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Abstract In this paper we show an interesting aspect of
a general Adomian decomposition method for nonlinear
Schrödinger equations, that is, with a simple choice of
boundary conditions one can generate the critical pulse
shape of bright soliton and dark soliton. We also propose
a generalized Adomian decomposition method for the cou-
pled nonlinear Schrödinger equations. Subsequently dark
and bright soliton like solutions are obtained for the coupled
equations.

Keywords Adomian method · Coupled nonlinear
Schrödinger equation · Dark-soliton

Introduction

Nonlinear phenomena in fiber optics have many attractive
features and have a great potential for a possible all optical
communication system. Optical fiber material shows non-
linear response to strong elecric fields [1]. Normally the
responses are detrimental to the signal transmission but the
same can also lead to a number of favourable results. Opti-
cal soliton is one such application in which the nonlinear
effect counterbalances the chromatic dispersion to generate
a stable pulse [2, 3].
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Pulse propagation in a single mode fiber is described by
the nonlinear Schrödinger equation [1]:

iqx − β2

2
qt t + γ |q|2q = 0 (1)

where q(x, t) is a slowly varying pulse envelope in a ref-
erence frame, moving with the group velocity of the pulse,
β2 is the group velocity dispersion(GVD) (β2 > 0 for fiber
with normal dispersion and β2 < 0 for fiber with anomalous
dispersion), γ = 2πn2

λAeff
is the Kerr non-linearity coefficient,

n2 the Kerr (index) coefficient, λ the central wavelength
of the pulse and Aeff the effective core area of the fiber.
Equation (1) is exactly integrable by the inverse scattering
method [4]. The simplified fundamental soliton solutions of
(1) for (β2 = ±1) respectively are:

q = η√
γ

T anh(η(t − ts)e
iη2x+iφ (2)

= η√
γ

Sech(η(t − ts))e
i

η2x
2 +iφ (3)

where η, φ, ts are the fundamental soliton parameters repre-
senting the pulse amplitude (also the width-inverse), phase
and the position of the soliton respectively [1].

In deriving NLS equation (1) properties such as polar-
ization of light is neglected. In practice however even a
single mode fiber support two orthogonally polarized light.
In an elliptically birefringent fiber the propagation of optical
pulses is governed by the following two coupled nonlinear
Schrödinger equation [1]

iq1x
− β2

2
q1t t

+ γ (|q1|2 + |q2|2)q1 = 0 (4)

iq2x
− β2

2
q2t t

+ γ (|q1|2 + |q2|2)q2 = 0
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where q1 and q2 are the two polarization components. The
pair of equations are frequently referred to as the Manakov
system and has exact analytic solution [1, 5].

The ith component fundamental soliton solutions of (4)
for (β2 = ±1) respectively are:

qi = αiη√
γ

T anh(ηt)eiη2x (5)

= αiη√
γ

Sech(ηt)ei
η2x
2 (6)

where αi in the amplitude is the state of polarization for each
component [1].

Adomian method is a useful technique to find the approx-
imate solutions of nonlinear differential equations [11–14,
17]. The uniqueness of this method is that the solution is
obtained in the form of a fast converging series [11], such
that first few terms of the series are sufficient to give an
insight into the character and behaviour of the solution.
For nonlinear problems unlike many other methods this
method does not require linearization and it does not make
smallness assumptions or physically unrealistic white noise
assumption [11].

ADM method being a semi-analytical method is often
compared with other semi-analytical methods and numer-
ical methods. Several authors in their work showed the
effectiveness and advantage of Adomian method over other
such type of methods. In [15] auther has shown that com-
pared to other series method it is easier to program the
decomposition method in nonlinear problems, and it pro-
vides immediate and visible solution terms without lin-
earization and discretization. The adantage of this method
over another successive approximation method, namely the
Picard’s method is shown in [16], that the later method
works only if the equation satisfies the Lipschitz condition
and no such condition is imposed on the Adomian method.
In [18] author showed that although both the Taylor series
method and Adomian method provides the same answer the
Adomian method minimizes the computational difficulties
of the Taylor series and determines the components of the
solution elegantly by using simple integrals.

