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Abstract In recent decade, polycystic ovarian syndrome

(PCOS) has become one of the main fertility disorders in

females. Other than genetic factors, the etiology of this

disease includes environmental factors, especially endo-

crine disrupting compounds (EDC). Bisphenol A (BPA) is

a prominent EDC enormously used in manufacturing of

various substances. Increased exposure to these substances

on a daily basis throughout life, from prenatal to adult

stages, has resulted in deleterious changes in female

reproductive system. These changes include PCOS-like

phenotypes such as hyperandrogenism, cystic ovaries and

anovulation. Although studies in human are limited, sev-

eral reports are available in animal models wherein BPA

has been shown to directly affect ovarian development,

folliculogenesis and steroidogenesis, thereby causing

PCOS-like symptoms. Hypothalamus and pituitary are

considered to be the most significant endocrine tissues

involved in maintaining the structure and functions of

ovary. BPA being an endocrine disruptor severely affects

these tissues by modulating the synthesis and release of

gonadotropin releasing hormone and gonadotropins from

hypothalamus and pituitary, respectively. However, in light

of reports available, effect of BPA on hypothalamus and

pituitary do not corroborate with those on ovary. The

current review suggests that BPA-induced PCOS-like

phenotypes might be due to its direct action on ovary while

alteration in hypothalamo-pituitary-ovarian axis seems to

play a minor role. The authors through this review also

intend to direct the attention of readers and policy makers

towards the fact that despite the well-known negative

effects of BPA exposure, manufacturing and use of BPA-

containing substances is continuing, especially in devel-

oping countries.
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Introduction

Polycystic ovarian syndrome (PCOS), a disorder resulting

from the alteration of reproductive, endocrine and meta-

bolic functions, is worldwide considered as the most

common reproductive disorder in women of fertile age

(Fenichel et al. 2017; Liu et al. 2021). In India, the

occurrence of this disorder ranges from 3.7 to 22.5% and it

has been observed that urban women have 0.1 times higher

odds of developing the disorder than their rural counter-

parts (Ganie et al. 2019; Joshi et al. 2014; Gill et al. 2012;

Bharathi et al. 2017). The prevalence of PCOS has been

shown to be associated with obesity, type 2 diabetes, glu-

cose tolerance, abdominal adiposity, cardiovascular dis-

eases and lifestyle (Escobar-Morreale 2018). Since the

clinical manifestations of this syndrome are diverse, there

was a need to set a basis for its diagnosis. While in 1990,

the National Institute of Health considered hyperandro-

genism and ovulatory dysfunctions (including altered

menstrual cycles) as the diagnostic parameters for PCOS,

the Rotterdam criteria of 2003 added a third feature i.e.,

presence of polycystic ovarian morphology (Zawadski and

Dunaif 1992; Rotterdam ESHRE/ASRM-Sponsored PCOS

Consensus Workshop Group 2004). Currently, the clinical
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diagnosis is based on whether an individual meets at least

two of the three above mentioned phenotypes. In recent

years, in addition to genetic and metabolic determinants,

the endocrine disrupting chemicals (EDCs) have emerged

as major environmental factor in inducing PCOS. Various

synthetic chemicals have been categorized under EDCs as

these molecules have the capacity of mimicking the action

of natural hormones and in turn causing endocrinopathy

(Crisp et al. 1998). These range from commercial plasti-

cisers (bisphenol A and pthalates), paints (tributyltin), drug

ingredients (diethylstilbesterol) to polyhalogenated aro-

matic hydrocarbons used in pesticides and herbicides

(biphenyls and dioxins) (Palioura and Diamanti-Kan-

darakis 2013; Rutkowska and Diamanti-Kandarakis 2016).

