with a full band gap as large as possible. So many attempts

like symmetry reduction [9, 10] and anisotropy in dielec-

tricity [11–13] have been made to enlarge the PBG in 2D

PCs.

However, the PBGs of conventional PCs suffer from

being highly sensitive to the lattice. It means that the PBGs

cannot be changed as the dielectrics and topology of PCs

are certain. To overcome these drawbacks, the metamate-

rials, which are frequency-dependent dielectrics, have been

introduced into PCs to achieve tunable PBGs [14, 15]. The

typical metamaterials in the nature are plasma [16],

superconductors [17], semiconductors [18] metals [19], and

so on. In 2004, the Japanese researchers Hojo and Mase

proposed plasma PCs (PPCs) for the first time [20]. Similar

to conventional PCs, PPCs are artificial periodic arrange-

ments composed of alternating the plasma and dielectric.

Photonic band structure of PPCs has been investigated for

both H-polarization and E-polarization many times, sepa-

rately [21–29]. In 2015, Shiveshwari and Awasthi [30]

have been introduced plasma-based PCs in which full
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PBGs are observable. In the following, Fathollahi Khal-

khali et al. [31, 32] studied the possibility of creation full

PBG in PPCs consist of plasma rod in anisotropic tellurium

(Te) back ground with square and triangular lattice and

triangular lattice of Te rods in plasma background. Their

investigation shows that the mentioned structures represent

wide full band gaps.

Thus, in this work we study the band gap properties of

2D PPCs consisting of periodic arrays of infinitely long

parallel anisotropic dielectric cylinder with different geo-

metrical-shaped cross section in a plasma background in

square lattice. So we discuss the modification of the full

band gap as a function of dielectric rods size, the orienta-

tion of non-circular ones and variation effect of the plasma

frequency of the plasma medium on the band structure.

Structures and computational methods

In the present study, we have considered square lattice

created by circular, hexagonal and square Te rods in the

plasma background. Figure 1 shows the schematic diagram

of the structures under consideration. In all structures, the

parameter a is the lattice constant. We assume that the

periodicity of the PPCs is in the X–Y plane. The orienta-

tion of the non-circular Te rods relative to the lattice axes is

defined by the angle h. For instance, the rotation angle, h,

of square rods in square lattice is depicted in Fig. 2, which

is defined as the angle between axes of the square cross

section and the lattice axes. We have chosen Te as the

anisotropic material, which has a positive uniaxial crystal

with two different principle refractive indices as ordinary-

refractive index nTeo ¼ 4:8 and extraordinary-refractive

index nTee ¼ 6:2 over the wavelength range of 4:50�
6:25 lm [33, 34], in which the extraordinary one is parallel

to the Z axis. When we chose different refractive index

constants for E- and H-polarization modes, we can match

the relative position of band gaps for two modes; thus, this

will enable the optimal overlapping of band gaps, and the

largest full band gap can be obtained.

It is well known that the non-magnetized plasma is a

kind of frequency-dependent dielectrics, the dielectric

constant ep that meets the Drude model, which is written as

the following [35]:

epðxÞ ¼ 1�
x2

p

x2 � jðmcxÞ
ð1Þ

where xp; mc and x are the plasma frequency, the plasma

collision frequency and EM wave frequency, respectively.

Plasma frequency is defined as xp ¼ ðe2ne=e0mÞ1=2 in

which e; m; ne and e0 are electron charge, electron mass,

plasma density and dielectric constant in the vacuum,

respectively.

Fig. 1 Schematic diagrams of

studied structures: square lattice

of a circular b hexagonal

c square Te rods in plasma

background
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One of the most common computational tools in clas-

sical electromagnetism is the finite-difference time-domain

(FDTD) algorithm. The FDTD method is a general method

for numerically solving the time-dependent Maxwell

equations in media that is structured on the scale of the

wavelength. It is therefore, particularly, well suited to

simulate light field dynamics and propagation in finite PC

structures. This method is implemented perfectly in MIT

EM Equation Propagation (Meep) package [36], and we

have used this software in our simulations. In our calcu-

lations, each unit cell is divided into 30 9 30 grid points.

At the boundaries of unit cells, we impose Bloch periodic

boundary conditions. The structures are excited by a tem-

poral Gaussian pulse source spanning the frequencies of

interest, which is located in a non-symmetric point of the

unit cell. The electric and magnetic fields of the source for

TM and TE modes are polarized along the Te rods direc-

tion (Z-direction), respectively. It should be noted that in

our simulations all frequencies are normalized as xa=2pc,
in which a and c are lattice constant and speed of light,

respectively.

Results and discussions

In this section, we study the mentioned structures (Fig. 1a–

c) and all the calculations were performed using FDTD

method. Our main goal here is to investigate the modifi-

cation of the full band gap spectrum by adjusting the

geometrical parameters of the mentioned PPCs and

changing the plasma frequency. We know that for plasma

to exist ionization is necessary. The term plasma frequency

by itself usually refers to the plasma and electron density,

that is, the number of free electrons per unit volume. The

degree of ionization of a plasma is the proportion of atoms

that have lost or gained electrons and is controlled mostly

by the temperature. Thus, by changing the temperature it is

possible to vary the plasma frequency. In our calculations

for simplification, the frequency region is normalized by

xa=2pc, and the collision frequency is defined as

mp ¼ 0:02xp0 . It is noticed that xp0 is a constant, which is

equal to 2pc=a. The variation of full PBG of these struc-

tures for each kind of rod shapes will be separately ana-

lyzed in the next there subsections.