In optics the method has been applied earlier to wave-
guide problem [19], beam propagation in saturable absorber
[21] and problem of tracing rays through graded index
(GRIN) media, where the authors also showed the superior-
ity of Adomian method over the Runge-Kutta method [20].
In nonlinear optics also the use of decomposition method
is reported in [22, 25], where the shape preserving Sech

type solitary wave solution is discussed for continuous and
discrete NLS equation. To the authors knowledge however,
there is no report of a decomposition method giving both
the dark and bright solitary wave solutions. Moreover the

application of the method to coupled-NLS equation (4) also
remained unexplored.

Since there are already some analytical methods avail-
able, such as Inverse scattering transform (IST) method,
Darbaux transformation method and Hirota bilinear for-
malism which solve the NLS problem analytically, it is
natural to compare the Adomian method with these meth-
ods. In Inverse scattering method the problem is solved
indirectly by transforming the nonlinear problem into a pair
of linear problems and the linear problems provides the
solution of the original problem though inverse transforma-
tion [4, 6]. In Darbaux transformation method the problem
is solved through simultaneous mapping between solutions
and coefficients of a pair of equations of the same form
[10]. In Hirota bilinear formalism the original problem is
transformed to a set bilinear equations and the solution is
obtained by solving the bilinear equations [7–9]. Although
these methods are elegant and do not require initial or
boundary conditions but each of them require involved cal-
culations and are not always easy to use. The Adomian
method on the other hand require initial or boundary con-
ditions, but the method attacks any problem directly, which
minimizes the volume of computation and the successive
solutions are determined elegantly by using simple integrals
only.

In this paper we show that within the framework of a
more general decomposition algorithm the critical pulse
shape of fundamental dark (β2 = 1) and bright (β2 = −1)
soliton can be generated with a suitable initial condition and
without using the precondition of a definite pulse shape.
Subsequently we have proposed a generalized decompo-
sition algorithm for the coupled nonlinear schrödinger
(CNLS) equation and obtained soliton like solutions using
the method. In Section “Decomposition method for NLS
equation”. we present an overview of the decomposition
method for the NLS equation. The section also contains
the results. In Section “Decomposition method for coupled
NLS equation”. we present the application of the method
to the coupled NLS equation together with results. Section
“Discussion”. is devoted to general discussions. Section
“Conclusion”. contains the conclusion.

Decomposition method for NLS equation

In the operator form NLS equation (1) can be written as

iLxq = β2
1

2
Ltq − γNq (7)

where Lx = ∂
∂x
, Lt = ∂2

∂t2
and Nq = |q|2q.

Then L−1
x = ∫ x

0 dx and L−1
t = ∫ t

0dt
∫ t

0dt .
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Solving alternately for operators Lx and Lt ,

Lxq = −iβ2
1

2
Ltq + iγNq (8)

Ltq = i
2

β2
Lxq + 2

β2
γNq (9)

operating (8) with L−1
x results the equations [22]

q = q(0, t) − iβ2

∫ x

0

1

2
Ltqdx + i

∫ x

0
γNqdx (10)

similarly operating (9) with L−1
t results another equation,

q = q(x, 0)+ ∂q(x, t)

∂t
|t=0t+i

2

β2

∫ t

0

∫ t

0
Lxqdtdt+ 2

β2

∫ t

0

∫ t

0
γNqdtdt

(11)

adding (10) and (11) we get

q = 1

2
[q(0, t) + q(x, 0) + ∂q(x, t)

∂t
|t=0t] + 1

2
[−iβ2

∫ x

0

1

2
Ltqdx

+i

∫ x

0
γNqdx + i

2

β2

∫ t

0

∫ t

0
Ltqdtdt + 2

β2

∫ t

0

∫ t

0
γNqdtdt] (12)

Each of the equations (10, 11, 12), with proper boundary
condition gives a solution of (7)

Let us assume a solution in the form of a series,

q =
∞∑

i=0

qi (13)

with its first term obtained from the boundary condition,
for example, q0 = q(0, t) for equation (10) and q0 =
q(x, 0) + ∂q(x,t)

∂t
|t=0 for equation (11). The nonlinear term

Nq is defined as,

Nq =
∞∑

n=0

An(q0, q1, q2, ......., qn, q
∗
0 , q∗

1 , q∗
2 .........q∗

n)

(14)

where An is the Adomian polynomial and is defined as

An =
n∑

i=0

i∑

j=0

i∑

k=0

qi−j−kqj q
∗
k (15)

where n = 0, 1, 2, 3, ....∞. The simple rule here is (i + j +
k = n). For example, first few Adomian polynomials are:

A0 = |q0|2q0
A1 = 2|q0|2q1 + q2

0q
∗
1

A2 = 2|q0|2q2 + 2|q1|2q0 + q2
1q

∗
0 + q2

0q
∗
2

A3 = 2|q0|2q3 + 2q1q2q
∗
0 + 2q2q0q

∗
1 + 2q1q0q

∗
2 + |q1|2q1 + q2

0q3

The polynomials can also be constructed alternatively by
the methd given in [26, 27]. We thus have the n-term
approximate solution, where the first term is given by the
boundary condition of the given problem. By using different
boundary conditions a number of solutions are possible as
shown:

Example 1 Consider

q0 = q(0, t) = η (constant)

Then using (10, 13, 14) the subsequent terms q1, q2, q3, · · ·
can be calculated and we get

q =
∞∑

i=0

qi = q0ηeiγ |η|2x

Example 2 Consider

q0 = q(0, t) = eikt

Similarly using (10, 13, 14) we get

q = ηe
i(kt+(β2

k2

2
+ γ )x)

Dark solitary wave solution

Soliton solution in nonlinear optics however, is one of the
most important aspects. Next we would obtain the dark soli-
ton solution of equation (1) (with β2 = 1). For that let us
consider a T anh type boundary condition such as,

q0 = η√
γ

T anh[ηt − τs] (16)

where τs is the position of the pulse. Then using (16) in
(10) q1, q2, q3, · · · can be calculated [29] and the solution
therefore is,

q0 = η√
γ

T anh(ηt−τs)(1+iη2x−η4x2

2
+i

η6x4

4! · · · ) (17)

Notice that the bracketed terms approximates to the the
exponential series eiη2x . Thus the iteration finally leads to
the fundamental soliton solution (2) with an amplitude η,
position ts , phase φ0 = 0, and zero frequency shift.

Alternately we may also proceed with equation (11). Let
we consider a simple initial pulse profile,

q0 = ∂q(x, t)

∂t
|t=0t = η√

γ
eiη2xηt

where we have assumed q(x, 0) = 0
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Then using (11) and (14) we get,

q1 = −q0
η2t2

3!
q2 = q0

2η4t4

15

q3 = −q0
17η6t6

315
...

...

Thus the approximate dark soliton solution is

q = q0

ηt
(ηt − η3t3

3! + q0
2η5t5

15
− q0

17η7t7

315
· · · · · · ) (18)

It is important to notice that the terms within the bracket in
(18) are the first few terms of the standard T anh(ηt) series,
which shows that the series obtained is a converging one and
approaches the soliton solution (2) with position τs = 0 and
phase φ0 = 0.

The results are plotted using Mathematica software. In
Fig. 1a, decomposition solutions, with first four terms and
first eight terms are plotted together with exact solution of
NLS equation (2) for η = 0.5, τs = 0 and phase φ0 = 0. It
shows that for a smaller range of ’t’ the decomposition solu-
tion coincide with the exact solution, however, with increase
in ’t’, more components of the decomposition are required
for a better match. Figure 1b shows the same comparison but
with ’η = 1’. A comparison of these figures shows that for a
higher value of ’η’ ( smaller pulse width ) more components
are required for a better match with the exact solution.

Thus by choosing an appropriate boundary condition we
can recover the well known shape preserving form of the
solitary wave solution for (7). Two soliton solution, it is
often stated in the literature [5, 23] that the solution is too
complicated to analyze. However, combining a pair of one-
soliton solutions, as stated in [24] it should be possible to
obtain two-soliton solution also, which will be our future
work.

Bright solitary wave solution

Consider Equation (10) (with β2 = −1) and assume a shape
preserving form (as considered in [22]) at position τs :

q0 = q(0, t) = η√
γ

Sech(ηt − τs)

then q1, q2 and q3, · · · can be calculated as [22, 29]

q1 = q0(iη
2x)

q2 = q0(−η4x2

2! )

q3 = q0(−i
η6x3

3! )

· · · · · · · · ·
and the solution approaches (3), with amplitude η, position
ts , phase φ0 = 0 and zero frequency shift [22].

