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ABSTRACT
Stability analysis of rock slopes has always been a critical and

challenging task for the geotechnical engineering professionals. The
complexities associated with the stability analysis arise due to the
heterogeneous, anisotropic and variable nature of the rock mass.
Assessment of slope stability becomes further challenging under
earthquake motions which are random in nature. Thus,
uncertainties in both material and loading parameters are required
to be considered for a robust assessment of the vulnerability of
slopes in geologically complex and seismically active regions.

In the present study, the influence of variability in geological
properties on the slope stability has been considered within the
framework of First Order Reliability Method (FORM). Reliability
analysis has been performed for a typical slope profile using the
Response Surface Method (RSM) and FORM leading to the
identification of critical design parameters along with the
quantification of the system performance in terms of reliability
index. Subsequently, dynamic time history analyses have been
performed for generating the seismic fragility curves of the rock
slope as a function of increasing earthquake intensity. Thus, the
study attempts to present a methodology for assessing the
vulnerability of a rock slope with due consideration of the variation
in both the material properties and seismic loading.

INTRODUCTION
The assessment of the performance of slopes is a major field in

geotechnical engineering associated with uncertainties arising due to
the variable nature of the geological medium. Properties of rock mass
characterized in terms of strength and deformation parameters such as
cohesion (c), friction angle (φ), elastic modulus (E) and unit weight
(γ) is known to be associated with wide spatial variation (Phoon and
Kulhawy 1999). For an adequate assessment of slope performance, a
due consideration of the associated uncertainties becomes crucial.
Reliability methods constitute a robust class of probabilistic approach
which allows systematic consideration of the uncertainties in the
evaluation of system performance (Li and Low 2010, Low and Einstein
2013). Such approaches overcome the limitations of conventional
deterministic methods, providing better flexibility to engineers to
evaluate system performance. Among various methods, the First Order
Reliability Method (FORM) has emerged as a popular method for the
evaluation of performance of a number of geotechnical systems (Xu
and Low 2006, Low and Tang 1997, Low and Tang 2007, Li and Low
2010, Lu and Low 2011, Low and Einstein 2013). This method has
also been extensively applied in the probabilistic assessment of slope
performance.

Another form of uncertainty associated with the evaluation of
performance of slopes is due to the variable seismic motion which
may act in tectonically active regions. Since these slopes serve as

lifeline facilities in mountainous regions, evaluation of seismic
performance assumes great significance. One of the effective ways of
evaluating the performance of slope under variable seismic conditions
is through the use of seismic fragility curves (Rossetto and Elnashai
2003, Pitilakis et al. 2014). These curves relate the probability of
unsatisfactory performance of any infrastructural facility with
increasing intensity of earthquake motions (Andersen et al. 2008).

For effective planning of lifeline facilities in mountainous regions,
a due consideration of both the forms of uncertainties, i.e., variable
geological and seismic settings, needs to be considered. However, till
date, these two approaches have been rarely utilized concurrently.
The present study attempts to employ these two approaches for
assessing the performance of a rock slope incorporating both the
material and seismic variability. Such an approach facilitates the
assessment of the seismic vulnerability of a given slope in a robust
manner.

The highlights of the present study are:
� Influence of uncertainty of material parameters on the stability

of a typical rock slope, has been examined using the Response
Surface Method (RSM) and First Order Reliability Method
(FORM).

� The most critical combination of variable parameters, i.e., critical
design parameters have been evaluated. The critical combination
has been subsequently utilized in the dynamic finite element
analyses of the slope for assessment of various performance levels
of the rock slope.

� The influence of seismic motion on the slope performance have
been evaluated through the generation of the seismic fragility
curves which comprehensively take into account the effect of
both the frequency and amplitude of the dynamic waves.

METHODOLOGY
The methodology adopted in the present study attempts to

incorporate the geological and seismic variability by coupling the First
Order Reliability Method (FORM) followed by the derivation of
seismic fragility curves. The results obtained from the FORM and
expressed in terms of critical design points represent the combination
of random parameters likely to cause the worst performance of the
slope under pseudo-static conditions. Adopting these design points,
the effect of dynamic nature of earthquake time histories on the
performance of the slope is evaluated through the generation of seismic
fragility curves. In the following sections, a brief description of the
methodology along with their application for the considered slope
has been discussed.

