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ABSTRACT

Field, petrography, and crystal size distributions (CSD) of
different lithological variants from Sirsilla granitic pluton (SGP),
southern India, is described here to understand operative magmatic
processes. The SGP contains many mafic microgranular enclaves
(MMEs) and syn-plutonic dykes. The contact relationship between
MMEs and the host granite is often diffusive or gradational and
rarely sharp, implying disaggregation and under-cooling of MMEs.
Petrographic features like resorption textures, quartz ocelli, and
the poikilitic nature of the large K-feldspar grains enclosed within
plagioclase indicate interaction and magma mixing/mingling
processes in an open magma chamber. Bladed biotite and acicular
apatite grains in MMEs are due to rapid crystallization during
the magma mingling process. The CSD curves generated for
plagioclase provide an inverse relationship between population
density and crystal size. Multiple crystal populations, i.e., a gently
sloping line for the core samples and a steeply sloping line for
margin samples, are interpreted to be caused by the mafic - felsic
magma mixing and mingling processes.

INTRODUCTION

Mafic microgranular enclaves (MMEs) are important rock
associations in many granitic plutons, which are of help to understand
the magmatic processes in crustal-level magma chambers. Therefore,
the field, petrography, geochemistry, and mineralogical characteristics
of MME:s and their host rocks are crucial for examining the origin and
evolution of granitoids (Barbarin and Didier 1992; Barbarin 2005;
Wiebe and Hawkins 2015). Similar studies are also available in the
Indian context (Jayananda et al. 2014; Elangovan et al. 2017; Kumar
et al. 2017; Shukla and Mohan 2019; Kumar 2020). Despite such
studies, the genesis of MMEs is still debatable. Magmas parental to
mafic microgranular enclaves (MMESs) are considered to be essentially
derived from a mantle source. This component seems to have interacted
with granitic melts from the crust to develop hybrid calc-alkaline rocks
while generating a large granite body (Castro et al. 1990). Most of the
researchers conclude that MME:s are produced by magma mixing and
mingling process based on field, petrographic and geochemical studies,
which are confined to calc-alkaline felsic intrusions (Frost and Mahood
1987; Barbarin and Didier 1992; Arvin et al. 2004; Barbarin 2005;
Kumar, 2010, 2020; Perugini and Poli 2012; Jayananda et al. 2014).

0016-7622/2022-98-6-815/$ 1.00 © GEOL. SOC. INDIA

Such mixing of magmatic components in different proportions
plays a significant role in the compositional diversity of the granitoid
plutons (Wiebe and Hawkins 2015) and is controlled by factors like
rheology, crystallinity, temperature, and composition (Barbarin 1990,
2005; Perugini et al. 2003) of the interacting magmas. The magma
mixing/mingling also contributes to the disequilibrium conditions,
which impact the nucleation and growth rates of the crystals (Slaby,
2004). Crystal size distribution (CSD) in felsic magmas is considered
significant for inferring the paragenesis of different mineral species as
the magma evolves during dynamic magma chamber processes
(Cashman and Marsh 1988; Marsh 1998; Deb and Bhattacharyya
2018). As part of the current study, to understand the chamber
processes that operated during the pluton evolution. Here, field,
petrographic, and CSD analyses was carried out from the Sirsilla
granitic pluton in the north-western part of the eastern Dharwar
craton (EDC), India.

GEOLOGICAL SETTING

The Dharwar craton of southern India contains a considerable
volume of granitic rocks. The western and eastern segments of the
Dharwar craton display distinctly different phases of granite
emplacement. The 3.35-3.3 Ga poly-phase tonalite-trondhjemite
granodiorite (TTG) suites dominate the western Dharwar vraton
(WDC) compared to the 2.7-2.5 Ga calc-alkaline granitic rocks of the
eastern Dharwar craton (EDC) where some older remnant granites
preserved (3.3-3.0 Ga) (Meen et al. 1992; Jayananda et al. 2020).
Two major episodic events in the EDC include large volcanic-
dominated greenstone belts at 2.7 — 2.54 Ga (Manikyamba et al. 2009;
Manikyamba and Kerrich, 2012) and extensive North-South trending
calc-alkaline plutonic bodies at 2.57-2.52 Ga (Dey 2013; Jayananda
et al. 2013). The Karimnagar granulite belt (KGB) from EDC
accommodates several smaller granitic plutons that run along the
NW- SE trending Pranahita-Godavari rift basin (Fig. 1b). The KGB
usually consists of granite gneisses associated with charnockite,
enderbite, banded magnetite quartzite (BMQ), and dolerite dykes
(Rajesham et al. 1993; Meshram et al. 2021). The Sirsilla granitic
pluton (Fig. 2) is emplaced into the KGB. The distorted mushroom-
shaped intrusion cross-cuts the regional NNE-SSW trend suggesting
that it is a younger intrusion. The KGB in the region consists of the
tonalite-trondhjemite granodiorite (TTG) suite of the peninsular
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Fig.1. (a) Generalized geological map of Dharwar Craton, southern India. (b) Detailed geological map of Karimnagar granulite belt (KGB).