Alternately we proceed with equation (11) and consider a
simple boundary condition. Let us assume that ∂q(x,t)

∂t
|t=0 =

0 and the first component of the decomposition be

q0 = q(x, 0) = η√
γ

e
i
η2

2
x

The successive components of the decomposition (13)
are obtained using (11) and (14). First few components are

q1 = −q0
η2t2

2

q2 = q0
5η4t4

24

q3 = −q0
61η6t6

720
Thus the approximate solitary wave solution is

q = q0(1 − η2t2

2
+ 5η4t4

24
− 61η6t6

720
· · · · · · ) (19)

Fig. 1 Plot of exact dark soliton(red), 4-terms Adomian solution (green) and 8-terms Adomian solution (blue) for (a) η = 0.5 and (b) η = 1
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Fig. 2 Plot of exact bright soliton (red), 4-terms Adomian solution (green) and 8-term Adomian solution (blue) for (a) η = 0.5 and (b) η = 1

The terms within the bracket in (19) are the first few terms
of standard Sech(ηt) series, which shows that the series is
convergent and approaches the soliton solution 3.

The Adomian solution (19) is compared with the single
soliton solution (3) with τs = 0 and phase φ0 = 0 by using
Mathematica. In Fig. 2a,b decomposition solutions, with
first four terms and first eight terms are plotted together with
single bright soliton solution of NLS equation for η = 0.5
and η = 1 respectively. The figures show that for a smaller
range of ’t’and ’η’ the decomposition solution coincide with
the single soliton solution, however, with increase in ’t’ and
η more components of the decomposition are required for a
better match.

Decomposition method for coupled NLS equation

In this section we present a generalized the decomposition
method for the coupled NLS equation (4). In the operator
form the equations in (4) are rewritten as:

iLxq1 = β2
1

2
Ltq1 − γNq1 (20)

iLxq2 = β2
1

2
Ltq2 − γNq2 (21)

where N =
2∑

k=1
|qk|2.

Solving for each component, k(=1,2)

Lxqk = iβ2
1

2
Ltqk + iγNqk (22)

Ltqk = i
2

β2
Lxqk + 2

β2
γNqk (23)

operating (22) with L−1
x we get

qk = qk(0, t) + iβ2

∫ x

0

1

2
Ltqkdx + i

∫ x

0
γNqkdx (24)

similarly operating (23) with L−1
t we get

qk = qk(x, 0) + ∂qk(x, t)

∂t
|t=0t + i

2

β2

∫ t

0

∫ t

0
Lxqkdtdt

+ 2

β2

∫ t

0

∫ t

0
γNqidtdt (25)

adding (24) and (25) we get

qk = 1

2
[qk(0, t) + qk(x, 0) + ∂qk(x, t)

∂t
|t=0t]

+ 1

2
[iβ2

∫ x

0

1

2
Ltqkdx + i

∫ x

0
γNqkdx

i
2

β2

∫ t

0

∫ t

0
Lxqkdtdt + 2

β2

∫ t

0

∫ t

0
γNqkdtdt] (26)

The decomposition and the Adomian polynomials
respectively are,

qk =
∞∑

i=0

qki
(27)

Akn = Nqk =
2∑

p=1

n∑

i=0

i∑

j=0

i∑

l=0

qpi−j−l
qp∗

j
qkl

(28)

Dark solitary wave solution

Following (24) (with β2 = 1) let

qk0 = qk(0, t) = Ckη√
γ

T anh(ηt + φ0)
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Then q k1 , q k2 , q k3 · · · can be calculated using (27), (24)
and therefore the solution is,

qk1 = q0(iη
2t)

qk2 = −q0
η4t2

2

qk3 = −q0
iη6t4

4!
...

...
...

qk = qk0(1 + iη2x − η4x2

2
− i

η6x4

4! · · · ) (29)

Alternately following (25), we consider (qk(x, 0) = 0)
and let the first term of the decomposition for each of the
components be

q10 = C1η√|C1|2 + |C2|2
e

iη2t
2 ηt (30)

q20 = C2η√|C1|2 + |C2|2
e

iη2t
2 ηt (31)

by using (27) and (25) we get the higher components, which
are:

qk1 = −qk0(
η2t2

3! )

qk2 = qk0(
2η4t4

15
)

qk3 = −qk0(
17η6t6

315
)

The solution thus obtained is:

qk = qk0
ηt

(ηt − η3t3

3! + 2η5t5

15
− 17η7t7

315
+ · · · ) (32)

It is important to note that the convergence property of
the series (32) is same as (16).

