Jour. Geol. Soc. India (2022) 98:479-486
https://doi.org/10.1007/s12594-022-2005-2

ORIGINAL ARTICLE

Mapping of Reservoir Properties using Model-based Seismic
Inversion and Neural Network Architecture in Raniganj Basin, India

Abir Banerjee'" and Rima Chatterjee?

'Department of Well Logging, Oil and Natural Gas Corporation Limited, Bokaro - 827 001, India
’Department of Applied Geophysics, Indian Institute of Technology (ISM), Dhanbad - 826 004, India

E-mail: Banerjee_Abir@ongc.co.in*; rima_c_99@yahoo.com

Received: 14 July 2021/ Revised form Accepted: 3 September 2021
© 2022 Geological Society of India, Bengaluru, India

ABSTRACT

Reservoir characterization is necessary to compute reservoir
parameters for hydrocarbon potential and production optimization.
The limitation of robust data and the presence of cultural noise is
a constraint for reservoir characterization in the Raniganj basin
located in India. Based on available well logs and two-dimensional
post-stack seismic data, a model-based seismic inversion is executed
to generate acoustic impedance by converting acoustic reflectivity
into rock elastic parameters. Moreover, the seismic attributes
obtained from the inversion are implemented in neural network
architectures to map shale volume, Young’s modulus, and Poisson’s
ratio. Error analysis between predicted and actual results
demonstrate multi-layered feed-forward or probabilistic neural
network display a better result in obtaining reservoir parameters.
The mapped reservoir section shows the acoustic impedance
varying from 5000 to 16,000 (g/cc)*(m/s), shale volume ranging
from 15% to 55%, Young’s modulus, and Poisson’s ratio vary
from 0.5-9.5 GPa and 0.23-0.27 respectively. Cross-plot between
Young’s modulus versus Poisson’s ratio classifies lithology from
brittleness and it increases with depth. Neural network
architectures help to identify the best model in delineating shale
barriers for designing hydraulic fracturing treatments. Results
from this study have added significant values in engineering
application and will help in ongoing coalbed methane exploration
and future geomechanical studies. However, limitations exist in
resolving thin coal seams as the seismic resolution depends on the
wavelength, velocity, and frequency of waves in the formation.

INTRODUCTION

The petrophysical parameters derived from the wireline log and
seismic data provide sub-surface rock and fluid information (Maity
and Aminzadeh, 2012; Saadu and Nwankwo, 2018; Mondal et al.,
2021). The log data are acquired in the depth domain whereas seismic
data are recorded in the time domain. Both the domain has some
advantages and limitations. Well log data have higher resolution and
provides less areal coverage whereas seismic data provides a much
lower resolution with a greater areal extent. Therefore, combining well
log and seismic data gives a finer description of reservoir properties
on a wider scale (Hampson et al., 2001; Mondal et al., 2020). The
seismic section provides structural information about the fault and
bedding plane but, the prime input for quantitative interpretation of
subsurface formation is obtained from well log analysis and seismic
inversion. Numerous seismic inversion methods are used such as
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maximum likelihood inversion, approximation computation, spars
spike, band-limited impedance, Bayesian regularization, and model-
based inversion (Hampson and Russell, 1985; Sacchi and Ulrych,
1996). Among these methods, model-based inversion is widely used
because it estimates the absolute acoustic impedance with greater
correlation and maps the low-frequency content beyond the seismic
band by using a bandpass filter (Mallick, 1995). Seismic inversion
generates attributes by applying the mathematical transform that
contains meaningful information and provides a better understanding
of the reservoir properties. The geostatistical approach uses a linear
relationship for integrating seismic attributes and reservoir parameters
but it does not consider a non-linear relationship, whereas the
application of neural network (NN) proves effective in dealing with
the complex problem by using a non-linear relationship (Saggaf et al.,
2003). Amongst numerous NN architectures developed, multi-layered
feed-forward neural network (MLFN) and probabilistic neural network
(PNN) are discussed in this paper. The MLFN and PNN delineate
the reservoir properties such as P-wave velocity (Vy;,), S-wave velocity
(Vy), density, and pore pressure (Shahraeeni and Curtis, 2011).
However, the selection of the best model from several mathematical
models with the same output remains the most crucial task for
geoscientists. In the Raniganj basin, very limited studies are found in
the literature related to mapping reservoir properties using seismic
inversion and NN architectures with associated challenges. Hence,
the main aim of the study includes (i) reservoir characterization from
model-based seismic inversion, (ii) mapping of reservoir properties
using NN architectures, and (iii) geological and engineering analysis
for implications of hydraulic fracturing treatments in reservoir
development and, (iv) associated challenges and limitations in resolving
of thin coal seams.