gneissic complex of the EDC. Regionally, the study area is also
intruded by numerous basic dykes that do not extend into the SGP,
suggesting that the intrusion of SGP postdates dyke activity in the
Sirsilla area.

FIELD RELATIONS
Granite

The granitic rocks of the SGP are largely pinkish and grey colour.
The pink granite is coarse- to medium-grained equigranular biotite-
bearing monzogranite to syeno-granite. The grey granite is coarse- to
medium-grained with equigranular to in equigranular textures and
compositionally biotite-bearing granodiorite. The K-feldspar
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Fig.2. The sketch geological map of Sirsilla granite pluton (SGP)
(modified after GSI 1996). TTG: Tonalite-trondhjemite-granodiorite;
BMQ: Banded-magnetite-quartzite.
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crystals (Fig. 3d) are 2-5 cm in dimension; epidote veins intrude
into the interior of the granite and mafic microgranular enclaves
(MMESs).

Mafic Microgranular Enclave (MME)

In the SGP, MMEs are found to be abundant along the periphery
of the pluton. However, very few are present in the core of the pluton,
which is possibly connected to vigorous convection in the magma
chamber. The MMEs are rounded to stretched or pillowed-shaped
bodies with clear magmatic features (Fig.3 a, b, c, and d). They are
usually darker and fine-grained in contrast to their host granites. They
range from 5 to 20 cm in diameter but are occasionally noticed between
20 and 50 cm in diameter ones. Different stages of the hybridization
processes with increasing degree of magma mixing, as seen in the
field, are shown in (Fig.3a to d). The MMEs are oval to sub-rounded,
sharing sharp contacts with the host granite (Fig. 3a and b), signifying
quenched mafic blobs in crystallizing felsic hosts. Whereas some of
the MMEs are medium-grained and rounded to oval-shaped (Fig. 3¢
and d), having diffusive contact with the host rock. The early formed
K-feldspar crystals intruding into the MME from the crystallized host
granite (Fig. 3d). This suggests that the host granite was solidified at
the time of mafic magma injection. Hybridization of felsic and mafic
units was also observed (Fig. 3e and Fig. 3f). Such features are largely
observed along the periphery of the pluton. Schlieren of mafic and
felsic facies impart layering-like features in such horizons in the
outcrops (Fig. 3e. and Fig. 3f).

Syn-plutonic Dykes

Syn-plutonic dykes injected into crystallizing felsic magma
chambers were reported earlier from the Phanerozoic calc-alkaline
plutons in arc environments (see Barbarin, 2005; Jayananda et al.,
2009; Prabhakar et al., 2009). They exhibit magmatic foliation parallel
to the host granite. Here, similar occurrences are found from SGP.
These dykes display sharp (Fig. 4a), cuspate, and lobate (Fig. 4b and
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Fig. 3. (a) Ellipsoidal or sub-rounded MMEs were enclosed within the host granite. (b) Sub-rounded or oval-shaped MM associated with
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chilled margin surrounded host granite. (¢) Rounded MME consisting of small felsic clots and felsic vein. (d) The presence of early formed K-
feldspars injected into the MME from the crystallized host granite. (e) Mafic layers and host granite define magmatic flow about 10 km east of
Sirsilla town at Venkatapuram village. (f) Schlieren structures are developed along the margins of the pluton.
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Fig. 4. (a) The continuous syn-plutonic dyke shows sharp contact
with host granite. (b) Syn-plutonic dyke possesses alkali feldspar
crystals and is back veined with host granite towards the margin of the
pluton. (¢) Mafic clots and disrupted syn-plutonic dike display diffusive
contact with host granite near Jillela village.

¢) contacts with host granite characterized by necking and also back
veining (Fig. 4b). These dykes commonly exhibit fine- to medium-
grained, equigranular to porphyritic textures, and their thickness ranges
from 5 to 25 meters.