FORM and Hasofer-Lind Reliability Index
Reliability methods provide a robust and rational approach to

efficiently take into consideration the inherent uncertainties associated
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with any engineering system. Many different reliability methods have
evolved over the years which have found wide application in the field
of geotechnical engineering. Among various methods, the FORM has
emerged as a popular method for assessing the system performance
through the evaluation of reliability index.

A popular reliability method based on FORM, which has been
utilized in the present study, is the ‘Hasofer-Lind’ method (Hasofer
and Lind 1974, Low and Tang 2007). In this method, the assessment
of the reliability index is mainly based on the reduction of the problem
to a standardized coordinate system. Thus, a random variable Xi is
reduced as per Eqn (1).

X'i (Xi – µxi)/σxi (i = 1,2,3, ...., n) (1)

where X'i  is a random variable with zero mean and unit standard
deviation. X denotes the random variable in original coordinate system
and X' denotes random variable in reduced coordinate system. In
reduced system, the Hasofer-Lind reliability index βHL is the minimum
distance from the origin of the axes to the limit state surface and may
be evaluated using Eqn (2),

(2)

where X'* is the vector of the design points in the reduced
coordinate system.

An alternative interpretation of the Hasofer-Lind reliability index
evaluated using FORM, has been discussed by Low and Tang (1997,
2007). The description is based on the concept of an expanding
ellipsoid and is mathematically expressed in terms of Eq. (3) and (4).

(3)

(4)

where x represents the vector of set of random variables xi, µ  is the
vector of set of mean values µ i, C is the covariance matrix, R  is the
correlation matrix, σi is the standard deviation and F is the failure
domain. The procedure for computing the reliability index β is to
transform the failure surface into the space of reduced variable.
Shortest distance from the transformed failure surface to the origin of
the reduced variables gives the reliability index.

As suggested by Low and Tang (2007), the concept of expanding

ellipse presented in Fig. 1 leads to a simple method for computing the
Hasofer-Lind reliability index. In terms of an expanding ellipsoid, the
sample points xi of random variables which minimizes Eq. (4) and
belong to the failure domain i.e. x ∈ F, represents the design point.
They are also known as the most probable point of failure and
correspond to an expanding ellipsoid which is tangential to the limit
state surface demarcating the domain between safe and unsafe regions
as shown in Fig. 1.

Response Surface Method
To carry out reliability analysis using FORM, explicit formulation

of performance function is required. However, in case of complicated
and non-linear systems where the system response is evaluated using
numerical analyses, explicit representation of the performance function
in terms of random variables may be very difficult. In such cases,
Response Surface Method (RSM) is utilized to frame the performance
function.

The RSM has been extensively used in a number of civil
engineering problems (Mollon et al. 2009, Bucher and Bourgund,
1990, Rajashekhar and Ellingwood, 1993, Tandjiria et al. 2000, Chan
and Low, 2009). The fundamental concept of the RSM approach
depends on the construction of a closed form polynomial equation
g’(X), known as the response surface, based on limited number of
deterministic analyses. This mathematical equation relating the system
response with the input parameters is then utilized to approximate the
critical limit state surface at the point nearest to the set of mean
parameters thereby providing an assessment of the reliability index.
Thus RSM may be viewed as a powerful tool providing a bridge
between the existing deterministic methods and the reliability methods
(Lu and Low 2011).

CRITICAL DESIGN POINTS OF A ROCK SLOPE BY FORM

Numerical Model of the Rock Slope

It may be stated that the choice between two-dimensional and three-
dimensional numerical modelling approaches for assessment of slope
stability is dependent on curvature effect.  Hoek (1970) and Hoek and
Bray (1977) summarised that three-dimensional model needs to be
adopted in case slopes are either concave or convex. Thus, if the lateral
curvature (curvature in the plan) of the slope is prominent, three-
dimensional model proves to be more appropriate. However, in case
of the slope being long and straight in lateral direction, the two-
dimensional model seems to be a suitable choice considering the
additional computational burden in case of three-dimensional model.
Moreover, the factor of safety evaluated using two-dimensional analysis
is generally more conservative in comparison to three-dimensional
analysis (Cavounidio 1987). Considering the ensuing discussion, it
has been considered that the slope is long and straight and hence two-
dimensional modeling is assumed to be appropriate. However, the
procedure highlighted in the present study may be extended to the
three-dimensional case.