GEOLOGICAL SETTING AND DATASETS OF THE STUDY
AREA

Raniganj basin is part of peninsular India is mainly located in the
state of West Bengal. The basin has an extension of 3000 km?
containing sediments of lower and upper Gondwana. Structurally the
basin is elongated and semi-elliptical in shape along the E-W direction
and shows a typical half-graben configuration. The boundary and
intrabasinal faults are the major faults in the basin (Ghosh, 2002). The
Salma dyke observed trends in NNW-SSE to NW-SE direction is a
significant igneous intrusion that divides the basin into two equal parts
(Coal Atlas of India, 1993; Chatterjee et al., 2019; Banerjee and
Chatterjee, 2022) (Fig.1). The coal seam near the dyke shows injected
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Fig. 1. Geological map of the study area representing the geological formation, seismic line, and well locations. (After Coal Atlas of India, 1993;

Banerjee and Chatterjee, 2022).

minerals such as pyrite and siderite in the maceral content, which is
due to thermal metamorphism during igneous intrusion (Sarana and
Kar, 2011). The formations from the bottom of the reservoir include
basement, Talchir, Barakar, Barren measure, Raniganj, Panchet, and
Supra-Panchet (Banerjee and Chatterjee, 2021a). The Raniganj basin
hosts commercial coal deposits in both Barakar and Raniganj
formations. The study area contains wells named W1 and W2, and
only one 2D post-stack time migration seismic section (S3) along the
NW-SE direction is available. In both wells, geophysical logs- gamma-
ray (GR), resistivity (RES), P-wave slowness (DTC), and density
(DEN) are recorded, while neutron (NEU) has been recorded well
W2. In another nearby well, S-wave slowness (DTS) is available. The
coal seams are distinguished from other lithology based on cut-off
criteria from geophysical well logs, tabulated in Table 1.

METHODS

The 2D seismic data acquired in the Raniganj basin is intensively
covered with coal mines activities, thickly populated townships,
villages, and other logistics. The data was acquired in symmetrical
split spread geometry with shot interval 10m, receiver interval Sm
with 300 receivers on both sides of the shot was designed for higher
foldage of 150 and closer spatial sampling. The data was recorded for

Table 1. The distinction of lithology based on cut-off criteria based on well
logs parameters.

Lithology GR RES DEN NEU
(API)  (Ohm-m) (glce) (vIv)
Coal 20-40  500-5000 1.4-1.8  0.50-0.70
Sandstone 55-65 45-70 2.5-2.6 0.08-0.1
Shale 115-160  25-30 2.55-2.6  0.32-0.33
Igneous intrusive  100-200 5-15 2.6-2.8  0.13-0.22
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6 seconds in a high-frequency spectrum of 1 ms sampling interval.
The recorded data quality in the entire area is significantly affected by
the presence of cultural noise, that has been generated from man-made
activities such as automobile, electric lines, industrial activities, steel
pipelines, trains, and highways. The methodology presented in figure
2 illustrates the estimation of reservoir parameters such as shale volume,
Young’s modulus, and Poisson’s ratio from well log and seismic data
by implementing model-based post-stack seismic inversion and NN
architecture. Also, the detailed steps followed in model-based post-
stack seismic inversion are shown in the flowchart. The steps in the
flowchart are described in the sub-sections.