Among EDCs, bisphenol A or 2,2-Bis(4-hydrox-

yphenyl)propane (BPA) is an omnipresent molecule that

mimics estrogenic action. It has been shown to adversely

affect a wide range of female reproductive functions such

as development of ovary and other reproductive tissues,

menstrual/estrous cycle, folliculogenesis, ovarian

steroidogenesis, ovulation, fertilization, implantation, and

survival as well as development of zygote (Palioura and

Diamanti-Kandarakis 2015; Pivonello et al. 2020). The link

between BPA and PCOS has been largely drawn based on

population studies wherein women with PCOS showed

high serum and urinary BPA concentrations (Takeuchi

et al. 2004; Hossein et al. 2017; Akin et al. 2015; Tarantino

et al. 2013; Vahedi et al. 2016). To elucidate the specific

role of BPA in causing PCOS, several in vivo, ex vivo and

in vitro experiments have been conducted in animal mod-

els. These experiments have explicitly shown that BPA

exposure causes structural and functional changes in the

ovary similar to those observed in PCOS. Also, BPA alters

secretion of gonadotropin releasing hormone (GnRH) and

gonadotropins from hypothalamus and pituitary, respec-

tively. However, BPA-induced changes at the level of

ovary in most of the studies do not correspond with

changes in hypothalamus and pituitary. The present review

is aimed to answer whether BPA-induced PCOS-like

changes in ovary is due to direct action or by altering

hypothalamic-hypophyseal functions or both.

Bisphenol A: Routes of Exposure, Accumulation
and Action

The endocrine disruptor BPA is a major constituent in food

packaging materials, bottles, flame retardants, water supply

tanks and pipes. BPA is capable of leaching into consum-

ables such as food and water on exposure to heat (Van-

denberg et al. 2007). Therefore, humans are exposed to it

largely through food and water that accounts for almost

90% of the overall route of exposure (Geens et al. 2012).

Intake of BPA can also occur through air or mere surface

contact via exposure to BPA-containing non-dietary prod-

ucts such as aerosol, medical equipment, thermal paper,

etc. (Abraham and Chakraborty 2020; Vahedi et al. 2016).

The metabolism and bioaccumulation of BPA has been

schematically represented in Fig. 1. Liver is the main site

for metabolism of BPA wherein enzymes uridine diphos-

phate glucuronosyltransferase and phenol sulfotransferase

are reported to cause glucuronidation and sulfonation of the

BPA molecule, respectively (Yokota et al. 1999; Pritchett

et al. 2002). This conjugation process makes BPA hydro-

philic and inactive, thus allowing its excretion via urine.

The half-life of the conjugated BPA is * 5.3 h (Völkel

et al. 2002) which is sufficient enough to cause its decon-

jugation in tissues such as lung, liver, kidney and placenta

by a critical enzyme beta-glucuronidase, thereby making

the molecule active again. The active form of BPA gets

released into the circulation leading to its bioaccumulation

in certain tissues (Ginsberg and Rice 2009). For instance, it

has been reported that fat accumulates approximately triple

the amount of BPA than other tissues due to BPA’s lipo-

philic nature (Csanády et al. 2002). Hence, tissues such as

ovary that are surrounded by large amount of fat become

more susceptible to being exposed to BPA (Fernandez et al.

2007) and is probably one of the main reason for pro-

nounced deleterious effect of BPA on female reproduction

than male reproduction.

Dodds and Lawson (1936) for the first time described

the estrogenic property of BPA while investigating its role

in maintenance of the vaginal estrus phase in ovariec-

tomised rats. Competitive binding assays have shown that

BPA binds to human estrogen receptors (ER) with lesser

affinity as compared to 17b-estradiol (Chapin et al. 2008).

This decrease in affinity is due to structural differences

causing steric hindrance in attachment of BPA to the ligand

binding domain of the ERs. BPA acts as estrogen agonist

via ER alpha (ERa) (Ascenzi et al. 2006) and is capable to

translate its effect through genomic as well as non-genomic

pathways (Nadal et al. 2000). During non-genomic actions,

BPA generally involves ERK/MAPK (extracellular regu-

lated kinase/mitogen-activated protein kinase), PI3K-AKT

(phosphatidylinositol 3-kinases - serine/threonine protein

kinase) and cytoplasmic Ca2?-dependent signalling path-

ways (Bolli et al. 2008; Marino et al. 2012). In addition to

ERa, agonistic action of BPA is mediated through a non-

classical estrogen receptor G protein-coupled receptor 30

following intracellular Ca2? signalling mechanism

(Alonso-Magdalena et al. 2005). Interestingly, BPA also

acts as an antagonist to sex steroids when it binds to ER

beta (ERb) (Ascenzi et al. 2006) and androgen receptor

(AR) (Xu et al. 2005; Wang et al. 2017). Other receptors

employed by bisphenols are aryl hydrocarbon receptor

(AHR), pregnane X receptor and peroxisome proliferator-
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activated receptor (PPARc) that are reported to inhibit

follicle growth, induce hypercholesterolemia and cause

proliferation of pre-adipocytes, respectively (Riu et al.