A schematic representation of the slope considered in the present
study is shown in Fig. 2. The slope has a fixed height (H) of 50 m with
variable slope angle (β). In order to minimize the effect of artificial
boundaries, the model dimensions have been finalized as per the
recommendations of Wyllie and Mah (2004). Bottom boundary of the
model has been fixed in all directions whereas the lateral boundaries
have been restrained in the horizontal direction. Mohr-Coulomb
constitutive law has been considered for the rock mass. The number
of elements used in each model has been decided based on mesh
sensitivity analyses. The assessment of slope stability has been
achieved through the use of Strength Strength Reduction (SSR)
technique as incorporated in the finite element package. A discretized
view of finite element model of the slope is shown in Fig.3.
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Fig.1. Hasofer Lind reliability index and design point expressed in
terms of expanding dispersion ellipsoid (after Low and Tang, 2007).
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Random Parameters Considered in the Study
To quantify the stability of the rock slope, the widely used Shear

Strength Reduction (SSR) technique has been applied on the numerical
model using finite element based software RS2.0 (Rocscience Inc.
2015). The SSR technique leads to the evaluation of the Strength
Reduction Factor (SRF) (Zienkiewicz et al., 1975, Donald and Giam,
1988, Matsui and San, 1992, Ugai and Leshchinsky,1995, Dawson et
al., 1999, Griffiths and Lane, 1999, Cheng et al., 2007, Wei et al.,
2009, Cai and Ugai, 2000, Won et al., 2005, Wei and Cheng, 2009,
Griffiths et al., 2010, Yang et al., 2011, Rathod and Rao, 2012, Zhang
et al., 2015). A value of SRF less than 1 corresponds to the case of
instability. The parameters affecting the strength behavior of the
geological medium and the loading conditions have a significant
influence on the value of the computed SRF. Moreover, the deformation
of the slope is also an important criterion governing the serviceability
of the slope providing a useful insight of the regions along the slope
which may be prone to instabilities.

However, the parameters characterizing the strength and
deformation behavior of the rock mass and the loading conditions
may not have a specific value at a given site due to the inherent
variability associated with geology and the tectonic setting. Hence a
due consideration of the variability in stability assessment assumes
significance. To account for the variability, a total of five random
variables have been considered which have been mentioned below
for brevity.

1. Cohesion of the rock mass, c
2. Friction angle of the rock mass, φ
3. Young’s modulus of rock mass, E
4. Slope angle, θ
5. Pseudo-static coefficient of horizontal acceleration, kh

The choice of type of statistical distribution for random parameters
has been made based on the suggestions made in a number of studies
and engineering judgment. Normal and truncated normal distribution
has been suggested for the friction angle of the geological medium in
the literature (Mostyn and Li 1993, Nilsen 2000, Pathak and Nilsen
2004). Cohesion is also reported to follow a normal distribution (Song

et al., 2011). The pseudo-static horizontal coefficient and Young’s
modulus are also assumed to follow a normal distribution whereas
linear distribution has been adopted for slope angle. Table 1 presents
the mean, coefficient of variation and standard deviation of the random
variables considered for the present analyses. The unit weight of the
rock mass is considered to be 18.50 kN/m3 (Shen et al., 2014).

Performance Function and Reliability Index
In the present study, the stability of the slope has been evaluated

by utilizing the Shear Strength Reduction (SSR) technique which
expresses the results in terms of Strength Reduction Factor (SRF).
Based on the values of the SRF evaluated through deterministic
numerical simulations, the performance function has been framed for
reliability analysis of the slope.

Framing the Performance Function
In the present study, a total of 32 number of deterministic

analyses (2n simulations where n is number of random parameters)
have been carried out in each iteration. Table 2 presents the SRF
values computed for various combinations of input parameters for
various combinations of input parameters. Based on the SRF values
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Fig.2. A schematic representation of numerical model.