Parameters Estimation
The shale volume (V) is determined from the GR log based on
equation (Bateman, 1985):

)/ GR__—GR_), (1)

min X

V,,=(GR,, - GR

where GR,Og, GR;, and GR_ are gamma-ray log magnitude in
the formation (API units), clean sand, and shale. Young’s modulus is
defined from the ratio of linear stress by strain and the ratio of transverse
to axial strain determines Poisson’s ratio. In an isotropic homogeneous
medium, dynamic Young’s modulus (E) and Poisson’s ratio (PR) in
rocks is mathematically expressed as (Boonen, 2003):
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where p represents the density of the formation. The limitations
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Fig. 2. Flowchart of the study.

of V_log are a constraint in obtaining dynamic relationships. Therefore,
based on available data in a nearby well, a linear relationship between
Vp (Km/s) and Vs (Km/s) is obtained with 0.84 as a fitting coefficient
(R?) (Fig. 3). The relationship between Vp and Vs is as follows:
V,=0.587%*V -0.0869, “4)

Model-based Seismic Inversion
Seismic inversion is a mathematical operation of converting
reflected acoustic signal in the form of seismic trace, amplitude, and
phase into the rock properties such as acoustic impedance (Al), velocity,
and density. The transformation of seismic trace into earth reflectivity
series is known as deconvolution (Austin et al., 2018). Horizon
separates rock layers with different depositional formations and
reflection properties. The estimation of Al from the product of density
and velocity provides details of reservoir characterization and model-
based inversion technique compensates the loss of a low range of
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Fig. 3. Cross-plot between Vp (Km/s) versus Vs (Km/s) showing linear
relationship.

JOUR.GEOL.SOC.INDIA, VOL.98, APRIL 2022

frequency components from the seismic data by creating an initial
model applying a bandpass filter (Alabi and Enikanselu, 2019). The
standard procedure in model-based inversion includes (i) wavelet
estimation, (ii) seismic-to-well tie, (iii) horizon picking, (iv) initial
model generation, (v) post-stack inversion analysis, and (vi) model-
based inversion (Lavergne and Willim, 1977; Hampson et al., 2001).
In figure 4a, the seismic section within 150-800 ms represents beds
dips (10°-15°) from NW to SE direction, wells position (W1 and W2),
picked horizons (H-I, H-II, H-III, H-IV), and few identified faults
(dashed lines) (Banerjee and Chatterjee, 2022).

The acquisition of seismic data in a particular frequency band has
missing components of both low and high frequency. The low-
frequency components contain useful information about the fluid and
porosity in areservoir which is necessary for obtaining better resolution
during the inversion process. The impedance estimation of the initial
model is absolute and sensitive to low-frequency components.
Therefore, the use of a high-cut filter 10/15 Hz fills the missing
frequency in the process of building an initial low-frequency Al model
and interpolates along the horizon between the wells. In figure 5, the
wavelet time and frequency response are compared between the seismic
and the inverted data in the zone of interest from horizon H1 to H4.
Figures 5a and 5b illustrate the amplitude spectrum in the time and
frequency axis. The frequency of seismic data ranges from 20-120
Hz, while the inverted spectrum in figures 5S¢ and 5d shows the
improvement in the frequency range containing dominant frequency
below 10 Hz due to the application of a high-cut filter. The minimum
misfit between the inverted synthetic and original log is necessary to
optimize the inversion parameter of the seismic model at well locations.
The best fit parameter gives a higher correlation between the inverted
synthetic and original log data (Banerjee and Chatterjee, 2022). The
inversion analysis provides the final and best fit from the range of test
parameters before initiating the inversion process in the seismic
volume. In figures, 4b and 4¢, the comparison between synthetic traces
(red color) obtained from the inversion result with the input seismic
trace (black color), shows the correlation coefficient of 0.99 and 0.97
and measured error of 0.13 and 0.24 in well W1 and W2, respectively.
Seismic attributes are the mathematical transformation of seismic trace
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Fig. 4. (a) 2D post-stack time migration seismic section within TWT 150-800 ms representing wells (W1 and W2), picked horizons (H1, H2,
H3, H4), and faults (dashed lines), (b) post-stack inversion analysis of well W1 and, (c) post-stack inversion analysis of well W2, representing
the original log, inverted results, initial, model, and analysis window (Banerjee and Chatterjee, 2022).