2011; Sui et al. 2012; Ziv-Gal et al. 2013; Boucher et al.

2014).

Based on a three generation study in rats, World Health

Organization, Food and Drug Administration (2009)

labelled the BPA dose of 5 mg/kg bw/day as ‘No-ob-

served-adverse-effect-level’ (NOAEL), the highest con-

centration that has no adverse morphological effect.

Thereafter, up to the dose of 50 mg BPA /kg bw/day has

been considered as ‘lowest-observed-adverse-effect-level’

(LOAEL) by the United States Environmental Protection

Agency (US EPA 2010). It is noteworthy to mention that

several studies in animal models are now available that

have shown the detrimental effects of BPA even at doses

many times lower than NOAEL. The tolerable daily intake

value for BPA has been deduced to be 0.05 mg/kg bw/day

which is greater than the highest daily intake of BPA as

seen in adolescents (European Food Safety Authority,

EFSA 2015). However, such permissible levels do not take

into account the cumulative effect that BPA has on the

health of an individual exposed to it during its lifetime.

Eventually, due to toxic nature of BPA, restriction has been

imposed by developed nations on its use in various prod-

ucts with special emphasis on baby items (Ministry of

Environment and Energy, MOEE 2012). In spite of toxic

effect of BPA, it is still being used in India (Shrinithivi-

hahshini et al. 2014) though policy has been formulated to

prevent BPA usage (Mahamuni and Shrinithivihahshini

2017). In lieu of BPA, some alternative analogues such as

BPS [bis-(4-hydroxyphenyl)sulfone] and BPF [4,4’-dihy-

droxydiphenyl methane] have been introduced worldwide.

However, these molecules are also reported to have

antiandrogenic, estrogenic and thyroidogenic actions

(Rochester and Bolden 2015) and hence, their use is

debatable.

Effect of BPA on Hypothalamo-Pituitary-Ovarian
Axis

GnRH and Gonadotropins

The hypothalamo-pituitary axis plays pivotal role in regu-

lating the female reproductive system. Gonadotropin

releasing hormone (GnRH) released from hypothalamus in

pulsatile manner is under the control of various endoge-

nous factors, importantly kisspeptin (Oakley et al. 2009)

which is secreted from neurons of anteroventral periven-

tricular nucleus (AVPV) and arcuate nucleus (ARC) of

brain (Fig. 2). Thereafter, GnRH stimulates the production

and release of follicle stimulating hormone (FSH) and

luteinizing hormone (LH) from gonadotrophs of anterior

pituitary. Low frequency pulses of GnRH stimulate the

synthesis and release of FSH while high frequency leads to

production and release of LH (Ferris and Shupnik 2006).

The gonadotropins in turn regulate the ovarian functions

including folliculogenesis, steroidogenesis and ovulation.

Estrogen produced from ovary regulates GnRH and gona-

dotropin secretion via feedback mechanisms, either directly

at the level of hypothalamus and pituitary, or indirectly by

regulating KISS production (Fig. 2).

The effect of BPA on secretion of KISS, GnRH and

gonadotropins is summarized in Fig. 2. It has been shown

that BPA increases the number of KISS1-secreting neurons

of AVPV region (Naulé et al. 2014), and upregulates the

expression of KISS1 mRNA and ERa protein in these

Fig. 1 Metabolism and bioaccumulation of bisphenol A (BPA) in

human (schematic representation in a female body). BPA is converted

into inactive form following conjugation in liver. This is catalysed by

enzymes uridine diphosphate glucuronosyltransferase and phenol

sulfotransferase. The conjugated BPA is either excreted out via urine

or deconjugated by an enzyme beta-glucuronidase in various tissues,

importantly lung and kidney. The deconjugated BPA which is active

gets accumulated in fat

468 Proc Zool Soc (Oct-Dec 2021) 74(4):466–478

123



neurons (Monje et al. 2010; Xi et al. 2011; Wang et al.

