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Abstract In this paper, a novel approach for
secure compressive sensing of images based on
multiple one dimensional chaotic maps is pro-
posed. The basic idea is to perform the random
selection of a combination of two one dimen-
sional chaotic maps to generate a random stream.
One or more values from the random stream are
used to generate each normal value in the ran-
dom measurement matrix for compressive sens-
ing. In the proposed approach, eight different
one dimensional chaotic maps are used. For one
measurement matrix generation, two of them are
randomly selected based on a secret key. The
number of iterations and the initial states of the
chaotic maps are also decided by external secret
keys. The chaotic output of iterations of the two
selected chaotic maps are XORed to generate a
new chaotic value so that the measurement ma-
trix so generated can withstand known plaintext
attack. The block-based compressive sensing
(BCS) of images is adopted to validate the pro-
posed system. Further enhancement in the secu-
rity of the proposed system for BCS of images can
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be obtained by using different measurement ma-
trices for different blocks of images. An algorithm
for generating multiple measurement matrices is
also presented in this work. It is experimentally
proved that the proposed encryption system can
maintain the robustness to noise of the compres-
sive sensing system. The proposed robust encryp-
tion system is subjected to several forms of attacks
and is proved to be resistant against all.

Keywords Compressive sensing ·Chaotic maps ·
Encryption ·Data compression

Introduction

The increasing demand in the multimedia data
necessitates the use of efficient compression tech-
niques for maintaining the huge traffic in the
limited bandwidth environment. The newly de-
veloped compressive sensing system is a method
in this direction, where the sampling rate is less
than the Nyquist rate so that the achievable com-
pression performance is better than the standard
coding techniques. Compressive sensing (CS) is
a mathematical framework meant for permitting
signals to be sampled at sub-Nyquist rates (sub-
rates) under certain conditions, by linear pro-
jection into a lower dimension than the original
signal [11].
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The basic theory of CS is investigated in
[2, 6, 11, 12, 34]. Compressive sensing relies in
the sparseness of the signal and gathers linear
measurement y = φx of a sparse signal x, where
size of y is a small fraction of samples needed
for Nyquist sampling. The random measurement
ensemble φ follows uniform uncertainty principle
(UUP) [5] and gives equal importance to each
measurement. This helps to provide unified de-
coder for compressive sensed coding schemes [8].
The receiver obtains the linear measurements y
and reconstructs the signal by solving it as an
optimization problem.

Over the last years, a number of image/video
coding schemes based on compressive sensing
were proposed. In [21], Han et al. proposed an
image representation problem for visual sensor
networks. Multi-scale wavelet based CS scheme
was proposed by Deng et al. [7, 8]. In [40],
different compressive sensing based surveillance
video coding systems were proposed and com-
pared by Venkatraman et al. Information the-
oretic approach for CS based image coding is
presented in [20]. A compressive sensing based
robust image transmission scheme for wireless
channels was proposed by Gao et al. in [18]. The
block-based CS (BCS) for 2D images was initially
proposed by Gan [17] to reduce the large com-
putational complexity and storage requirement
of measurement matrices for large sized images.
Smoothed projected Landweber (SPL) iterations
were incorporated in the block-based compressive
sensing reconstruction to enhance the reconstruc-
tion quality. The further enhancement in quality
of the reconstructed images was obtained by using
directional transforms (dual-tree DWT and con-
tourlet transforms) [28] or multiscale variant of
BCS-SPL [16].

To protect the private data from the unau-
thorized usage, perfect security is a mandatory
requirement in the compressive sensing frame-
work. A robust encryption system based on
cryptographic key based selection of random
measurement matrix was proposed by Orsdemir
et al. [31]. Rachlin et al. showed that com-
pressed sensing based encryption does not achieve
Shannon’s definition of perfect secrecy, but can
provide a computational guarantee of secrecy
[33]. In another approach, Kumar et al. proposed

an encryption system by performing the compres-
sive measurements over an encrypted image [25].
A compression-combined digital image encryp-
tion method which is robust against consecutive
packet loss and malicious shear attack was pro-
posed by Huang et al., where one dimensional
logistic mapping is used to generate chaotic se-
quences, which is regarded as the parameters of
block Arnold transformation and the pseudoran-
dom sequence for XOR operation [23]. In [27],
Lu et al. proposed an image information encryp-
tion method based on compressive sensing and
double random-phase encoding. Soman et al., pro-
posed an encryption system by scrambling the
compressed measurements using Arnold trans-
form [37]. These approaches are either vulnerable
to some forms of attack or offer high level of
complexity. Moreover, most of the above men-
tioned approaches do not maintain the robustness
to noise of the compressive sensing system.

The main motivation behind the proposed
work is to design a less complicated encryption
system with high level of security such that it
maintains the robustness of the CS system. Mul-
tiple one dimensional chaotic maps based CS en-
cryption technique can provide a highly secure
system with low complexity. In the proposed ap-
proach, pairs of chaotic maps are considered and
the pairs are randomly selected to generate ran-
dom values. The chaotic output values of the se-
lected pair are XORed to get new random value
so that the newly generated random stream can
withstand known plaintext attack. One or more
uniform values from this random stream are used
to generate each normal value in the random
measurement matrix for performing the secure
compressive sensing operation. It is proposed to
use separate measurement matrices for different
blocks of images in BCS to increase security of the
proposed encryption system.

The remaining sections of this paper are or-
ganized as follows. Section “Basic principle of
compressive sensing” deals with the basic prin-
ciples of compressive sensing. Section “Proposed
system: secure compressive sensing based on mul-
tiple chaotic maps” proposes a multiple chaotic
map based encryption system for compressive
sensing of images. The experimental analysis of
the proposed system is given in section “Analysis
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of the proposed encryption system”. The paper
concludes in section “Conclusion”.

