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Abstract Photorefractive solitons have been studied in a

waveguide that is made of centrosymmetric material. The

dynamical equations pertaining to characteristics of soli-

tons have been derived under paraxial ray and Wentzel–

Kramers–Brillouin (WKB) approximations. It has been

predicted that the planar waveguide structure enhances

self-focusing effect and reduces the threshold power

requirement for soliton formation. The waveguide that is

embedded in the photorefractive crystal leads to the trap-

ping of low power solitary wave which otherwise would

not have formed spatial solitons at this low power in this

material. The minimum requirement of power for self-

trapping in the material decreases with the increase in the

value of waveguide co-efficient. The existence of

bistable states has also been predicted.
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Introduction

Optical soliton propagation has been an intensively

researched topic during last three decades due to its

implications in optical communications and signal pro-

cessing [1–20]. Optical solitons are electromagnetic waves

which are localized in space, or time or both [1–3].They

can be created in nonlinear media and have been observed

in plasmas [6], optical fibres [7], photorefractive media

[8, 9], bulk nonlinear media [10, 11] etc. Photorefractive

spatial solitons possesses several distinctive properties for

which they become very attractive. For example, they can

be formed using very low power which is of the order of a

few microwatts. Photorefractive materials exhibit saturat-

ing nonlinearity, thereby (2 ? 1)D spatial solitons do not

suffer collapse in these materials. Photorefractive spatial

solitons can be created at the telecommunication wave-

length thus enhancing their real life applications. These

solitons could possess fast response time which is a few

microsecond. Due to above special features, optical spatial

solitons in photorefractive media draw special attention in

the soliton community [6–16]. They find important appli-

cations in optical switching, beam steering, optical inter-

connects, parallel computing, reconfigurable optical

circuits etc. [17–19, 22–24].

The steady state photorefractive solitons were first the-

oretically predicted by Segev et al. [8] in 1992. Next year

these solitons were detected experimentally by Duree et al.

[9]. Till date three different types of steady state photore-

fractive solitons have been theoretically predicted and

experimentally detected. These are screening solitons (SS)

[8, 9, 12–14], photovoltaic (PV) solitons [15, 16] and

screening photovoltaic (SP) solitons [17–20]. These soli-

tons have been found to exist in different varieties such as

bright, dark and grey, scalar as well as vector

configurations.

Most of the earlier experimental as well as theoretical

works on photorefractive solitons employed non centro-

symmetric photorefractive (NCSPR) materials. However,

Segev et al. [21] predicted that centro-symmetric pho-

torefractive (CSPR) materials may also support spatial
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solitons. Del Re et al. [22] confirmed the prediction by

observing them in CSPR media, in particular, (1 ? 1)D

and (2 ? 1)D steady state photorefractive spatial solitons

in centrosymmetric paraelectric KLTN crystals have been

observed [22, 23]. These screening solitons are funda-

mental to both in the understanding of 2D solitons and in

applications. In a recent review their application potential

has been elegantly highlighted [24].

During last two decades, through tremendous progress

[8, 9, 12–25] has been made in the understanding of

propagation characteristics of spatial solitons in bulk pho-

torefractive media, not much progress have been reported

on the properties of solitons in photorefractive waveguides.

In fact, baring sole exception of Ref. [26], serious attempt

is yet to be made to examine and reveal properties of these

solitons in photorefractive waveguides. Unlike temporal

solitons, the requirement of threshold power for the cre-

ation of spatial solitons is very large [3]. Therefore, cre-

ation of spatial solitons in laboratory is more difficult in

comparison to the creation of temporal solitons [3]. How-

ever, above difficulty may be overcome easily if spatial

solitons are created in a waveguide. The waveguide, due to

its light guiding property, will counter balance the self-

defocusing induced beam divergence. The self-defocusing

of an optical beam can be completely or partially elimi-

nated due to the wave guiding effect of the waveguide.

Hence, in a waveguide, the threshold power required for

the soliton formation would be substantially lower in

comparison to the threshold power required in bulk media.

This may be helpful in creating spatial solitons at relative

ease. Therefore, formation of spatial solitons in a pho-

torefractive waveguide needs further investigation. Thus,

in this paper, using WKB approximation, we investigate

the propagation characteristics of bright spatial solitons in a

biased planar photorefractive waveguide that is made of

centrosymmetric material. This paper has been organized

as follows. The mathematical model for the propagational

characteristics of bright optical spatial solitons in a planar

waveguide has been developed in ‘‘Mathematical formu-

lation’’ section. In addition, the results have been also

presented in this section. ‘‘Conclusion’’ section contains a

brief conclusion of our investigations.