Fig. 2 Rotated square rods in a

square lattice with angle h,
which is defined as the angle

between axis of the square rods

cross section and the lattice axis
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Circular rods

In this subsection, the results for the square lattice are

presented. We begin our discussion with square lattice of

circular Te rods in the plasma background. In this case the

radii of Te rods and plasma frequency are our

adjustable parameter. Thus, the photonic band spectrum of

the structure investigated for all possible value of r (radius

of Te rods) for different values of plasma frequency. The

photonic band spectrum of the structure has been investi-

gated for all possible value of r (radius of rods) when

plasma frequency is equal to zero; then, we slightly

increase the value of xp. Therefore, the photonic band

structure is studied for all possible values of r, xp and the

effect of the plasma frequency changes is studied com-

pletely. The obtained results demonstrate that for xp ¼ 0,

when r ranges from 0.18a to 0.42a relatively wide full PBG

is observable and by increasing the plasma frequency from

zero to xp ¼ 0:20ð2pc=aÞ, especially at r around 0.34, the

width of the full band gap smoothly increases and for

plasma frequency larger than 0:20ð2pc=aÞ the band width

is reduced. The variation of full PBG and gap–midgap ratio

xr (ratio between band gap width and midgap frequency)

as a function of r and xp are shown in Fig. 3a, b. Fur-

thermore, the full photonic gap structure at r ¼ 0:34a for

xp ¼ 0 and xp ¼ 0:10ð2pc=aÞ with normalized width of

Dx ¼ 0:0 386ð2pc=aÞ and Dx ¼ 0:0 495ð2pc=aÞ is shown
in Fig. 3c, d, respectively. These full PBG is produced by

an overlap of the TM3-4 and TE1-2 band gaps.

Hexagonal rods

At next step, we study the band gap spectrum properties of

PPCs with hexagonal Te rods in the plasma background. In

this case, the side length ðrÞ and orientation (h) of hexag-
onal Te rods are effective parameters in the creation of

PBG. In this case, at xp ¼ 0 and for a reasonable given

value of r the band structure studied as a function of h
and this procedure is repeated for other values of r ;

therefore, the photonic band spectrum is calculated for all

possible values of r; h at xp ¼ 0. Our comprehensive

calculations reveal that when r is in the range of 0:22a �

Fig. 3 Variation of a gap width and b gap–midgap ratio as a function

of parameters r and xp and dispersion relation of E-polarization (red

dashed) and H-polarization (blue dashed) at c xp ¼ 0 and d xp ¼

0:10ð2pc=aÞ at r ¼ 0:34a, for square lattice of plasma photonic

crystals made of circular Te rods in plasma background (color

figure online)
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42a at h ¼ 30�, the width of full PBGs is noticeable. It

should be noted that the maximum band gaps in the

structure are obtained for r around 0:38 in which variation

of the band gap versus h is smooth and negligible. Now we

consider the case in which the plasma frequency is

increased as a result of temperature variations. Figure 4a, b

represents the modification of full PBG of the structure at

h ¼ 30� as a function of r and xp. It can be found that

when r is in the area of 0:45a� 0:51a and at h ¼ 30�,
when xp changes from 0:00ð2pc=aÞ to 0:30ð2pc=aÞ, the
width of band gaps so slightly and smoothly grows and by

increasing normalized plasma frequency

ðxp [ 0:30ð2pc=aÞÞ, the band gap completely disappears.

Square rods

Finally, we have simulated band structure of PPCs of

square Te rods in the plasma background (Fig. 1c). Our

main goal here is to investigate the variation of the band

gap structure and the full band gap width by adjusting the

two geometrical parameters: r (half side length of square

rods) and h (orientation of square rods with respect to the

lattice axis) for different values of plasma frequency. At

first we studied the evolution of PBG versus r by fixing

h ¼ 0�, and this process has been repeated for other values

of h at xp ¼ 0: Our calculations reveal that this structure

represents full PBG for r in the range of 0.20a–0.28a at

h ¼ 0�. The simulations show that the full band gap in the

structure is sensitive to h, so that by increasing h, the full

gaps disappears. The results show that by increasing the

plasma frequency from 0:00ð2pc=aÞ to 0:30ð2pc=aÞ, the

size of PBGs is maintained constant for optimum value of

geometrical parameter and for plasma frequency greater

than 0:30ð2pc=aÞ, the band gaps become narrower. Fig-

ure 5a, b shows the variations of full PBG of the structure

at h ¼ 0� as a function of r and xp.

Fig. 4 Variation of a gap width and b gap–midgap ratio as a function of parameters r and xp at h ¼ 30� for square lattice of hexagonal Te rods
in plasma background (color figure online)

Fig. 5 Variation of a gap width and b gap–midgap ratio as a function of parameters r and xp at h ¼ 0� for square lattice of square Te rods in

plasma background (color figure online)
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At the end, it should be noted that in convectional PCs,

when each scatterer has the same geometric symmetry as

the lattice for a given lattice symmetry, the largest gaps are

obtained. While our proposed structure consists of plasma

materials, the mentioned rule does not always hold in PPCs

and the width of obtained band gaps is larger than previ-

ously studied square lattices which consist of dielectric

materials in plasma background.

Conclusion

In summary, we have performed a detailed numerical

analysis on photonic band properties of square lattice of

PPCs created by Te rods with different geometrical shapes

in the plasma background, using the FDTD method.

Extensive calculations reveal that all of these structures

represent full PBG with noticeable width and gap–midgap

ratio for optimum values of structural parameters, and we

can tune the band gap by varying plasma frequency. These

results can be helpful in designing waveguide, reflector,

all-optical convertor and splitter based on PPCs.
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