PETROGRAPHY

The host Sirsilla granitic rocks are coarse- to medium-grained and
show equigranular, hypidiomorphic, and porphyritic textures. Quartz,
K-feldspar, plagioclase feldspar, and biotite are the dominant minerals,
with apatite, titanite, and zircon as accessory minerals. Intergrowth
textures such as perthite, poikilitic, and myrmekitic were also observed
in host granite. Microcline shows crosshatched twinning with
inclusions of quartz (Fig. 5a and b). Plagioclase grains within the
granite also enclose quartz grains (Fig. 5b). Textural features of syn-
plutonic dyke and MMEs suggest the coeval nature of felsic and mafic
magmas. Major minerals of syn-plutonic dyke and MMEs include
biotite, hornblende, plagioclase, and K- feldspar. Accessory minerals
include epidote, apatite, titanite, and opaques. Plagioclase in MME
displays moderately developed twinning with sericitization (Fig. 5c).
Epidote is an alteration product of plagioclase in the syn-plutonic dykes
(Fig.5d), especially in peripheral samples. Biotite, amphibole, and
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feldspar exhibit preferred orientation in MMEs (Fig. Se). Plagioclase
exhibits resorbed surface in MMEs (Fig. 5f).

Poikilitically enclosed alkali feldspar and quartz are observed in
hornblende, biotite, plagioclase within MMEs, and syn-plutonic

i Mgt I s 2
Fig. 5. Petrographic features of the SGP. (a) Microcline showing cross-
hatched twinning in the host granite. (b) The Poikilitically enclosed
quartz is observed in plagioclase feldspars, and also quartz grain
exhibits undulose extinction in the host granite. (¢) Plagioclase
feldspars display moderate twining and initial stage of sericitization
in the MME. (d) Epidote is an alteration product of plagioclase with
tiny zircons in the syn-plutonic dike. (e) The preferred orientation of
mafic minerals such as biotite and amphibole with feldspar in MME.
(f) Plagioclase exhibits resorbed surfaces in the mafic magmatic
enclave.
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Fig. 6. (a) Alkali feldspar grains poikilitically enclosed on biotite in
the mafic magmatic enclave. (b) Quartz ocelli and alkali feldspar ocelli
are encompassed by bladed biotite in the syn-plutonic dike. (c¢)
Plagioclase showing oscillatory zoning in MME. (d) The alkali feldspar
is mantled by early formed plagioclase in the MME. (e) Mantling of
alkali feldspar on plagioclase feldspar grain in MME. (f) Random
oriented acicular apatite inclusions in alkali feldspar in MME.

dykes (Fig. 6a). Ocellar texture (Fig. 6b) is exhibited by quartz and
alkali feldspar crystals, encompassing bladed biotite and hornblende
in MMEs and syn-plutonic dyke. Frequently, plagioclase crystals show
oscillatory zoning in the MMEs and syn-plutonic dyke (Fig. 6¢). Alkali
feldspar is mantled by early formed plagioclase feldspar (Fig. 6d).
Alkali feldspar encompassed by dendritic plagioclase suggests that
high-temperature plagioclase develops around the alkali feldspar,
giving rise to rapakivi texture (Fig.6e). Acicular prismatic apatite
crystals were also observed in the alkali feldspar and quartz within the
MMES and syn-plutonic dike (Fig.6f).

CRYSTAL SIZE DISTRIBUTION STUDY

The concept of crystal size distribution was first introduced
(Cashman and Marsh 1988; Marsh 1998) to understand the magma
dynamics in terms of plagioclase crystallization and growth rate during
magmatic evolution. The variation of the natural logarithm of the crystal
population density (i.e., the number of crystals per unit volume) with
the crystal size (L) provides a linear pattern under a consistent state of
the open system. The slope of the CSD curve (Tr) provides the average
growth rate of the crystal (G)xresidence time (6) with the equation Tr
=1/Gd, where intercept value and crystal length provide nucleation
density (Marsh 1998; Higgins and Roberge 2007). CSD diagram
displays straight lines that suggest their consistent conditions of magma
(Higgins 2002). It is suggested that a set of straight lines along the
same slope yet varies in intercepts generated by reducing temperature.
Also, a longer residence time modifies the CSD slope but inhibits the
same intercept value. The steeper slope shows evidence of crystal
fractionation. According to Higgins (1996), the curved concave up
CSD strongly suggest the magma mixing process. Besides, curved
CSD is generated as a result of the progressive period of cooling
through the ascent and the emplacement of magma (Armienti et al.
1994).
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plagioclase grains present in host granite; (c-d) MME; (e-f) syn-
plutonic dike.