Mathematical formulation

The waveguide considered in the present paper is a planar

waveguide, made of centro-symmetric materials such as

paraelectric potassium lithium tantalate niobate (KLTN) or

potassium tantalate niobate KTa0:65Nb0:35O3ðKTNÞ. The

waveguide in this material may be fabricated using selec-

tively diffused construction in which a dopant is diffused

into a selected layer of the bulk material to change the

refractive index of the layer [32]. A channel waveguide can

be easily created by changing the refractive index by

selective diffused construction. Note that in this method a

waveguide is created in a single material by changing the

refractive index selectively, thereby creating the core and

cladding.

We consider a polarized optical beam which is propa-

gating in z-direction through a biased waveguide that is

made of centro-symmetric photorefractive (CSPR) crystal.

The waveguide is placed in such a way that the optical c-

axis of the CSPR crystal lies along the x-axis. A bias field

is also applied along this direction. The beam is considered

to be polarized in x- direction, and is allowed to diffract

along that direction only. The governing equation for

spatial evolution of the electric field E~ðx; zÞ associated with

the propagating optical beam can be written as

r2E~ðx; zÞ þ ðk0nÞ2
E~ðx; zÞ � bx2E~ðx; zÞ ¼ 0; ð1Þ

where k0 ¼ 2p=k0, k0 is the free space wavelength of the

incident beam, n is the perturbed refractive index of the

crystal [13, 22] which is related to its unperturbed value n0

by the relation n2 ¼ n2
0 � n4

0geff e
2
0ðer � 1Þ2

E2
sc, b is the

waveguide parameter. The positive value of b determines

the strength of the waveguide and the value of this

parameter is decided during fabrication. Application of bias

field does not change the value of b. The parameter geff
represents the effective quadratic electro-optic coefficient,

e0 and er being the permittivity of the free space and rel-

ative permittivity of the CSPR crystal. Esc represents the

steady state space charge field developed in the crystal due

to the electro-optic effect. Above expression of refractive

index signifies that unlike non-centrosymmetric materials,

the same centrosymmetric material cannot be made

focusing or defocusing type by changing the direction of

external field. The expression for the space charge field in

the CSPR waveguide can be obtained from the charge

transport model of Kukhtarev et al. [27] which includes

rate, current, Poisson equation together with Gauss’ law.

The detail derivation of steady state space charge field can

be found elsewhere [24] which can be written as:

Esc ¼
I1 þ Id

I þ Id
E0; ð2Þ

where Id represents the so called dark irradiance, E0 is the

external bias field and Iðx; zÞ represents the power density

profile of the optical beam, I1 ¼ Iðx ! �1Þ. The electric

field E~ðx; zÞ of the beam envelope is assumed to be slowly

varying, so that it can be written as

E~ðx; zÞ ¼ x̂uðx; zÞeikz; ð3Þ

where uðx; zÞ is the slowly varying wave envelope propa-

gating through the PR media and k is the wave number in
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the crystal, related to the corresponding quantity k0 in free

space by k ¼ k0n0. Substituting the anstanz (3) into the

wave Eq. (1), and employing slowly varying envelope

approximation, we obtain

i
ouðx; zÞ

oz
þ 1

2k0n0

o2uðx; zÞ
ox2

� 1

2
k0n

3
0geff e

2
0ðer

� 1Þ2
E2
scuðx; zÞ � bx2u

¼ 0: ð4Þ

Inserting the expression of Esc from Eq. (2) in (4), we

obtain

i
oUðn; sÞ

on
þ 1

2

o2Uðn; sÞ
os2

� b
qþ 1

1 þ Uj j2

 !2

U � ds2U ¼ 0;

ð5Þ

where q ¼ I1=Id, Iðx; zÞ ¼ ðn0=2g0Þ uðx; yÞj j2, uðx; yÞ ¼
ð2g0Id=n0Þ1=2

Uðn; sÞ,n ¼ z=ðkx2
0Þ, s ¼ x=x0, g0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
l0=e0

p
,

b ¼ k0x0ð Þ2
n4

0
geff

2
E0 and d ¼ bk0x

4
0n0, x0 being an arbitrary

spatial width taken for scaling. The nonlinear contribution

to the refractive index of the PR crystal due to charge drift

comes from the third term in Eq (5). Equation (5) is a

nonintergrable equation and cannot be solved exactly.