Fig.3. Finite element model showing discretized slope.

Table 1. Random variables considered in the present study

Parameters Distribution Mean COV (%) Std. Dev.

c (MPa) Normal 0.2 40 0.08
φ (Degree) Normal 30 20 6.00
E (MPa) Normal 1200 40 480
θ (Degree) Linear 45 - 8.66
kh Normal 0.15 - 0.10

Table 2. SRF from pseudo-static analysis  for first iteration

Sl. c φ E θ kh SRF
No. (MPa) (Degree) (MPa) (Degree)

1 0.28 36 720 30 0.05 3.66
2 0.28 36 1680 30 0.05 3.66
3 0.28 24 720 30 0.05 2.95
4 0.28 24 1680 30 0.05 2.95
5 0.12 36 720 30 0.05 2.49
6 0.12 36 1680 30 0.05 2.49
7 0.12 24 720 30 0.05 1.87
8 0.12 24 1680 30 0.05 1.87
9 0.12 36 1680 30 0.25 1.73
10 0.12 36 720 30 0.25 1.73
11 0.28 24 720 30 0.25 2.00
12 0.28 36 1680 30 0.25 2.52
13 0.28 36 720 30 0.25 2.52
14 0.28 24 1680 30 0.25 2.00
15 0.12 24 1680 30 0.25 1.30
16 0.12 24 720 30 0.25 1.30
17 0.12 24 720 60 0.25 0.86
18 0.12 36 720 60 0.25 1.08
19 0.12 24 1680 60 0.25 0.86
20 0.28 24 720 60 0.25 1.46
21 0.28 36 720 60 0.25 1.74
22 0.28 36 1680 60 0.25 1.74
23 0.28 24 1680 60 0.25 1.46
24 0.12 36 1680 60 0.25 1.08
25 0.28 24 1680 60 0.05 1.95
26 0.28 24 720 60 0.05 1.95
27 0.12 36 720 60 0.05 1.44
28 0.12 36 1680 60 0.05 1.44
29 0.12 24 1680 60 0.05 1.14
30 0.12 24 720 60 0.05 1.14
31 0.28 36 1680 60 0.05 2.31
32 0.28 36 720 60 0.05 2.31
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computed in any iteration, a response surface G(X) is derived. The
performance function is formulated as per Eq. (5) which implies that
the slope remains stable in case of SRF values greater than 1.

g'(X) = G(X) – 1 (5)

Reliability Index of the Slope Configuration and Design Points
The reliability index is evaluated using a spreadsheet based

optimization tool SOLVER in MS-EXCEL. Based on the performance
function and the variations in input parameters, a reliability index
β1 of 1.77 is obtained in the first iteration. The values of random
variables at design point for the first iteration are shown in Table 3.
Using these design points, the center points are updated and the process
is repeated to frame the new response surface and performance
function. The details of the 32 number of deterministic analyses for
the second iteration are presented in Table 4. The second iteration led
to a reliability index β2 of 1.89. The design points obtained in the
second iteration are also shown in Table 3.

The details of various input parameters and the corresponding SRF
values for the third iteration are presented in Table 5. The response
surface generated using regression analyses for the third iteration is

Table 3. Design points obtained in first two iterations

Iteration-1 Iteration-2

Variables Values Variables Values

c (MPa) 0.08 c (MPa) 0.07
φ (Degree) 26.99 φ (Degree) 25.79
θ (Degree) 48.37 θ (Degree) 48.28

kh 0.18 kh 0.18

Table 4. SRF from pseudo-static analysis for second iteration

Sl. c φ E θ kh SRF
No. (MPa) (Degree) (MPa) (Degree)