Basic principle of compressive sensing

This section briefly explains the theory behind the
compressive sensing, the different imaging tech-
niques via compressive sensing and the different
reconstruction techniques in BCS of images.

Compressive sensing

The compressed sensing framework is used to re-
duce the data acquisition and computational load
at sensors, at the cost of increased computation
at the intended receiver [11, 12]. Thus, the basic
idea is to recover signal x with length N from M
samples such that M � N with subsampling rate
or subrate, being S = M/N. Even if, the num-
ber of unknowns x ∈ RN is larger than number
of observations y ∈ RM, it is possible to recon-
struct x from y, if x is sufficiently sparse in some
domain [11].

A real-valued, finite length, one dimensional
signal x, represented as N × 1 column vector in
RN, can be represented in terms of an orthonor-
mal basis {ψi}Ni=1 as follows.

x =
N∑

i=1

siψi = ψs (1)

where, x and s are the same signal representa-
tions in time/space domain and ψ domain respec-
tively. s is an N × 1 column vector of weighting
coefficients, si = 〈x, ψi〉. But x has sparsity such
that x can be represented as a linear combination
of only K basis vectors [2]. In compressive sensing,
instead of direct sampling x, a lower number of CS
measurements are taken. Let the measurement
matrix be φ = {φi}Ni=1 of order M × N withM � N.
Then, the M linear samples y can be represented
as,

y = {yi}Mi=1 = φx = {〈x, φi〉}Mi=1 (2)

Even if, y is quantized as finite precision samples
and added with some amount of noise in real-

world, the signal can be reconstructed, maintain-
ing the robustness to noise by solving it as a
convex optimization problem under the condition
that the measurement matrix φ satisfies uniform
uncertainty principle (UUP) [5, 8].

min‖ψT x̃‖l1 s.t. ‖φψT x̃− y‖l2 ≤ ε (3)

for some tolerance ε > 0. For � = φψT to be
stable solution for this optimization problem, �
should satisfy the restricted isometry property
(RIP) [3]. The related condition for RIP is inco-
herence, which requires that the rows of φ cannot
sparsely represent the columns of ψ [2]. Both the
properties, RIP and incoherence can be achieved
by selecting φ as a random matrix. A random ma-
trix whose elements φij are iid random variables
from a Gaussian probability density function with
mean zero and variance 1

N is able to satisfy these
requirements [11]. Multiplying the sparse signal
with random iid Gaussian matrix gives equal im-
portance to each CS measurements. This feature
makes the CS technique to have inherent error
controlling capability [8]. The basic constrained
optimization given in (3) is closely related to the
unconstrained Lagrangian formulation, known as
basic-pursuit denoising (BPDN) given by,

min‖ψT x̃‖l1 + λ‖φψT x̃− y‖l2 (4)

where, the l1 driven sparsity against the l2 based
measure of distortion is balanced by the La-
grangian multiplier λ [15]. The following subsec-
tion discusses the different imaging techniques via
compressive sensing.

Imaging via compressive sensing

A number of architectures for the CS acquisi-
tion of images were proposed in the literature.
Rice university proposed a single-pixel camera
for CS based acquisition of images [12]. Neifeld
et al. proposed some optical architectures for com-
pressive imaging [30]. In another approach, Xiao
et al. proposed a CMOS low data rate imaging
approach by implementing compressed sensing
[42]. An overview of different CS acquisition ar-
chitectures are described in [13]. The single-pixel
camera from Rice university for CS acquisition is
given in Fig. 1.
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Fig. 1 Block diagram of
single-pixel pixel camera
system for CS
acquisition [38]

The CS based implementation of images is clas-
sified into straightforward approach and block-
based approach. In straightforward approach, the
2D image is converted into a 1D vector and the
compressive sensing procedure is performed on
this 1D vector. Since there is a linear increase
in the size of the measurement matrix with the
increase in size of the image, the memory re-
quirement to store the φ matrix and the compu-
tational complexity are very high for large images
in the straightforward approach. In block-based
compressive sensing (BCS) method, the image is
divided into non-overlapping blocks and the com-
pressive sensing operation is performed on the
corresponding 1D vector of each block, where pri-
mary importance is given to the memory efficient
measurement operator so that the drawbacks of
straightforward approach for large sized images
can be reduced.

Block-based compressive sensing for images

To alleviate the large memory requirement Gan
proposed a method to divide the image into
smaller blocks and to perform CS on smaller
blocks independently. This method is known as
block-based compressive sensing (BCS) [17]. In
BCS scheme, the image is divided into blocks of
size B× B with respect to the size requirement
of measurement matrix. Let x j be the 1D vector
corresponding the jth block of image X. Then, the
BCS output is given as,

y j = φBx j (5)

Let the order of φB be MB × B2, where MB =
�M
N B2	. Then, the subrate of the image is given

as, S = MB/B2. The whole image measurement

matrix can be represented as a block diagonal
matrix given as follows,

φ =

⎡

⎢⎢⎣

φB 0 ... 0
0 φB ... 0
... ... ... ...

0 ... 0 φB

⎤

⎥⎥⎦

If block-by-block reconstruction is directly per-
formed, it will create blocking artifacts on the
reconstructed image. To improve the quality of
the reconstructed image, several methods were
proposed time to time. The following subsections
deal with the BCS reconstruction methods to
improve the reconstructed image quality.