2014b, a). Since BPA binds with ERa, it is possible that by

increasing the expression of this receptor it is enhancing its

own effect on KISS-secreting neurons. In addition to effect

on KISS, exposure to BPA at perinatal, postnatal, pubertal

or adult stages in different animal models is reported to

cause an increase in GnRH pulse frequency (Fernández

et al. 2009; 2010; Gámez et al. 2015), upregulation in

expression of GnRH mRNA (Xi et al. 2011; Wang et al.

2014b, a) and enhancement in post-transcriptional pro-

cessing of GnRH mRNA (Monje et al. 2010). Parallel to

GnRH, many of these studies report an increase in level of

LH (Monje et al. 2010; Lee et al. 2013; Wang et al.

2014b, a; Zhou et al. 2014; Gámez et al. 2015). In case of

Fig. 2 Bisphenol A (BPA)

effect on hypothalamo-

pituitary-ovarian axis. BPA

induces an increase in number

of kisspeptin (KISS)-secreting

neurons located in anteroventral

periventricular nucleus (AVPV)

and secretion of KISS peptide.

These neurons exhibit an

upregulation in expression of

estrogen receptor alpha (ERa)

after BPA exposure. BPA

enhances KISS-induced pulse

frequency of gonadotropin

releasing hormone (GnRH)

secretion from hypothalamic

neurons and thereby production

of luteinising hormone (LH)

from anterior pituitary. At the

level of ovary, BPA inhibits

folliculogenesis, causes cyst

formation and promotes

anovulation. On

steroidogenesis, it had

differential effects on estrogen,

stimulatory on testosterone and

inhibitory on progesterone. The

effect of BPA on estrogen

feedback pathways is largely

unexplored. [arcuate nucleus,

ARC; follicle stimulating

hormone, FSH]
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PCOS patients, a positive association is observed between

serum level of BPA and LH (Vahedi et al. 2016; Rut-

kowska et al. 2020). On the contrary, a few studies report

the decrease in serum level of LH after BPA exposure

(Savabieasfahani et al. 2006; Fernández et al. 2009; Zaid

et al. 2018). Since GnRH regulates the release of LH by

upregulating inositol trisphosphate pathway (IP3) and BPA

causes decrease in IP3 production, Fernández et al. (2009)

have speculated that decrease in LH production after BPA

exposure could be due to inhibition of release mechanism

and not the synthesis. Besides, BPA is shown to delay and

reduce the amplitude the preovulatory LH surge in adult rat

(López-Rodrı́guez et al. 2019). In the same study, GnRH

regulator phoenixin and clock genes such as period circa-

dian regulator 1 (Per1) and brain and muscle ARNT-like 1

(Bmal1) are also shown to be downregulated by BPA,

thereby leading to disruption of LH surge (Loganathan

et al. 2019; López-Rodrı́guez et al. 2019).

With regard to the effect of BPA on production and

release of FSH, the reports are contradictory. BPA has been

reported to have stimulatory (Xi et al. 2011; Wang et al.

2014b, a; Zhou et al. 2014), inhibitory (Zaid et al. 2018)

and no effect (Fernández et al. 2009; Lee et al. 2013;

Gámez et al. 2015) on FSH mRNA and serum level. The

inhibitory or no effect of BPA could be seen in light of the

fact that GnRH pulse frequency increases under the effect

of BPA, and FSH synthesis and release depends on slow

pulsatile release of GnRH. However, the reason behind the

stimulatory effect of BPA on FSH level is not clear and

needs further investigation. Nevertheless, it is evident from

these studies that BPA has the potential to disrupt the

KISS1-GnRH-gonadotropin production.

Ovarian Functions

The effect of BPA on ovarian functions, folliculogenesis

and steroidogenesis, either directly or via modulating

hypothalamo-hypophyseal axis is depicted in Figs. 2 and 3.