Bright solitary wave solution

Following in (24) with β2 = −1 let us assume that the first
term of the decomposition be:

qk0 = q(0, t) = Ckη√
γ

Sech(ηt)

where γ = |C1|2 + |C2|2. Then we get q k1 , q k2 , q k3 · · ·

qk1 = qk0(i
η2

2
x)

qk2 = qk0(−
η4

4 x2

2! )

qk3 = qk0(−i

η6

8 x3

3! )

Therefore the solution is

qk = qk0(1 + i
η2

2
x −

η4

4 x2

2! − i

η6

8 x3

3! · · · )
Alternately we may proceed with equation (25) and

consider ( ∂qk(x,t)

∂t
|t=0 = 0) and the first term of the decom-

position for each of the components are

q10 = C1η√|C1|2 + |C2|2
e

i(η2x+φ1)

2

q20 = C2η√|C1|2 + |C2|2
e

i(η2x+φ2)

2

where C1 and C2 are complex constants and φ1 and φ2 are
real constants describing the polarization. By using (25),
(27) and (β2 = −1) we get the higher components,

qk1 = −qk0
η2t2

2

qk2 = qk0
5η4t4

4!
qk3 = −qk0

61η6t6

6!
Thus the solution obtained by the decomposition method

is:

qk = qk0(1 − η2t2

2
+ 5η4t4

4! + 61η6t6

6! + · · · ) (33)

It is important to note that convergence property of (33) is
similar to that of (19). It is straightforward to extend the
methodology for the n-coupled NLS equation by consider-
ing k = 1, 2, · · · n.

Discussion

To understand the results explicitly let us analyze the Ado-
mian solution on the basis of Taylor series. Notice that the
Adomian solutions (18, 19, 32, 33) are infinite series, which
are similar to the Taylor Series of a function Q(x, t) (say)
about the point t0 = 0. The Taylor series expansion of the
function Q(x, t) about the point t0 is

Q(x, t) =
∞∑

n=0

Q(n)(x, t0)
(t − t0)

n

n! (34)

Following the Taylor series the Adomian solution can be
written as

q(x, t) =
∞∑

n=0

qn(x, t) =
N−1∑

n=0

q(n)(x, 0)
tn

n! − RN−1 (35)

where the first term on the right hand side of (35) is the
N-term Adomian solution and the term RN−1 is the known
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as the Lagrange reminder, which gives the estimate of error
and is given by,

RN−1 = tN

N !q
(N)(t∗) t∗ ∈ [0, t]; N ≥ 1 (36)

The value of RN−1 can be calculated by using the mean
value theorem [28]. From (36) it is evident that for the val-
ues of |t | nearing zero the adomian solution coincides with
the exact result, as |t | moves further and further from zero
error becomes greater and greater. Then the number of iter-
ations (N) should be increased for better approximation.
Figure 1. and Fig. 2., which compare the exact result with
Adomian solutions reflect the similar fact.

The method described in this paper is also applicable
to other cases of NLS equation. For example, in [29] the
present authors have shown another application of Adomian
method considering one particular case of HNLS equation,
namely the Hirota equation and have shown that with a suit-
able initial condition ADMmethod generates a series which
converges to the actual solution of the equation after infinite
iteration.

Inspite of the fact that adomian method can generate
solitary wave solution as other methods and more efficient
than other series methods and numerical methods still it is
not a substitute of analytical methods such as IST method,
Darbaux Transform method or Hirota bilinear method, spe-
cially the N-soliton solution is not very simple to find using
the Adomian method, in this area the method needs further
improvement.

Conclusion

In this paper we have presented a general decomposition
algorithm for the NLS equation giving both dark and bright
solitary wave solutions. We show that the critical pulse
shape of fundamental dark (β2 = 1) and bright (β2 = −1)
soliton can be generated following decomposition method
with a suitable initial or boundary condition. We have also
proposed a generalized decomposition method for the cou-
pled nonlinear schrödinger (CNLS) equation and obtained
soliton like solutions. The results obtained here demonstrate
the reliability of the method and suggests a wider appli-
cability of the method to a class of nonlinear models in
optics.
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