BCS-TV based reconstruction

The total variation (TV) based CS reconstruction
replaces the sparsity in the transform domain with
the sparsity in the discretized gradient domain.
It can provide smoothness in the reconstructed
image [26]. This is due to the fact that it has the
ability to suppress the high frequency artifacts
produced by the direct block-by-block reconstruc-
tion of image. The optimization problem is refor-
mulated as follows,

min‖X‖TV + λ‖y− φx‖l2 (6)

The total variation of the image is given as,

‖X‖TV =
∑

i, j

√
(xi+1, j − xi, j)2 + (xi, j+1 − xi, j)2 (7)

where, xi, j represents the pixel value in the
location (i, j).

The above minimization problem can be solved
by using the second order cone programming,
which is solvable by interior-point algorithms
[4, 26]. In this method, the first step is to find
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an initial feasible solution from the received mea-
surement vector y and the generated φ matrix.
The initial feasible solution represents a noisy
version of the original image. Total variation of
feasible solution is calculated from (6) and it is
minimized through log-barrier iteration. At each
log-barrier iteration, Newton’s method proceeds
with the approximate solution at the last iteration
as the initial guess. Applying Newton’s method at
each iteration is still time consuming in a large-
scale problem.

BCS with smoothed projected Landweber
(BCS-SPL) reconstruction

The BCS-SPL is a iterative projection and thresh-
olding based reconstruction method [22]. It starts
from an initial approximation x̆. The approxima-
tion in (i + 1)th iteration is a specific instance of
specific projected Landweber (PL) algorithm and
is given as [28],

˘̆x(i) = x̆(i) + 1

γ
ψφT(y− φψ−1 x̆(i)), (8)

x̆(i+1) =
{ ˘̆x(i), | ˘̆x(i)| ≥ τ (i)

0, else
(9)

where, γ is the scaling factor and its value is cho-
sen by finding the largest eigenvalue of φTφ and
τ (i) is the threshold value chosen appropriately at
each iteration.

To improve the quality of reconstructed image
Wiener filtering is incorporated into the basic PL
framework [17] to provide smoothness in the re-
construction. The approximation of the image in
the (i + 1)th iteration is given as follows [15],

x(i+1) = SPL(x(i), y, φB, ψ, λ)

x̂(i) = Wiener(x(i))

for each block j

ˆ̂x(i)j = x̂(i)j + φT
B

(
y− φBx̂

(i)
j

)

˘̆x(i) = ψ ˆ̂x(i)

x̆(i) = Threshold( ˘̆x(i), λ)

x̄(i) = ψ−1 x̆(i)

for each block j

x(i+1)
j = x̄(i)j + φT

B

(
y− φBx̄

(i)
j

)

D(i+1) = 1√
N
‖x(i+1) − ˆ̂x(i)j ‖2

until|D(i+1) − D(i)| < 10−4

x = x(i+1)

where, Wiener(.) is pixelwise adaptive Wiener
filtering operation and Threshold(.) is a threshold-
ing operation. The initial value x(0) is given as,

x(0) = φT y

For BCS-SPL-DCT, ψ is selected as discrete
cosine transform (DCT) and hard thresholding
is used to select the value of τ . The universal
threshold is the suitable candidate for such an
application [10].

τ (i) = λσ (i)
√

2logK (10)

where, K is the number of transform coefficients
and λ is a constant to manage the convergence.
σ (i) can be estimated using the median estimator,
which is given as,

σ (i) = median| ˘̆x(i)|
0.6745

(11)

Since the hard thresholding is based on the fact
that the transform coefficients are independent,
the hard thresholding is not a suitable choice in
DWT based BCS-SPL reconstruction techniques.
Bivariate shrinkage function [36] gives superior
performance than hard thresholding in DWT
based BCS-SPL reconstruction methods. Thus,
the threshold function in BCS-SPL-DWT is the
MAP estimator and is given as,

Threshold(ξ, λ) =
(√

ξ2 + ξ2
p − λ

√
3σ (i)

σξ

)

+√
ξ2 + ξ2

p

.ξ (12)

where the function,

(g)+ =
{

0, g < 0
g, else

ξ and ξp are the specific transform coefficient
and its parent coefficient respectively. σ (i) is
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the median estimator applied to only first scale
transform coefficients and λ is the convergence
control factor. σ 2

ξ is the marginal variance of
coefficient ξ estimated in a local 3 × 3 neighbour-
hood surrounding of ξ [28]. Since the directional
transforms, contourlet transform (CT) [9] and
dual-tree discrete wavelet transform (DDWT)
[24] show good directional sensitivity and shift
invariance properties than DWT, Fowler et al.
proposed that the BCS-SPL based on directional
transforms (BCS-SPL-DDWT and BCS-SPL-CT)
give better reconstruction quality than BCS-SPL-
DCT and BCS-SPL-DWT [28].

Multiscale block-based compressive sampling

In [16], Fowler et al. proposed a multiscale vari-
ant of block based compressive sensing smoothed
projected Landweber reconstruction (MS-BCS-
SPL). In this approach, block-based compressive
sampling is performed in each subband of wavelet
transform of an image. The compressive sensed
image in the MS-BCS-SPL based approach is
given as,

y = φ′�x (13)

where, � represents the multiscale transform and
φ′ is the multiscale block based measurement
process. For L level of decomposition, φ′ consists
of L different block based sampling operators. Let
the DWT of the image be,

x̃ = �x (14)

Then, each subband s at a level l is divided into
Bl × Bl blocks and sampled with corresponding
φl. Then, for 1 ≤ l ≤ L

yl,s, j = φlx̃l,s, j (15)

where, x̃l,s, j represents the vector corresponding
to the jth block of subband s at level l, with
s ∈ {H,V,D}.