In studying CSD parameters concerning the magma dynamics,
thin sections of selected litho-samples were observed under a
petrological microscope for textural variations. Polarized light images
were obtained using a petrological microscope, especially for
plagioclase grains (Fig.7). The measurements of the long axis of
individual plagioclase feldspar crystals gave consistent curves for the
litho units of the SGP. The natural logarithm of crystal population
density versus crystal length was plotted for the plagioclase grains
from the SGP (Fig. 8). The crystal population density of granites,
MMEs, and Syn-plutonic dyke range from 3 to -5.52, 0.4 to -4, and
0.4 to 3.2, respectively. The CSD curves of SGP samples exhibit straight
to curved patterns. Table 1 incorporates values for the slope and
intercept values of different plagioclase populations calculated from
CSDs of SGP. According to (Garrido et al. 2001), the development of
the plagioclase crystal population is 107" mm s~ for shallow depth
level igneous intrusions. Additionally, residence time can be calculated

Table 1. Crystal size distribution (CSD) parameters of plagioclase for host granite, MME,
and syn-plutonic dike.

Sl.  Plagioclase Goodness Intercept ~ Slope Characteristic Residence
No. inrock types of fit (Q)  (propor- length in mm time
tional to (year)
nucleation
density
1 Granite core 0.75 0.063 -1.487  0.672495 213.4905
(MU-15)
2 Granite margin ~ 0.70 2.665 -1.483 0.594177 188.6276
J-19)
3 MME Core 0.81 0.697  -1.595 6.626959 199.0347
(MU-25)
4 MME margin 0.78 0.092  -1.848 0.541126 171.7859
(AMP-1)
5  Syn-plutonic
dike core 0.51 2.355 -1654  0.604595 191.9349
J-11)
6  Syn-plutonic
dike margin 0.68 3.357  -1.866 0.535906 170.1288

(SG-13)
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from the growth rate, assuming that the growth rate of plagioclase is
107" mm s™' (Cashman 1993).

DISCUSSION
Interaction of Coeval Ffelsic-mafic Magmas

The interaction between coeval felsic and mafic magmas is strongly
depended on their initial temperatures, relative volumes, and degree
of crystallinity, water contents, and viscosities (Wyllie 1977; Frost
and Mahood 1987; Barbarin 2005). During the initial stages of mafic
magma injection into the crystallizing felsic host, a strong rheological
difference may occur between felsic and mafic magmas, which restricts
large-scale interactions. In this physical interaction process, there is a
minimal decrease in the thermal and rheological divergence of both
magmas, leading to the injection of crystals from felsic host magma
into mafic magma and distributions of mafic magma into the felsic
host as enclaves (Sparks and Marshall 1986; Poli et al. 1996). The
MMEzs, circular to ellipsoidal shape blobs, with sharp contacts and
chilled margins, are formed due to viscosity contrast between the felsic
and mafic magmas during the injection of mafic component into the
felsic host (Barbarin and Didier, 1992; Perugini et al., 2004). The
viscosity contrast was developed due to the mixing of a high viscous
partially crystallized granitic pluton with a high temperature, low
viscous mafic melt. The very initial stage was characterized by
disequilibrium mixing of the two magma components, gradually
leading to a viscosity normalization and equilibrium reaction at a later
stage. The rounded and elongated shape of the MMEs in the host
granite suggests the viscosity contrast between the mafic and felsic
components during the magma mixing and mingling process (Fig. 3a,
¢). The K-feldspar crystals associated with MMEs (Fig. 3d) and syn-
plutonic dykes (Fig. 4b) suggest that the already developed crystals
were incorporated from solidifying felsic host (Barbarin and Didier,
1992; Kumar et al., 2004). The felsic crystals of different volume
proportions and shapes are evident due to their partial dissolution and
overgrowth. Fine-grained chilled margins associated with MME:s (Fig.
3b) demonstrate that the high-temperature mafic magma was
undercooled, while getting injected into the moderately cooled
solidifying felsic host (Kumar 2010). Flow structures appear due to
magmatic flow amid magma solidification, typically attributed to
schlieren structures (Barbarin and Didier, 1992; Elangovan et al.,
2017). The presence of MME:s largely confined to the periphery of
the granitic with diffused contacts further corroborates the mixing and
mingling of the different magma variants (Fig. 3e and f). The syn-
plutonic dyke emplacement also appears to have been controlled largely
by the magma flow in the magma chamber. The syn-plutonic dykes,
along with mafic clots (Fig.4c), display a cuspate contact (Fig. 4b and
c¢) with the host granite, which gives strong evidence for coeval nature
and magma mingling (Barbarin bernard and Didier 1992; Jayananda
et al. 2009; Prabhakar et al. 2009).