Folliculogenesis

Primordial germ cells originating from epiblast migrate to

genital ridge during embryonic stage and give rise to

oogonia. These germ cells enter into meiosis which gets

arrested at diplotene stage of prophase I to form primary

oocytes. They are required to break off from the germ cell

nest and get surrounded by a single layer of follicular cells

to form primordial follicles (Pepling 2006; Tingen et al.

2009). A few primordial follicles from its pool are selected

for growth and transformation into antral follicles. It is

noteworthy to mention that transformation from primordial

to secondary/preantral follicle is independent of gonado-

tropins. Under the influence of gonadotropins, preantral

follicles are transformed into antral/Graffian follicles and

eventually into preovulatory follicles. Prior to ovulation,

meiosis which was arrested at diplotene stage of prophase I

is resumed and gets arrested again at metaphase II. These

secondary oocytes/ova are released out from preovulatory

follicles at the time of ovulation.

Numerous studies have shown the association between

BPA, oocyte formation, follicular development and ovu-

lation (Pivonello et al. 2020). These associations have been

schematically represented in Fig. 3. BPA is shown to

adversely affect the transformation of oogonia into primary

oocytes by inhibiting germ cell nest breakdown (Zhang

et al. 2012; Zhao et al. 2014; Miao et al. 2015; Berger et al.

2016). Germ cell nest is maintained by estrogen and its

breakdown occurs due to upregulation of anti-apoptotic

factors and downregulation of pro-apoptotic factors (Sarraj

and Drummond 2012). The balance between apoptotic and

anti-apoptotic factors gets disrupted due to exposure of

BPA. In vitro treatment of postnatal mice ovary with BPA

has resulted in a significant increase in expression level of

two prominent anti-apoptotic factors, B-cell lymphoma 2

(Bcl2) and B-cell lymphoma extra-large (Bclxl) (Zhou et al.

2015). The same study also reports decrease in expression

of extrinsic apoptotic pathway factors, FAS cell surface

death receptor (Fas) and Caspase 8 (Casp8). A similar

observation has been made in another study wherein level

of Bcl2 is shown to increase concomitantly with decrease

in pro-apoptotic factors of intrinsic apoptotic pathway,

BCL2-like protein 4 (Bax) and BCL2 Antagonist/Killer 1

(Bak1) (Wang et al. 2014b, a). Often incomplete germ cell

nest breakdown leads to the appearance of multiovular

follicles (MOFs) in adult ovary (Pepling 2006; Tingen et al.

2009) and number of such malformed follicles is shown to

increase post BPA exposure in mice and lamb (Suzuki

et al. 2002; Rivera et al. 2011). In BPA-exposed postnatal

lamb ovary, an increase in ERs with an increase in MOFs

tempted them to speculate that extended action of estrogen

via its receptor would have caused inhibition in germ cell

nest breakdown leading to formation of the malformed

follicles. In addition to impairment of oogenesis and

induction of abnormal follicles formation, BPA reduces the

pool of primordial follicles by enhancing its premature

transformation into primary follicles (Rodrı́guez et al.

2010; Rivera et al. 2011; Zhao et al. 2014). In vitro treat-

ment of rat postnatal ovary with BPA is reported to

upregulate PI3K-AKT pathway that is known for its

involvement in follicular development (Liu et al. 2006;

Cecconi et al. 2012). Another study corroborates the BPA-

induced acceleration in number of primordial follicle

entering into growth (Hu et al. 2018). In this study in mice,

treatment with BPA inhibited phosphatase and tensin

homologue (Pten), the transcription factor known to
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maintain the pool of primordial follicles (Reddy et al.

2008).

In addition to affecting the pool of primordial follicles

and follicular selection, BPA adversely affects the devel-

opment of antral follicles (Fig. 3). After exposure to BPA,

antral follicles become abnormally large-sized due to

enlarged antrum (Adewale et al. 2009; Zaid et al. 2018)

thereby contributing in formation of cysts (Zaid et al.

2018), the characteristic feature of ovary in case of PCOS.