data. In this study, seismic attributes derived from post-stack inversion
results, and petro-physical attributes obtained from well log data are
used simultaneously. Subsequently, the seismic inversion attributes
are integrated with petrophysical attributes to generate linear
multivariate regression followed by non-linear neural network
methodology. The NN architecture provides better cross-correlation
with reduced error compared to multivariate regression. Out of
numerous seismic attributes generated, only a few contain meaningful
information about reservoir properties and are useful in deriving
petrophysical parameters by implementing neural networks.

Neural Network Model

The attributes required to obtain NN models are distinguished
into target attributes, training attributes, and final attributes. Attributes
such as shale volume, Young’s modulus, and Poisson’s ratio as target
attributes, and seismic inversion attributes are used as training
attributes. Few examples of training attributes (inverted results) are
quadrature trace, absolute amplitude, instantaneous frequency,
instantaneous frequency, and many more. Hence, the specific training
attributes having maximum cross-correlation, and minimum training
and validation error becomes final attributes. The attributes with the
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minimum difference between training and validation error are
considered for the estimation of shale volume, Young’s modulus, and
Poisson’s ratio. The list of the attributes is tabulated in tables 2, 3, 4.
InV , the first attribute is considered from 6 attributes. In E, the fifth
attribute is considered out of 6 attributes whereas, in PR, the first
attribute is considered from 5 attributes. Here, the same training data

Table 2. List of target shale volume attributes, final attributes, training, and
validation error.

S. | Target Final Attribute Training | Validation

No. Error Error

1 Quadrature Trace 0.09 0.11
(Inversion results)

2 1/(Inversion results) 0.14 0.15

3 Shale Integrated absolute amplitude 0.14 0.22

volume (Inversion results)

4 Time (Inversion results) 0.13 0.25

5 Amplitude Envelope 0.13 0.20
(Inversion results)

6 Amplitude Weighted phase 0.13 0.37
(Inversion results)
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seismic data.

and attributes are tested in MLFN and PNN networks keeping W1 as
training well and W2 as blind well for validation.

The MLFN model consists of input, hidden, and output layer, where
all layer constitutes a particular number of nodes that are connected
with weights (Leiphart and Hart, 2001). The training in MLFN from
well log data develops optimal weight between nodes, which yields

Table 3. List of target Young’s modulus attributes, final attributes, training,
and validation error.

S. | Target Final Attribute Training | Validation

No. Error Error
(GPa) (GPa)

1 Instantaneous frequency 0.45 0.96

2 Cosine instantaneous phase 0.46 0.98

3 Young’s Integrated absolute amplitude 0.47 0.96

4 modulus Derivative instantaneous 0.48 0.97

amplitude
5 Derivative (Inversion results) 0.49 0.92
6 Amplitude Weighted frequency 0.50 0.94

Table 4. List of target Poisson’s ratio attributes, final attributes, training, and
validation error.

S. | Target Final Attribute Training | Validation
No. Error Error

1 Log (Inverted results) 0.01 0.01

2 Poisson’s | Square root (Inverted results) 0.01 0.02

3 ratio 1/(Inverted results) 0.01 0.02

4 (Inverted results)’ 0.01 0.05

5 (Inverted results) 0.01 0.03
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the desired output (Hatampour et al., 2016). The weight is updated
using the conjugate gradient optimization technique with a back-
propagation procedure, the expression for the calculation of output
layer:

Y=f[o, + er‘.; o f, ( By, +30 B,x)l, 5)

Where Y and x are the output and input parameters, 4 and a act as
connecting weights, n, and n, exhibit the dimension of the input vector
and the number of hidden neurons. 4, and éoj are known as bias weights.
The transfer function used in MLFN is a sigmoid function (f) and the
common form of the function is (Gogoi and Chatterjee, 2018):

sigmoid (a) =1/ (1 +¢), (6)

Where the value of “a” ranges between 0 and 1. The developed
MLEN networks (1, 3, 5) consist of 70 input nodes linking 7 hidden
nodes with 150 conjugate-gradient iterations that yield a single output
layer. The cross-correlation measures the similarity between actual
and predicted results.