However, there are several approximate methods which

can be used to solve above equation. For example,

approximation method like Segev’s method [8, 17, 18],

paraxial method of Akhmanov [7, 28, 29], Variational

method of Anderson [30] or moment method of Vlasov

[31] can be used to solve Eq. (5). Each of these methods

have their advantage and disadvantage. However, since,

paraxial ray approximation method is very simple and

gives very illustrative physical picture, in this communi-

cation, we employ the paraxial method of Akhmanov

[26, 27] and restrict our study to investigations on bright

solitons only, hence, q ¼ 0. In order to solve Eq. (5), we

assume that the slowly varying beam envelope Uðn; sÞ can

be taken as:

Uðn; sÞ ¼ U0ðn; sÞe�iXðn;sÞ; ð6Þ

where Uðn; sÞ and Xðn; sÞ represents the beam envelope

and its phase, respectively; U0ðn; sÞ is a pure real quantity.

Substituting the ansatz (6) in the evolution Eq. (5), we

obtain following equation:

i
oU0

on
þ U0

oX
on

� �

þ 1

2

o2U0

os2
� 2i

oU0

os

oX
os

� iU0

o2X
os2

� U0

oX
os

� �2
( )

� b
1

1 þ U2
0

� �2
U0 � ds2U0

¼ 0: ð7Þ

Equating real and imaginary parts of above equation, we

get following two equations:

oU0

on
� oU0

os

oX
os

� 1

2
U0

o2X
os2

¼ 0; ð8Þ

and

U0
oX
on

þ 1

2

o2U0

os2
� 1

2
U0

oX
os

� �2

�bU1 n; sð ÞU0 � ds2U0 ¼ 0;

ð9Þ

where U1 n; sð Þ ¼ 1

1þ U0j j2ð Þ2.

In Eq. (9), U1 n; sð Þ account for the nonlinearity

induced in the PR material due to the space charge

induced refractive index change by the external bias

field. The last term in Eq. (9) is due to the planar

waveguide structure of the PR material. The last two

terms control the diffraction of the beam, leading to its

shape preserving propagation. We look for a self-similar

spatial soliton solution for which the electromagnetic

field energy is confined in the central region of the

beam. Of the many possible solutions, the Gaussian

solution gives very good analytical results, comparable

to those found from pure numerical simulations. Hence,

the amplitude and phase of solitons are taken in the

following form:

U0ðn; sÞ ¼ U00ffiffiffiffiffiffiffi
ðnÞ

p e�s2=2r2f 2ðnÞ; ð10Þ

Xðn; sÞ ¼ s2

2
CðnÞ þWðnÞ; ð11Þ

CðnÞ ¼ � 1

f ðnÞ
df ðnÞ
dn

; ð12Þ

where U00 is the normalized peak power of the soliton, r is

a positive constant and f ðnÞ is the variable beam width

parameter such that the product rf ðnÞ gives the spatial

width of the soliton. Without any loss of generality, we

assume at n ¼ 0, f ¼ 1. In addition, we further assume that

the soliton forming beam is nondiverging when it enters the

photorefractive crystal i.e.,df
dn ¼ 0 at n ¼ 0. The nonlinear

contributions U1 to the refractive index are expanded in

Taylor series, from which under first order approximation

we obtain:

U1 n; sð Þ ¼ 1

1 þ U2
00

f

� �2
þ s2 2U2

00

	
r2f 3ð Þ

1 þ U2
00

f

� �3
: ð13Þ

Substitution of Eqs. (10)–(13) in Eq. (9) results in an

equation which contains different powers of s2, equating

the coefficients of various powers of s2 on both sides of this

equation, we obtain the evolution equation for the beam

width parameter f ðnÞ as
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d2f ðnÞ
dn2

¼ 1

r4f 3ðnÞ � 4b
P0

r2f 2ðnÞ

1 þ P0

f ðnÞ

� �3
� 2df ðnÞ: ð14Þ

Above equation describes the evolution of the beam

width parameter of the spatial soliton of normalized power

P0 ¼ U2
00

� �
in the photorefractive waveguide. Depending

on the value of power and the relative strength of the

system parameters b, the optical solitary wave may

diverge, compress or get self-trapped. A trapped solitary

wave i.e., a spatial soliton, is achieved when the beam

width remains invariant so that the left-hand side of

Eq. (14) is zero. Therefore, setting the left hand side of

above equation equal to zero, we get following equation

which gives a relationship between threshold power Pot

and bandwidth r for stationary propagation:

1

r4
¼ 2dþ 4bPot

r2ð1 þ P0tÞ3
: ð15Þ

Equation (15) establishes a relationship between beam

width (r), threshold power Pot and waveguide parameter d.