Since different levels of wavelet decomposition
have different significance in the reconstruction,
Fowler et al. proposed to use different subrate
Sl at each level l, where the subrate for DWT
baseband is taken as S0 = 1. The subrate for lth
level is given as,

Sl = WlS′ (16)

under the condition that the overall subrate be-
comes,

S = 1

4L
S0 +

L∑

l=1

3

4L−l+1
WlS′ (17)

For a given subrate S and level weights Wl, it
is possible to find out the value of S′ to obtain
the level subrate values Sl . This procedure may
produce Sl > 1. If S1 > 1, set S1 = 1 and modify
the (19) as,

S = 1

4L
S0 + 3

4L
S1 +

L∑

l=2

3

4L−l+1
WlS′ (18)

and repeat this procedure to keep all Sl ≤ 1. The
level weights can be calculated as follows,

Wl = 16L−l+1 (19)

In MS-BCS-SPL reconstruction, Landweber step
on each block of each subband in each decom-
position level use different φl for current level l
[15, 16]. Among all BCS approaches, the BCS-TV
has the highest computational time than BCS-SPL
and MS-BCS approaches.

The following section proposes a robust en-
cryption system through compressive sensing,
based on multiple one dimensional chaotic maps
for generating the measurement matrix used in
the compressive sensing paradigm.

Proposed system: secure compressive sensing
based on multiple chaotic maps

The chaotic maps have great importance in cryp-
tography due to its sensitive dependence to the
initial condition and system parameter, nonpe-
riodicity, ergodicity and pseudorandom property
[43]. Over the last years, a large number of
discrete chaotic maps were proposed for cryp-
tographic applications. In this paper, eight well
known one dimensional discrete chaotic maps are
chosen to develop an encryption system for com-
pressive sensing applications. The selected one
dimensional chaotic maps are logistic map, sine
map, cubic map, tent map, Gao’s new chaotic map
(GNCA), Singer map, piecewise linear chaotic
map (PLCM) and Mehrab map. The selected
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chaotic maps, their mathematical representations
and the system parameter values are listed in
Table 1. A number is assigned to each chaotic map
starting from ‘0’ to ‘7’, mentioned as chaotic index
number (CIN) in the first column of Table 1. In
all chaotic maps, the initial value and/or system
parameter value are kept as secret to attain the
secrecy.

The one dimensional logistic map shows the
exact chaotic behaviour only in the region μ ∈
[3.6, 4) [19]. Even though, the logistic map pro-
vides high efficiency with simple design, it has
smaller key space and lower security. Hence, Gao
et al. proposed a new chaotic algorithm named as
NCA [19]. It consists of two system parameters α
and β. The typical parameter value of sine map
is 0.99 [1]. The expressions for cubic map and
tent map and the typical paremeter values are
mentioned in [32]. In [39], it is mentioned that the
the typical parameter values of Singer is in the
interval (0.90, 1.08). The PLCM shows the chaotic
behaviour on interval [0, 1) [41]. Mehrab map is a
modified version of PLCM, which consists of two
system parameters [14].

The main drawback with the chaotic maps is
their vulnerability to known plaintext attack. To
overcome this issue, in this paper, it is proposed
to select any two chaotic maps from the chosen
group of eight chaotic maps using a secret key.

Combining the corresponding random values of
these two chaotic maps will ensure that the se-
curity of the newly generated chaotic values is
increased. The initial values of these two chaotic
maps and the number of iterations are also de-
termined by secret keys. The random array gen-
erated by the proposed approach is used as the
random stream for generating the measurement
matrix in the compressive sensing operation of
images.

Secure measurement matrix generation

Four stages of encryption are proposed in this
approach; one for chaotic maps selection, second
for initial value of first chaotic map, third for
initial value of second chaotic map and fourth for
the number of iterations of the selected chaotic
maps to get the required number of random values
to form the random array. Four secret keys (32-
bit each) are considered for this purpose. Thus,
the total key size of the proposed measurement
matrix generation is 128-bit. If we use hexadeci-
mal representation for the key, total 32 characters
are included in the key. Let Key be the external
secret key to the user. Then, it can be represented
as follows,

Key = Key1Key2Key3Key4 (20)

Table 1 Selected one dimensional chaotic maps, the chaotic index number(CIN), mathematical expressions and parameter
values

Number Chaotic map Equation Parameter value
(CIN)

0 Logistic map xn+1 = μxn(1 − xn) μ = 3.99
1 Sine map xn+1 = μsin(πxn) μ = 0.99
2 Cubic map xn+1 = μxn(1 − x2

n) μ = 2.59

3 GNCA xn+1 = (1 − β−4).ctg
(

α

1 + β

)
.

(
1 + 1

β

)β

.tg(αxn).(1 − xn)β α = 1.1, β = 5

4 Singer map xn+1 = μ(7.86xn − 23.31x2
n + 28.75x3

n − 13.30x4
n) μ = 0.98

5 Tent map xn+1 =
{
μxn, x > 0.5

μ(1 − xn), x ≤ 0.5
μ = 1.97

6 PLCM xn+1 = F(xn) =

⎧
⎪⎪⎨

⎪⎪⎩

xn/μ, 0 ≤ xn < μ

(xn − μ)/(0.5 − μ), μ ≤ xn < 0.5

F(1 − xn), 0.5 ≤ xn < 1

μ = 0.35

7 Mehrab map xn+1 =

⎧
⎪⎪⎨

⎪⎪⎩

μ

√
xn
a
, xn < a

μ

√
(1 − xn)
(1 − a)

, xn ≥ a
μ = 0.2, a = 0.5
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where, Key1,Key2,Key3 and Key4 represent the
secret keys used for chaotic map pair selection,
initial value of first chaotic map, initial value of
second chaotic map and the number of iteration of
the chaotic maps respectively. The key selection is
based on the condition that Key1,Key2,Key3 and
Key4 do not divide each other.