BPA has been reported to reduce granulosa cell prolifera-

tion of preantral and antral follicles (Xu et al. 2002; Lenie

et al. 2008; Peretz et al. 2012). Since ER antagonists could

not block this effect on antral follicles even though BPA

enhances ovarian ER expression, it has been suggested that

BPA would have carried out its effect on development of

antral follicles following nongenomic/non-estrogenic

pathway (Peretz et al. 2012). Probably, BPA might have

caused abnormal antral follicle development via AHR as

expression of this receptor is reported to increase in gonads

after in utero exposure to BPA (Nishizawa et al. 2005).

Further, in Ahr knockout mice, BPA failed to induce

abnormal follicular growth (Ziv-Gal et al. 2013), corrob-

orating the involvement of AHR by BPA in translating its

effect at the level of antral follicles. In farm animals in

which androgen is shown to play important role in later

stages of follicular development (Sen and Hammes 2010;

Prizant et al. 2014), BPA-induced decrease in expression of

ovarian ARs suggests that BPA affects antral follicles by

inhibiting the action of endogenous androgen (Rivera et al.

2015; Santamarı́a et al. 2016). BPA-induced abnormal

growth of follicles could be due to alteration in cell cycle

regulators that leads to reduction in the proliferation of

granulose cells. Peretz et al. (2012) identified two such

factors, cyclin D2 (CCND2) and transformation-related

protein 53 (TRP53), in antral follicles of mice. It has been

reported that BPA upregulates TRP53 that in turn down-

regulates CCND2 and results in inhibition of granulosa cell

proliferation in antral follicles (Peretz et al. 2012). For

comprehensive understanding, influence of BPA on genetic

regulation of folliculogenesis is summarized in Fig. 3.

BPA not only affects the granulosa cells, it also inhibits

meiotic resumption and maturation of oocytes (Hunt et al.

2003; Can et al. 2005; Susiarjo et al. 2007; Lawson et al.

2011; Chao et al. 2012). BPA exposure is reported to cause

aneuploidy due to improper centrosome and spindle

microtubular organization (Hunt et al. 2003; Can et al.

2005; Chao et al. 2012), and inhibition of germinal vesicle

breakdown (Lenie et al. 2008; Chao et al. 2012). BPA-

induced acceleration in number of growing follicles even-

tually leads to their atresia (Rivera et al. 2011; Peretz et al.

Fig. 3 Bisphenol A (BPA)-induced changes in ovarian folliculoge-

nesis. Exposure to BPA disrupts the natural process of folliculoge-

nesis. BPA inhibits germ cell nest breakdown by upregulating anti-

apoptotic factors and downregulating apoptotic factors leading to

formation of multiovular follicles. The premature transition of

primordial follicles to primary follicles is enhanced by BPA via

PI3K-AKT signalling pathway that decreases the expression of

transcription factor Pten involved in maintaining the pool of

primordial follicles. Further, BPA induces the formation of large

abnormal antral follicles by increasing its antral cavity and inhibiting

granulosa cell (GC) proliferation and meiotic maturation. The

abnormal antral follicles get transformed into cysts. Besides BPA

increases number of atretic follicles by upregulating expression of

p27, and it alters LH surge thereby causing anovulation. [FAS cell

surface death receptor, Fas; caspase 8, Casp8; B-cell lymphoma 2,

Bcl2; BCL2-like protein 4, Bax; BCL2 antagonist/killer 1, Bak1;

B-cell lymphoma extra-large, Bclxl; phosphatidylinositol-3-kinase

and serine/threonine protein kinase pathway, PI3K-AKT; phosphatase

and tensin homologue, Pten; cyclin D2, Ccnd2; transformation-

related protein 53, Trp53; cyclin dependent kinase inhibitor, p27;

luteinising hormone, LH]
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2012; Lee et al. 2013; Gámez et al. 2015; Zaid et al. 2018).