This equation is also known as the existence equation of

optical solitons that is propagating through the photore-

fractive waveguide.

Examining above equation one can get an idea about the

type of solitons that is permissible through the waveguide,

it also gives an idea about the threshold power requirement

for stable soliton formation. Above equation possesses four

roots of the beam width parameter r. A careful examination

of these roots reveals that two of these roots are complex,

one is real and positive, while the remaining one is real and

negative. The beam width parameter r has to be real pos-

itive, hence, the real positive root is identified as the width

of the soliton. In order to have an idea about the require-

ment of threshold power for soliton of different beam

width, we have demonstrated the variation of r with

threshold power Pot for different waveguide parameter in

Fig. 1. Form Fig. 1, it is amply clear that for a given spatial

width of the soliton, there exists two different threshold

power, one at low power while the other at high power.

This is is a signature of the existence of bistable solitons. In

the low-power regime, the width of the soliton state is not

much affected with the variation of power. In addition, it

should be pointed out that as a consequences of

bistable behavior, a soliton with a specific spatial width can

be formed at two different threshold powers and these may

be identified as Pot1 and P0t2. However, in the high-power

region, it is clear from the figure that the width of the

spatial soliton increases with an increase in the value of the

waveguide parameter d. To this end, we now examine the

behavior of spatial solitons at different peak power in

absence of any waveguidig effect. In order to do that the

variation of normalized beam width parameter with

distance of propagation has been demonstrated in Fig. 2.

For a lucid illustration of the beam dynamics inside the

photorefractive waveguide, we have selected four different

power regimes and depicted the variation of beam width at

these powers. Particularly, we have chosen,P1ð¼
0:099Þ\Pot1, P2ð¼ 0:3341Þ ¼ Pot1, Pot1\P3ð¼ 1Þ\Pot2,

P4ð¼ 33:41Þ[Pot2. It is evident that at P1, the beam width

diverges to a very large value since the soliton peak power
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Fig. 1 Variation of equilibrium spatial beam width r with threshold

power P0t of solitons; b ¼ 157:9
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Fig. 2 Variation of variable beam width parameter f nð Þ with

normalized distance of propagation n at four different soliton peak

power. For all curves b ¼ 157:9; f ðnÞ ¼ 1 and df
dn ¼ 0 at n ¼ 0
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is less than the threshold power. At threshold power

P ¼ Pot1, the spatial soliton propagates maintaining its

shape unchanged, which has been manifested by constant

beam width f ¼ 1.The beam width of a spatial soliton

oscillates with oscillation amplitude less than unity when

the soliton peak power lies between two threshold values

Pot1 and Pot2.

At this stage it would be appropriate to investigate the

effect of waveguding on the propagation characteristics of

the soliton. Particularly, it would be appropriate to examine

whether a soliton with peak power less than threshold

power would propagate as a stable entity or diverge.

Therefore, we have demonstrated the beam dynamics at

threshold peak power in Fig. 3. It is evident from the fig-

ure that the spatial soliton diverges in absence of waveg-

uiding when the peak power is less than the threshold

power. This has been demonstrated by the thick solid curve

in Fig. 3. However, the same soliton propagates as a

stable entity in presence of finite waveguiding. For suffi-

ciently large dð[ 500Þ; the behavior of f is oscillatory,

with an amplitude always less than one, indicating trapping

of the soliton even at peak powers less than the threshold

power. The higher the value of d, the smaller the power

required to trap the soliton in the waveguide.

Conclusion

In conclusion, we have examined the possibility of optical

spatial soliton propagation at low power in optical

waveguide that is embedded in a centrosymmetric

photorefractive material. The waveguide structure aug-

ments the self-focusing effect of the photorefractive

material, consequently the requirement of minimum

threshold power for self-trapped propagation reduces.

Solitons with lower peak power can propagate as a

stable entity due to the waveguiding effect which otherwise

would have diverged. The larger the waveguide co-effi-

cient, the lower is the minimum requirement of threshold

power of the beam that can be self-trapped. We have

identified four different power regimes in which the soliton

beam width parameter possesses distinct behavior.
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