The PNN architecture is a mathematical interpolation scheme that
replaces the sigmoid transfer function in MLFN with an exponential
function (Mohebali et al., 2020). PNN consists of input, pattern,
summation, and output layer. The PNN is understood much better
than MLEN by examining the mathematical expression in the analysis
windows of the training data set consisting of a series of seismic
samples and wells, where PNN represents the current output log in a
linear combination of the log magnitude in the training data (Hampson
et al., 2001). The current log magnitude L(x) is formulated as:
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D(x, x,) denotes the distance between the input and each training
point (x,) in multi-dimensional space, n is training examples from m
attributes, L, is the measured target log values, o is the smoothing
parameter in the training of the network. The prediction error is
controlled by the parameters o, which is minimized by applying a
nonlinear conjugate gradient algorithm (Grana and Della Rossa, 2010).
Here, PNN networks (2, 4, 6) are tested with 25 smoothing parameters
ranging from 0.1 to 3.0 comprising 100 iterations.

RESULTS
Neural Networks Model Analysis

The cross-correlation, training, and validation error of MLEFN and
PNN networks compares the actual and predicted results for shale
volume (Figs. 6a and 6b), Young’s modulus (Figs. 6c and 6d), and
Poisson’s ratio (Figs. 6e and 6f) is tabulated in Table 5. Analysis
from Table 5 and Fig.5 emphasizes that the MLFN model using
networks-1 and 5 gives better results in shale volume and Poisson’s
ratio estimation (Figs. 6a and 6e) whereas the PNN model using
network-4 yields effective Young’s modulus output (Fig. 6d). In the
best shale volume, Young’s modulus, and Poisson’s ratio model, cross-
correlation are 0.86, 0.96 and 0.85, training error are 0.09, 0.49 GPa
and 0.01, validation error are 0.11, 0.92 GPa and 0.01, respectively.

Geological and Engineering Analysis

The Al section distinguishes coal, shale, and sandstone and
identifies the top of Barakar and Talchir formations. The relatively
thicker coal seam (30-40 m) is better distinguished in the Al section
compared to the thinner coal seam (1-10 m). In Fig.7a, the color
codes show Al ranges from 5000 to 16,000 (g/cc)*(m/s) in the reservoir.
In shale, Al varies from 10000-16000 (g/cc)*(m/s), mix of sandstone
and shale, it ranges from 5500-10000 (g/cc)*(m/s), and in coal, Al
ranges from 5000-6000 (g/cc)*(m/s) (Banerjee and Chatterjee, 2022).
The green color represents coal and the red/blue color represents
lithology with higher shale content, while the yellow represents the

Cross-correlation = 0.86
Error = 0.09

< (a) Network-1 (MLFN) (c) Network-3 (MLFN)

~
o

Predicted shale volume (Vsh %

Cross-correlation = 0.88

Table 5. Comparison of six networks by implementing NN architectures in
the estimation of the volume of shale, Young’s modulus, and Poisson’s ratio.