The increased expression of p27 in oocytes and granulosa

cells of antral follicles has been highlighted as one of the

main reasons for their atresia in lamb exposed postnatally

to BPA (Rivera et al. 2011). It is noteworthy that p27 can

activate caspases in oocyte and granulosa cells thereby

causing cell death (Rajareddy et al. 2007). Taken together,

it can be speculated that the above mentioned effects of

BPA on ovary at the level of germ cell nest breakdown,

formation of follicles, development and maturation of

oocytes, and atresia of follicles ultimately lead to reduction

in number of antral follicles or formation of abnormal

antral follicles not capable of ovulation (Fig. 3). As a

result, the histological observation of these ovaries often

showed reduced number of corpora lutea (Takeuchi et al.

2004; Adewale et al. 2009; Zaid et al. 2018; López-

Rodrı́guez et al. 2019) due to reduced ovulation or

anovulation, another characteristic feature of PCOS

patients. In conclusion, BPA-induced PCOS-like features

in ovary could be due to lack of factors favouring fol-

liculogenesis and excess production of factors inducing cell

death.

Steroidogenesis

It is a matter of debate whether hyperandrogenism is the

cause or effect of PCOS. Nonetheless, elevated serum

testosterone and high BPA level in urine and serum have

been observed in women with PCOS (Takeuchi and Tsut-

sumi 2002; Konieczna et al. 2018; Akin et al. 2015). A

similar observation has been made in girls showing pre-

cocious puberty (Lee et al. 2014). In addition, BPA has

been reported to increase serum level of free testosterone in

PCOS patients (Kandaraki et al. 2011; Tarantino et al.

2013) which might be due to its property of displacing

testosterone from sex hormone binding globulin (Déchaud

et al. 1999). The increased level of testosterone is shown to

decrease clearance of BPA from circulation; thereby

hyperandrogenism is suggested to have an additive effect

on BPA titre in PCOS patients (Takeuchi et al. 2006). The

correlation between androgen and BPA has been examined

using animal models. In postnatal rats, treatment with BPA

has resulted in an increase in serum level of testosterone

(Fernández et al. 2010). This was further validated by

in vitro experiment where BPA had positive effect on

steroid acute regulatory proteins (StAR), steroidogenic

enzymes such as cholesterol side chain cleavage enzyme

(Cyp11a) and 17a-hydroxylase, and testosterone produc-

tion by thecal cells isolated from immature rat ovary (Zhou

et al. 2008). On the contrary, in mice, high concentration of

BPA is shown to downregulate the expression of StAR and

Cyp11a and consequently, testosterone production by

antral follicles (Peretz et al. 2011; Peretz and Flaws 2013).

Efforts have also been made to examine correlation

between BPA and estrogen, and the results are contradic-

tory. A positive correlation has been suggested in BPA-

exposed women factory workers in which high level of

serum estrogen has been recorded as compared to unex-

posed individuals (Miao et al. 2015). Similarly, high uri-

nary BPA and serum estrogen levels have been reported in

girls with precocious puberty (Lee et al. 2014). In contrast,

the analysis of estrogen serum level along with urinary

BPA level in women facing infertility issues and under-

going in vitro fertilization treatment showed a negative

correlation (Mok-Lin et al. 2010; Bloom et al. 2011; Ehr-

lich et al. 2013). This gets support from in vitro studies

where human granulosa cells treated with BPA exhibited

downregulation of aromatase expression (CYP19A) and

estradiol production (Kwintkiewicz et al. 2010; Wang et al.

2017). The relationship between BPA and estrogen levels

remains controversial even in non-human animal models.

In vivo studies in rat and mice have shown that exposure to

BPA, whether in prenatal, postnatal or in adult stages, have

upregulated the expression of Cyp19a and serum level of

estrogen (Fernández et al. 2010; Xi et al. 2011; Naulé et al.

2014; Wang et al. 2014b, a; Gámez et al. 2015; Zaid et al.

2018). On the other hand, in vitro studies report decrease in

Cyp19a expression and estradiol production under the

effect of BPA (Zhou et al. 2008; Peretz et al. 2011). In

another in vitro study in which human granulosa cell line

(KGN) was used, BPA is shown to upregulate the

expression of PPARc that in turn inhibited the FSH-in-

duced CYP19A expression (Kwintkiewicz and Giudice

2008). The difference in results of in vitro and in vivo

studies might be because the latter involves interplay of

endogenous factors and hypothalamo-hypophyseal-ovarian

(HPO) axis with BPA.