1 0.09 26.31 719.99 30 0.13 1.51
2 0.09 26.31 1679.99 30 0.13 1.51
3 0.09 14.31 719.99 30 0.13 1.04
4 0.09 14.31 1679.99 30 0.13 1.04
5 0.03 26.31 719.99 30 0.13 1.01
6 0.03 26.31 1679.99 30 0.13 1.01
7 0.03 14.31 719.99 30 0.13 0.76
8 0.03 14.31 1679.99 30 0.13 0.76
9 0.03 26.31 1679.99 30 0.25 0.82
10 0.03 26.31 719.99 30 0.25 0.82
11 0.09 14.31 719.99 30 0.25 0.84
12 0.09 26.31 1679.99 30 0.25 1.22
13 0.09 26.31 719.99 30 0.25 1.22
14 0.09 14.31 1679.99 30 0.25 0.84
15 0.03 14.31 1679.99 30 0.25 0.57
16 0.03 14.31 719.99 30 0.25 0.57
17 0.03 14.31 719.99 60 0.25 0.55
18 0.03 26.31 719.99 60 0.25 0.68
19 0.03 14.31 1679.99 60 0.25 0.55
20 0.09 14.31 719.99 60 0.25 0.67
21 0.09 26.31 719.99 60 0.25 0.76
22 0.09 26.31 1679.99 60 0.25 0.76
23 0.09 14.31 1679.99 60 0.25 0.67
24 0.03 26.31 1679.99 60 0.25 0.68
25 0.09 14.31 1679.99 60 0.13 0.81
26 0.089 14.31 719.99 60 0.13 0.81
27 0.025 26.31 719.99 60 0.13 0.92
28 0.025 26.31 1679.99 60 0.13 0.92
29 0.025 14.31 1679.99 60 0.13 0.74
30 0.025 14.31 719.99 60 0.13 0.74
31 0.09 26.31 1679.99 60 0.13 0.91
32 0.09 26.31 719.99 60 0.13 0.91

Table 5. SRF from pseudo-static analysis for third iteration

Sl. c φ E θ kh SRF
No. (MPa) (Degree) (MPa) (Degree)

1 0.13 24.65 719.99 30 0.14 1.7
2 0.13 24.65 1679.99 30 0.14 1.7
3 0.13 12.65 719.99 30 0.14 1.21
4 0.13 12.65 1679.99 30 0.14 1.21
5 0.01 24.65 719.99 30 0.14 0.75
6 0.01 24.65 1679.99 30 0.14 0.75
7 0.01 12.65 719.99 30 0.14 0.61
8 0.01 12.65 1679.99 30 0.14 0.59
9 0.01 24.65 1679.99 30 0.25 0.61
10 0.01 24.65 719.99 30 0.25 0.61
11 0.13 12.65 719.99 30 0.25 0.98
12 0.13 24.65 1679.99 30 0.25 1.39
13 0.13 24.65 719.99 30 0.25 1.39
14 0.13 12.65 1679.99 30 0.25 0.98
15 0.01 12.65 1679.99 30 0.25 0.44
16 0.01 12.65 719.99 30 0.25 0.44
17 0.01 12.65 719.99 60 0.25 0.28
18 0.01 24.65 719.99 60 0.25 0.32
19 0.01 12.65 1679.99 60 0.25 0.28
20 0.13 12.65 719.99 60 0.25 0.71
21 0.14 24.65 719.99 60 0.25 0.93
22 0.14 24.65 1679.99 60 0.25 0.93
23 0.13 12.65 1679.99 60 0.25 0.71
24 0.01 24.65 1679.99 60 0.25 0.33
25 0.13 12.65 1679.99 60 0.13 0.84
26 0.13 12.65 719.99 60 0.13 0.84
27 0.01 24.65 719.99 60 0.13 0.8
28 0.01 24.65 1679.99 60 0.13 0.78
29 0.01 12.65 1679.99 60 0.13 0.59
30 0.01 12.65 719.99 60 0.13 0.57
31 0.13 24.65 1679.99 60 0.13 1.09
32 0.13 24.65 719.99 60 0.13 1.09

Table 6. Critical design points obtained for the rock slope

Variables Values

c (MPa) 0.07
φ (Degree) 26.68
E (MPa) 1200
θ (Degree) 48.04
kh 0.18

given by Eq. (6). The reliability index evaluated based on the
performance function framed using Eq. (6) is 1.80. Thus, a convergence
is obtained in the third iteration with the reliability index β3 of 1.80.