Keyi � Key j; i = j (21)

As mentioned earlier, a pairwise selection of
chaotic maps are proposed in this paper. The
eight chaotic maps are identified by chaotic index
number (CIN) as mentioned in Table 1. By using
CIN, the chaotic pair index number (CPIN) can
be represented as follows,

CPIN = {mn}m,n=0,1,...,7 (22)

For example, if the random selection of CPIN
using Key1 is 12, the selected chaotic maps will be
sine map and cubic map respectively. Similarly, if
CPIN is 55, both the selected chaotic maps will be
tent map itself. For eight chaotic maps, 64 pairwise
combinations are possible. CPIN for each pair is
coming as the octal number repesentation starting
from ‘00’ to ‘77’.

The random selection of pairwise chaotic maps
based on Key1 can be implemented by using the
following relation after converting the hexadec-
imal number Key1 into corresponding decimal
representation Keyd1 .

CP1 = Keyd1 mod K (23)

where, K represents the total number of pairwise
combinations of chaotic maps (K = 64 in the pro-
posed system). Converting CP1 to corresponding
octal representation gives the chaotic pair CPc

1.
The initial values of the chaotic maps in the se-

lected pair is found by using the following mathe-
matical expressions by converting Key2 and Key3

into corresponding decimal representations, say
Keyd2 and Keyd3

x1(0) =
(
Keyd2
Keyd1

)
−

⌊
Keyd2
Keyd1

⌋
(24)

x2(0) =
(
Keyd3
Keyd1

)
−

⌊
Keyd3
Keyd1

⌋
(25)

where, x1(0) and x2(0) represent the initial values
of the first and second chaotic maps in the selected
pair respectively. The required number of itera-
tions N1 for the chaotic maps to form the random
array of size N1 is found by using Key4 based on
linear congruential generator (LCG) as follows,

N1 = Z1 = (aZ0 + c) mod L (26)

In the proposed approach, it is chosen that Z0 =
Keyd4 , a = 5, c = 1 and L = 128, so that the maxi-
mum number iterations is 127.

N1 = (
5Keyd4 + 1

)
mod 128 (27)

Let the chaotic values produced by the first and
second chosen chaotic maps and the generated
chaotic values from these chaotic maps be x1, x2

and xr respectively. Then,

x1 = (
x1(0), x1(1), ...., x1(N1 − 1)

)

x2 = (
x2(0), x2(1), ...., x2(N1 − 1)

)

xr =
(
xr(0), xr(1), ...., xr(N1 − 1)

)

where,

xr( j) = x1( j)⊕ x2( j) (28)

One or more values from the generated random
array xr= (xr(0), xr(1), ...., xr(N1 − 1)) act as the
random stream which is used to generate each
normal value in the Gaussian random measure-
ment matrix with mean zero and variance 1

N .

φB ←− 1

N
randn (xr,M, N) (29)

where N and M represents the number of input
samples and measured samples respectively in the
CS operation.

Algorithm description of secure measurement
matrix generation

The algorithm description of the proposed secure
measurement matrix generation for compressive
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sensing operation using multiple chaotic maps is
described below.

1. Generate the encryption key Key as a
hexadecimal number, where

Key = Key1Key2Key3Key4

s.t. Keyi � Key j; i = j

2. Select the chaotic pair CP1 using the decimal
equivalent of Key1.

CP1 = Keyd1 mod 64

CP1
octal−−−→ CPc

1
CPIN1 = CPc

1

3. Find the initial values of the selected chaotic
maps using the decimal equivalents of Key1,
Key2 and Key3 by using the following
relations.

x1(0) =
(
Keyd2
Keyd1

)
−

⌊
Keyd2
Keyd1

⌋

x2(0) =
(
Keyd3
Keyd1

)
−

⌊
Keyd3
Keyd1

⌋

4. Find the number of iterations using Key4

based on the following relation,

N1 = (
5Keyd4 + 1

)
mod 128

5. for j = 0 : N1 − 1
Generate the chaotic values for the first and
second chaotic maps x1( j) and x2( j) respec-
tively to generate the the random value xr( j).

xr( j) = x1( j )⊕ x2( j )

6. Generate the M× N Gaussian random mea-
surement matrix using the N1 × 1 array xr1 as
the random stream.

φB ←− 1

N
randn (xr,M, N)

The following subsection discusses the BCS tech-
nique of images using the secure measurement
matrix.

BCS of images using single secure
measurement matrix

By using multiple chaotic map based measure-
ment matrix in compressive sensing techniques,
sampling, compression and encryption can be
achieved in a single step. The measurements y
are a function of sensing matrix. The receiver
has to know the information about the key used
to generate the measurement matrix Key (128-
bit) in order to formulate the optimization prob-
lem to reconstruct the signal. This section pro-
poses a cryptographic key based randommeasure-
ment matrix for block-based compressive sensing
techniques.

Algorithm description

In BCS, the N1 × N2 image is divided into n non-
overlapping blocks of size B× B. Fowler et al.
proved experimentally that the suitable block size
in the BCS approach is 32 × 32 [15]. The algo-
rithm description of the single measurement based
encryption of BCS techniques is given below.

1. Divide the 2D image X of size N1 × N2 into n
blocks of size B× B.

2. Rasterize the 2D blocks {Xi}i=1,...,n into B2 × 1
vectors {xi}i=1,...,n

{xi}i=1,...,n = Raster({Xi}i=1,...,n)

where, Raster(.) represents the rasterization
operator.

3. Generate a secure MB × B2 measurement
matrix φB based on a 128-bit key (Key), where
MB = �M

N B2	.