Petrographic features of SGP, include ocellar quartz, alkali
feldspar, poikilitic K-feldspar, oscillatory zoning, resorbed surfaces,
and cellular zoning in MMEs syn-plutonic dykes support magma
mixing and mingling processes. Alkali-feldspar mantled by plagioclase
crystal in MMEs clearly indicates the cellular zoning (Fig. 6d). The
growth of cellular plagioclase crystals in MMEs is a significant
indicator of thermal quenching, formed amid the mixing process
(Hibbard 1981, 1991; Barbarin 1990; Jeen et al. 2002; Jayananda et
al. 2014; Vernon 2016). The K-feldspar mantled by plagioclase crystal
representing rapakivi texture (Fig. 6e) is a significant sign of rapid
cooling amid magma mixing conditions (Jeen et al. 2002; Vernon
2016). Resorbed surfaces in plagioclase (Fig. 5f) suggest their stability
is affected due to the rapid undercooling and magma mixing process
(Hibbard 1981). The ocelli textures of alkali feldspar and quartz were
noticed in marginal MMEs (Fig. 6a) and syn-plutonic dyke of SGP.
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Rapid crystallization of hornblende and biotite mantled by dissolved
quartz and alkali feldspar represents ocelli textures that developed
due to the interaction of introducing mafic magma with the felsic host
(Hibbard 1991; Vernon 1991; Baxter 2002). Occasionally, poikilitic
quartz and alkali feldspar were noticed in biotite (Fig.6b), which occur
due to the incorporation of early-formed alkali feldspar and quartz of
solidifying felsic host into mafic magma during magma mixing and
mingling (Jayananda et al. 2014). Bladed biotite (Fig. 6a) is evidence
for rapid growth and physical restriction under a super-cooling
environment and is also associated with magma mixing (Hibbard 1981;
Jeen et al. 2002). Random crystallization of acicular-shaped apatite
crystals noticed in quartz and alkali feldspar (Fig. 6f) indicates rapid
crystallization during the magma mingling (Hibbard 1991; Kumar
1995). Thus, the observed microstructures from the SGP constrained
the magma mixing, mingling and undercooling.

CSD Evidence for Magma Mixing and Mingling

CSD theory is one of the most vital approaches to infer magma
chamber procedure, residence period, and the mixing process
(Cashman and Marsh 1988; Marsh 1998). In SGP, the core granite
sample exhibits a slightly curved nature due to the successive period
of cooling during magma emplacement (Fig. 8a). The temperature of
the hot mafic magma quickly declines due to injection into the
significantly cool crystallizing felsic host during interaction. When
the temperature decreases, it gives a sequence of straight lines with
the same slope but different intercepts (Higgins 2006). A straight and
nearly straight CSD curves (Fig.8 ¢ and e) of MME and syn-plutonic
dyke crystals likely imply thermal equilibrium during the interaction
of mafic and felsic magma. The margins of granite, MMEs, and syn-
plutonic dyke sample plagioclase crystals produced curved or nearly
curved CSD lines (Fig.8b, d, and f) with significant fit indicate magma
mixing/mingling. However, in the CSD plot of this pluton, the marginal
fine-grained mafic rock crystals exhibit steeply sloping lines that
resemble low growth rate and high nucleation (Fig.8 d, and f) compared
to the shallow sloping line of large-grained core samples (Fig.8 c, and
e). This condition arises when relatively cooler felsic magma is
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intruded by hotter mafic magma, which leads to undercooling. The
calculated average residence time from CSD slopes of 100 plagioclase
crystals is 170-213 years (Table 1). Further, the calculated residence
time of margin samples are slightly less (J-19, AMP, and SG-13)
compared to core samples (MU-15, MU-25, and J-11) due to rapid
crystallization.

CONCLUSIONS

® Mafic microgranular enclaves within the Sirsilla Granite Pluton
(SGP) exhibit rounded to ellipsoidal shapes along sharp to
diffusive contacts with host granitoid, indicating the coeval nature
of felsic and mafic magmas.

® The presence of acicular apatite and unusual bladed biotites
represents to rapid crystallization in the under cooling
environment associated with the magma mixing process.

® Additionally, the ocellar quartz, poikilitic feldspar, and resorbed
plagioclase from the MMEs indicate disequilibrium
crystallization of these crystals, which may be caused due to the
magma mixing process.

® Curves of CSD plots for plagioclase crystals present in SGP rocks
reveal the interaction of felsic and mafic magmas as well as
sequential periods of cooling.

® The residence time of SGP samples displays distinct variation
from margin to the core. The marginal samples show low
residence time compared to the core samples.
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