Network Type Cross- Training Validation
correlation error error

Estimated volume of shale models

Network-1 MLFN 0.86 0.09 0.11

Network-2 PNN 0.8 0.1 0.12

Estimated Young’s modulus (E) models

Network-3 MLFN 0.88 0.82 GPa 1.57 GPa

Network-4 PNN 0.96 0.49 GPa 0.92 GPa

Estimated Poisson’s ratio (PR) models

Network-5 MLFN 0.85 0.01 0.01

Network-6 PNN 0.80 0.01 0.01

mix of shale and sand. The best-mapped sections within 150-800 ms
are represented in Figs. 7b, 7c, and 7d, respectively. The section in
figure 7b shows the shale volume distribution from 15% to 55%. In
coal, shale, and sandstone the distribution of shale volume are 15-
20%, 30-35%, and 15-30% respectively. In Fig.7c, Young’s modulus
ranges from 0.5 to 9.5 GPa, and it varies from 0.5-2.5 GPa, 6.5-9.5
GPa, and 4.0-6.0 GPa in coal, shale, and sandstone. In Fig.7d, the
Poisson’s ratio ranges from 0.23 to 0.27, wherein coal, shale, and
sandstone vary from 0.26-0.27, 0.23-0.25, and 0.24-0.26. The Young’s
modulus versus Poisson’s ratio cross-plot in Fig.8 classifies the coal,
shale, and mix of sandstone and shale formations encircled based on
brittle and ductile behavior. Figure 8 illustrates the linear increase in
brittleness with the increase in depth, as Young’s modulus increases
and Poisson’s ratio decreases. The low Poison’s ratio (0.23-0.24) and
high Young’s modulus (6.5-9.5 GPa) are brittle formations, that are
relatively hard and rigid, which is seen in the shale formation whereas
formations with a high Poisson’s ratio (0.26-0.27) and low Young’s
modulus (0.5-2.5 GPa) are ductile with soft characteristics, which is
observed in coal. The intermediate-range of Poisson’s ratio (0.24-0.26)
and Young’s modulus (4.0-6.0 GPa) are formations containing a mix
of sandstone and shale.

DISCUSSION
The geological model is always been the starting point for prospect
identification, reservoir characterization, or geomechanical modeling.
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Young’s modulus and Poisson’s ratio are the significant input
parameters in designing hydraulic fracturing simulation models in coal
seam (Tan et al., 2019). The presence of higher shale volume in
overlying and underlying coal seams acts as a good shale barrier due
to its higher compressive strength and lower permeability for restricting
the hydraulic fracturing fluid movement beyond the coal seam. High
stiffness in the shale can withstands higher stress during hydraulic
fracturing fluid injection. Thus, the demarcation of the shale layers
provides information about continuity and extension. Young’s modulus
is associated with matrix shrinkage that affects the porosity,
permeability, gas recovery rate, and in-situ stress condition of the
coalbed methane reservoir (Chatterjee et al., 2019; Banerjee and
Chatterjee 2021b). The seismic resolution depends on the wavelength,
velocity, and frequency of seismic waves in the formation. The higher
impedance contrast in coal distinguishes coal from other formations.
However, the thinner coal seams are not effectively distinguishable in
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Fig. 8. Poisson’s ratio Vs. Young’s modulus’s cross-plot in the
reservoir. The encircled lithology of coal, shale and a mix of shale and
sandstone is shown.
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the section as the lower acoustic impedance of coal leads to higher
reflectivity of acoustic waves from beds and lesser transmissivity to
the sub-surface layer; and Rayleigh’s limiting criteria for vertical
resolution, where bed thickness is less than one-fourth the dominant
wavelength cannot be resolved, hence bed thickness less than 10.0 m
is not resolved. Moreover, the presence of cultural noise significantly
affects the data quality.

CONCLUSIONS
The following conclusion from the study are:

(1) Reservoir characterization using a model-based seismic
inversion technique is attempted in the basin having data
constraints. Based on acoustic impedance contrast the lithology
is distinguishable in the reservoir, however, limitation exists in
resolving thin coal seams that mainly depends on the frequency
of seismic wave controlled by the geological factors. The use of
seismic inversion attributes is vital in estimating reservoir
properties and development planning for drilling successful
wells and effective reservoir management.
The application of non-linear relationships in the neural network
provides effective results with minimum error. The best result
selection depends on the cross-correlation between observed
and predicted parameters of either MLFN or PNN models. The
quantitative estimation of properties like modulus, brittleness
will provide crucial input for designing the hydro-fracturing
job in the future for optimizing the gas production from this
reservoir. Moreover, the derived reservoir properties from this
study will help in further geomechanical analysis.
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