φB ←− 1

B2
randn

(
xr,MB, B2)

4. Apply MB × B2 measurement matrix φB on
{xi}i=1,...,n to get the the measured vectors
{yi}i=1,...,n

{yi}i=1,...,n = φB{xi}i=1,...,n

5. Apply the reconstruction algorithm to recon-
struct the 1D vector representation of the
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image, where φB is generated using 128-bit
decryption key (Key).

˜{xi}i=1,...,n

= CS_Reconstruction
({yi}i=1,...,n, φB, ψ

)

6. Unrasterize the image from ˜{xi}i=1,...,n

˜{X}ii=1,...,n = Unraster
( ˜{xi}i=1,...,n

)

7. Obtain the reconstructed image X̃ from
˜{Xi}i=1,...,n

Here, the CS_Reconsruction(.) is the recon-
struction operator used to reconstruct the CS
measured images. TV, SPL or MS-BCS-SPL
based BCS approaches can be applied in the pro-
posed method.

Security

The total key size of the proposed encryption
system is 128 bits. For image/compressive sensing
application point of view, this produce a large
key space of 2128. Hence, performing Brute force
attack is a tedius task in the proposed system.
On an average 2127 operations are required to be
performed for the Brute force attack. Since two
chaotic maps are chosen at random for random
number of iterations and the random values of two
maps are combined together, performing known
plaintext attack is also a difficult task. However, if
the information of a single block is available with
the attacker, there is a chance of retrieving the
complete image.

To avoid this possibility, it is proposed to use
separate measurement matrix for different blocks
of images in BCS of images. Thus, the modified
system can provide high level of security with a
marginal increase in computational complexity.
The following section proposes a secure BCS of
images based on multiple measurement matrices.

BCS of images using multiple secure
measurement matrices

To generate multiple measurement matrices for
multiple blocks of images, it is proposed to gen-
erate different random streams from the random
pair of chaotic maps for each measurement

matrix. It is based on the fact that from the known
random stream it is difficult to find out the chaotic
maps used due to the combining effect of these
two chaotic maps. That means, CP1 is unknown
for an attacker. In this paper, it is proposed to
select the next CPIN based on the current CPIN
and number of iterations based on the previous
iteration number. The initial values of the newly
selected chaotic maps are the final chaotic values
of the previous chaotic maps.

Let CPi be the selected chaotic pairs for the
generation of ith measurement matrix. Then, the
chaotic pair for the next measurement matrix is
found by using LCG, which is given as,

CPi+1 = (5CPi + 1) mod 64 (30)

Similarly, if Ni represents the number of iterations
of the chaotic maps for the ith measurement ma-
trix, then the number of iterations of next chaotic
maps for the next measurement matrix will be,

Ni+1 = (5CPiNi + 1) mod 128 (31)

The remaining procedure for generating the mea-
surement matrix is same as that explained in
section “Algorithm description of secure mea-
surement matrix generation”. The measurement
matrix for jth block is given as,

φBj ←− 1

B2
randn

(
xrj,MB, B2

)

Algorithm description of multiple measurement
matrices based BCS of images

Assume that the N1 × N2 image is divided into n
non-overlapping blocks of size B × B. Since there
are ‘n’ blocks present in the original image, ‘n’
measurement matrices are required to perform
the secure compressive sensing operation in the
proposed system. The measurement matrix gener-
ation can be performed in parallel with the com-
pressive sensing operation of individual blocks
so that the effective time of operation can be
reduced. Let φB1, φB2,...,φBn be ‘n’ measurement
matrices generated by the LFSR based secure
system. Then the overall measurement matrix can
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be represented as a block diagonal matrix as
given below,

φ =

⎡

⎢⎢⎣

φB1 0 ... 0
0 φB2 ... 0
... ... ... ...

0 ... 0 φBn

⎤

⎥⎥⎦

The algorithm description of the abovementioned
encryption method is given below.

1. Divide the 2D image X of size N1 × N2 into
‘n’ blocks of size B× B (Eg: 32 × 32).

2. Rasterize the 2D blocks {Xi}i=1,...,n into B2 × 1
vectors {xi}i=1,...,n

{xi}i=1,...,n = Raster
({Xi}i=1,...,n

)

where, Raster(.) represents the rasterization
operator.

3. For the ith block, generate the measurement
matrix {φBi}i=1,...,n using the proposed multi-
ple chaotic map based approach mentioned
in section “Algorithm description of secure
measurement matrix generation” based on the
encryption key Key, where, the chaotic maps
used and the number of chaotic maps can be
decided by the following relations.

CPi+1 = (5CPi + 1) mod 64

Ni+1 = (5CPiNi + 1) mod 128

4. ApplyMB×B2 measurement matrix {φBi}i=1,...,n

on {xi}i=1,...,n to generate

{yi}i=1,...,n = {φBixi}i=1,...,n

where, the subrate S = MB
B2

5. Apply the reconstruction algorithm to recon-
struct the 1D vector representation of the im-
age, by generating the measurement matrices
{φBi}i=1,...,n based on multiple chaotic maps
using the decryption key Key.

{x̃i} =CS_Reconstruction({yi}, {φBi}, ψ})i=1,...,n

6. Unrasterize the image from {x̃i}i=1,...,n

{X̃i}i=1,...,n) = Unraster({x̃i}i=1,...,n)

7. Obtain the reconstructed image X̃ from
{X̃i}i=1,...,n

Even though, the proposed multiple measurement
matrix based encryption technique for BCS of im-
ages takes higher computational time than single
measurement matrix based encryption technique,
the complexity of both the proposed approaches
are simple and can maintain the robustness of the
compressive sensing system to noise.