With regard to effect of BPA on another female sex

steroid progesterone, in vivo as well as in vitro studies in

human and several animals revealed its inhibitory effect on

production of progesterone (Zhou et al. 2008; Fernández

et al. 2010; Grasselli et al. 2010; Peretz et al. 2011; Peretz

and Flaws 2013; Mansur et al. 2016; Samardzija et al.

2018; Zaid et al. 2018; Qi et al. 2020). Surprisingly,

expression of StAR and several steroidogenic enzymes such

as Cyp11a, Cyp17a and 3b- hydroxysteroid dehydrogenase

(3b-Hsd) are reported to increase in response to BPA (Zhou

et al. 2008; Samardzija et al. 2018; Qi et al. 2020). The

decrease in production of progesterone despite increased

expression of steroidogenic enzymes could be seen in light

of a study where exposure to BPA is demonstrated to

enhance the expression of ATP binding cassette subfamily

A member 1 (ABCA1) which is known to cause efflux of

cholesterol, thereby decreasing the availability of substrate

for steroid biosynthesis (Qi et al. 2020). This gets support

from a study in PCOS patients in whom an increase in
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ABCA1 gene polymorphism is seen as compared to normal

individuals (Karadeniz et al. 2011). In response to BPA

exposure, sequestering of cholesterol in the perinuclear

areas of steroidogenic cells also needs to be considered as a

probable reason for decrease in progesterone production

(Samardzija et al. 2018). In addition, we propose that BPA-

induced decline in number of corpora lutea resulting from

disrupted follicular growth and ovulation needs to be taken

into account for decreased progesterone production since

luteinised follicular cells are the main source of proges-

terone in an adult female. However, it is not yet clear how

production of testosterone and estrogen increases when

level of cholesterol decreases due to its efflux or

sequestering.

Conclusion

The endocrine disruptor BPA enhances the synthesis of

GnRH by directly regulating the GnRH-secreting neurons

and also indirectly by altering the production of KISS from

its neurons of AVPV region. An increased level of GnRH

in turn stimulates LH secretion though contradictory results

are reported with regard to its effect on FSH secretion. In

addition, both in vivo and in vitro exposure to BPA causes

structural and functional abnormalities of ovary that are

often similar to PCOS-like phenotypes such as hyperan-

drogenism, formation of cysts and anovulation. It appears

that BPA causes PCOS-like symptoms by directly affecting

the ovary and also indirectly through HPO axis. However,

many of the BPA-induced changes at the level of

hypothalamus and pituitary have not been seen in accor-

dance with the functional changes in ovary in response to

BPA. The increased production of GnRH and gonado-

tropins after exposure to BPA instead of stimulating fol-

liculogenesis, production of female sex steroids and

ovulation in ovary, caused reduction in number of pri-

mordial follicles, formation of abnormal and atretic folli-

cles, decrease in testosterone to estrogen ratio, inhibition in

production of progesterone, and restriction on ovulation.

It is to be noted that majority of studies dealing with the

effect of BPA on reproductive axis are focused on non-

primates. In human, reports are limited to correlating

plasma and urinary BPA levels with PCOS symptoms.

BPA seems to have species-specific effects and hence,

conclusions derived from non-human studies should not be

extrapolated to humans. Well-designed in vivo and in vitro

studies in human are required for investigating the

involvement of HPG axis in BPA-induced PCOS-related

changes in ovary. Also, the dose of BPA and route of

administration has significant impact on its effect and

therefore should be carefully considered while designing

these experiments. In addition, studies need to be directed

towards understanding molecular mechanisms of BPA

action leading to PCOS-like symptoms. Nonetheless,

enough evidence is available to mark this EDC as a highly

dangerous chemical affecting female fertility. Despite this,

developing and under-developed countries are still far

away from putting a cap on the use of BPA-containing

substances. In the interest of human and animal welfare,

research needs to be focussed on developing mechanisms

to antagonizing the effect of BPA and enhancing its

clearance from the body.
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