Analysis of the proposed encryption system

The different BCS approaches for images are
considered for evaluating the performance of
the proposed encryption system. Both the sin-
gle and the multiple measurement matrices
based encryption methods are validated through
BCS-TV, BCS-SPL-DCT, BCS-SPL-DWT, BCS-
SPL-DDWT and MS-BCS-SPL techniques. Ex-
perimentally it is proved that the proposed sys-
tem maintains the reconstruction quality and the
robustness of these approaches with high level of
security.

Experimental analysis of the proposed encryp-
tion system is performed on several images. For
analysis standard images of size 512 × 512 divided
into non-overlapping blocks of 32 × 32 are con-
sidered. Thus, each block can be converted into
a column vector of 1024 × 1 and the total num-
ber of blocks for each image is 256. For multiple
measurement matrix based encryption system, 256
measurement matrices are required. In MS-BCS-
SPL, DWT transform with 3 decomposition levels
is considered and each level is divided into 32 × 32
blocks. The proposed system is performed with
different subrates, S = 0.1, 0.2, 0.3, 0.4 and 0.5 for
various images. In hard thresholding, the conver-
gence factor λ is chosen as 6 whereas in bivariate
shrinkage the convergence factor λ is selected
as 25.

Security analysis

The proposed encryption system is tested against
various forms of attacks and proved to be resistant
against the same. The main problem with the
chaotic maps is its vulnerability to known plain-
text attack. In the proposed system, the random
selection of chaotic maps and combining their
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outputs make it capable of withstanding known
plaintext attack.

Known plaintext attack

In the proposed system, instead of random se-
lection of a single chaotic map, it is proposed to
select a pair of chaotic maps based on a secret key.
The number of iterations for these chaotic maps
is also determined by another secret key. Thus,
there is a randomization in the chaotic map selec-
tion from 64 combinations and number of random
elements used for generating the measurement
matrix. In the proposed approach, the randomly
selected chaotic maps are run for random num-
ber iterations to form two sets of random arrays.
The corresponding elements of these arrays are
XORed to form new random array.

xr( j) = x1( j)⊕ x2( j)

Thus, the newly generated random array de-
pends on initial values of both the selected chaotic
maps. From the known random elements, it is
very difficult to find out the chaotic maps used in
this combination and corresponding initial values.
Moreover, the process of finding out the random
stream used for generating the measurement ma-
trix becomes a tedious task.

If the plaintext-ciphertext pairs of a single block
are available with the attacker, the only possible
way to find out the measurement matrix used for
that block will be the Brute force search approach.
This rare chance of attack can be negated, if all
blocks are measured with different measurement
matrices. In the proposed approach, the chaotic
maps for the next measurement matrix and the
number iterations used for generating the random
array to form the measurement matrix are based
on the relations.

CPi+1 = (5CPi + 1) mod 64

Ni+1 = (5CPiNi + 1) mod 128

The chaotic pair selection is dependent on the pre-
vious chaotic pair selection. That is not known for
the attacker. Moreover, the number of iterations
depends on the previous number of iterations as
well as the previous chaotic pair map number.

Even though, the attacker has the knowledge
about the number of iterations without knowing
the previously used chaotic pair map number, he
will not be able to find the number of iterations
for the current pair of chaotic maps. Thus, the
proposed encryption system can withstand known
plaintext attack.

Cipher text-only attack

Cipher text-only attack (COA) or known cipher-
text attack is an attack model for cryptanalysis
where the attacker is assumed to have access
only to a set of ciphertexts. The attack is com-
pletely successful if the corresponding plaintexts
can be deduced, or even better, the key. Since
the attacker has only minimum information about
the message, the ciphertext only attack is much
more difficult than known plaintext attack. In this
case, the only possibility to retrieve plaintext is
to make Brute force trials on both keys, which
is very complex. Thus, a system, which is capable
of resisting known plaintext attack can withstand
against ciphertext only attack.

Brute force attack

In the proposed approach, the external secret key
has a size of 128-bit. Thus, the key space for the
proposed encryption system for BCS of images is
2128. For image application, this accounts to very
large key space. For successful Brute force attack,
on an average (2128/2) operations are required to
retrieve the key used for encryption. Hence the
security of the proposed encryption for BCS of
images against Brute force attack is very high.

Reconstruction performance of the proposed
encryption system

The quality analysis of reconstructed images of
the proposed encryption system for BCS of im-
ages is performed. Various test images are con-
sidered for evaluating the performance of the
proposed encryption system. Different BCS ap-
proaches like, BCS-TV, BCS-SPL-DCT, BCS-
SPL-DWT, BCS-SPL-DDWT and MS-BCS-SPL
are applied to these images to check the recon-
struction quality, which is measured in terms of
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the peak signal to noise ratio (PSNR) value of
the reconstructed images with the corresponding
original images. The PSNR for an N1 × N2 image
can be calculated as,

PSNR = 10log10
(
X2

max/MSE
)

(32)

where, Xmax is the maximum possible pixel value
of the image. The MSE can be calculated as,

MSE = 1

N1N2

N1∑

i=1

N2∑

j=1

(X (i, j) − Y (i, j))2 (33)

where X(i, j) and Y(i, j) represent corresponding
pixel values of the original and reconstructed im-
ages respectively.

The rate can be calculated by using the follow-
ing relation,

Rate = M
N

Hy (34)

where, Hy is the entropy of the measured data
y after quantization in bits per pixel, where the
problem of unused quantisation values can be
avoided by considering that these values occurred
at once [35]. For single measurement matrix ap-
proach, DPCM is incorporated to get quantized
BCS instead of only scalar quantization [29]. The
PSNR and the rate at different subrates for the
test images Lena, Goldhill and Barbara are given
in Table 2. Comparable PSNR values as that of
the results given in [15] are obtained from the
proposed system, which shows that the proposed
encryption system can maintain the quality level.

The rate-distortion characteristics of the Lena,
Goldhill and Barbara images for different BCS
reconstruction approaches are given in Fig. 2a–c.
The reconstructed images under different re-
construction methods for ‘Peppers’ image at a
subrate S = 0.2 are shown in Fig. 3a–e. The con-
struction qualities in PSNR for Peppers image
under different reconstruction methods are 31.41

Table 2 Reconstruction
performance of the
proposed encryption
system for 512 × 512
images

Lena

Subrate 0.1 0.2 0.3 0.4 0.5
Rate 0.75 1.47 2.08 2.89 3.51

PSNR (dB)

BCS-TV 27.62 30.58 32.69 34.4 35.95
BCS-DCT 27.42 30.47 32.56 34.22 35.81
BCS-DWT 27.78 30.81 32.93 34.59 36.13
BCS-DDWT 27.96 31.37 33.44 35.19 36.71
MS-BCS-SPL 31.82 33.84 35.48 37.03 38.62

Goldhill

Rate 0.74 1.44 2.22 2.91 3.51

PSNR (dB)

BCS-TV 26.72 28.81 30.41 31.89 33.32
BCS-DCT 26.31 28.29 29.78 31.11 32.58
BCS-DWT 26.71 28.64 30.16 31.49 32.76
BCS-DDWT 27.01 28.86 30.36 31.65 33.06
MS-BCS-SPL 29.15 30.61 31.92 33.26 34.71

Barbara

Rate 0.76 1.53 2.27 3.02 3.69

PSNR (dB)

BCS-TV 22.31 23.52 24.89 26.21 27.84
BCS-DCT 22.57 23.82 25.26 26.78 28.43
BCS-DWT 22.37 23.81 25.21 26.51 28.05
BCS-DDWT 22.65 24.19 25.59 27.22 28.81
MS-BCS-SPL 23.31 24.92 26.45 28.04 29.68
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Fig. 2 Rate distortion curves for the proposed encryption
system (a) Lena, (b) Goldhill, (c) Barbara images

(a) (b)

(c) (d)

(e)

Fig. 3 Reconstruction using a BCS-TV (31.41 dB), b BCS-
SPL-DCT (31.11 dB), c BCS-SPL-DWT (31.72 dB),
d BCS-SPL-DDWT (32.09 dB), eMS-BCS-SPL (32.96 dB)
for “Peppers” image at S = 0.2

dB (Fig. 3a), 31.11 dB (Fig. 3b), 31.72 dB (Fig. 3c),
32.09 dB (Fig. 3d) and 32.96 dB (Fig. 3e) for BCS-
TV, BCS-SPL-DCT, BCS-SPL-DWT, BCS-SPL-
DDWT and MS-BCS-SPL respectively.

Robustness to noise of the proposed system

In [4], it is mentioned that the compressive sensing
paradigm provides perfect reconstruction in the
presence of added noise in the real-application
by solving it as an optimization problem. In the
proposed encryption system, the key based gen-
eration of random measurement matrix maintain
the robustness of the compressive sensing system.
The empirical evaluation of the robustness can
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be performed by finding the characteristics be-
tween the PSNR and normalized noise perturba-
tion power. The normalized noise perturbation
power (nPERTy) on y is given as [31],

nPERTy = 10log
‖ỹ− y‖2

‖y‖2
(35)

where, ỹ represents the noisy version of mea-
surement vector. The robustness of the proposed
system can be evaluated from normalized noise
perturbation power versus PSNR characteristics.
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Fig. 4 a Robustness characteristics to noise of the pro-
posed encryption system for different images under BCS-
SPL-DDWT reconstruction at S = 0.2, b Robustness char-
acteristics to noise for MS-BCS-SPL reconstruction ap-
proach for Lena image

Figure 4a shows the robustness characteris-
tics of the proposed encryption method to noise
for various standard images of size 512 × 512 at
S = 0.2, where BCS-SPL-DDWT approach is
adopted. From the characteristics, it can be un-
derstood that the proposed encryption system can
maintain the robustness of the compressive sens-
ing approach for any image. Even at −20 dB of
normalized noise perturbation power (nPERTy),
the proposed encryption method for BCS-SPL
approaches give good PSNR value. Thus, the pro-
posed encryption system maintains robustness to
noise as that of the ordinary compressive sensing
system for BCS-SPL reconstruction approaches.
Figure 4b represents the robustness characteris-
tics to noise for Lena image for MS-BCS-SPL
reconstruction approach. In general, the proposed
encryption system maintains the robustness to
noise in the compressive sensing framework at any
subrate for any reconstruction approach.

Conclusion

In this paper, a novel approach for secure com-
pressive sensing of images is presented by generat-
ing random measurement matrix based on multi-
ple chaotic maps so that the encryption system can
maintain the robustness of the compressive sens-
ing system to noise. For the generation of mea-
surement matrix, eight one dimensional chaotic
maps are chosen from which two are randomly
selected based on a secret key. The number of
iterations of these chaotic maps are also decided
by an external key and the chaotic values obtained
from these maps are combined together to form a
new random array. To improve the security, key
based decision of initial values of the chaotic maps
are incorporated. The generated random stream is
used to generate each normal value of the random
measurement matrix. Since the chaotic values of
two randomly selected chaotic maps are combined
together, it is very difficult to mount a successful
known plaintext attack. To improve the security
further, it is proposed to use different measure-
ment matrices for different blocks of images. The
chaotic map selection and its number of iterations
are determined by the previous chaotic maps and
its number of iterations. The proposed encryption
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system is validated through different reconstruc-
tion approaches of BCS and it was found that it
maintains the reconstruction quality and robust-
ness of the compressive sensing with high level of
security.
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