(SRF)3 = 0.95 + 4.37c + 0.02φ – 0.009θ – 2.09kh (6)

Thus, three iterations have been carried out in the present study to
arrive at the design points which have been listed in Table 6. These
design points correspond to the most critical combination of input
parameters. It may be noted here that the pseudo-static analyses
presented in the present section does not take into consideration the
interaction between the dynamic waves and the slopes. Moreover, the
SRF values correspond to the ultimate limit state with regard to system
performance. It does not provide any insight with regard to the
serviceability criterion. In order to account for the variability in dynamic
loading characterized in terms of frequency and amplitude, dynamic
time history analyses have been carried out with the material properties
set equal to the design points identified at this stage. The subsequent
section provides a detailed discussion with regard to the generation of
the seismic fragility curves based on which the slope performance
may be evaluated.
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GENERATION OF SEISMIC FRAGILITY CURVES

Overview of Seismic Fragility Curves

Seismic fragility curves provide a robust tool for probabilistic risk
assessment of geotechnical systems (Rossetto and Elnashai, 2003,
Argyroudis and Pitilakis, 2012, Argyroudis and Kaynia, 2015). The
fragility curve relates the probability of unsatisfactory performance of
any system with increasing intensity of earthquake motions. In a broad
sense, the uncertainty associated with probable seismic scenarios is
effectively considered in the assessment of the vulnerability of the
system through these curves (Andersen et al., 2008). Thus, it provides
a robust and flexible tool to designers in evaluating the relative
performance based on various criteria with probable ground motion
thereby striking a balance between safety and economy.

In the following sections, a brief description about the performance
levels and methodology for the generation of fragility curves is
discussed. Subsequently, the dynamic analyses of the slope considered
in present study have been explained. This is followed by a discussion
on the fragility curves generated for the slope.

Performance Levels
The assessment of seismic vulnerability or risk of a geotechnical

structure may be defined in terms of damage thresholds known as
limit states. A limit state represents the boundary between different
performance levels. Thus, depending upon the nature and functionality
of the geotechnical structure under consideration, one may adopt
different limit states based on engineering judgment.

In case of mountainous slopes, the assessment of seismic
vulnerability of the road element holds crucial importance as any loss
in its functionality leads to adverse impact on the socio-economic
activities of the region. Thus, any attempt to assess the seismic
vulnerability must be reflective of the consequences arising from
different performance levels.

A number of studies have been made for fragility assessment of
slopes and roadway elements (NIBS 2004; Maruyama et al.  2010). In
the aforementioned studies, different damage states have been
considered depending on the functionality, state of traffic, duration
and the cost involved in repair. The damage states primarily relate to
the extent of settlement or offset of the ground, movement and/
or cracking of the pavement. The intensity measure threshold adopted
in these studies includes peak ground velocity (PGV), peak ground
acceleration (PGA) and permanent ground displacement (PGD).

A detailed discussion on the damage index has been provided in
European project SYNER-G considering roadway and railway
elements (Kaynia et al. 2011). The same benchmark has also been
utilized in studies dealing with generation of fragility curves for
embankments and cuts by Argyroudis and Kaynia (2015). These states
are described in terms of induced permanent ground displacement
(PGD) of the slope. In view of the ensuing discussion, the limit states
adopted for the study are presented in Table 7.

Methodology of Generation of Seismic Fragility Curves
The fragility curve is represented by two-parameter cumulative

lognormal distribution and is mathematically represented by
Eq. (7)

(7)

where Pf  represents the probability that a particular damage
state, ds, is exceeded under the action of a given level of seismic
intensity. The seismic intensity level is defined by intensity measure
of earthquake, IM, which in the present study is represented by the
peak ground acceleration (PGA) of the earthquake time histories. Φ
denotes the cumulative probability function whereas IMmi represents
the median threshold value of the earthquake intensity measure which
causes the damage associated with the ith state. βtot represents the
total variability associated with the fragility curves. From Eq. (7), it
follows that the development of fragility curve is dependent on
two parameters: IMmi and βtot .

The estimation of the seismic fragility curve depends on the
evolution of damage index with increasing intensity of earthquake. To
illustrate the procedure, consider Fig. 4 in which the various data points
represent the results of numerical analyses in terms of parameter
characterizing the performance of associated structure under different
levels of seismic action. The solid line is obtained from regression
analysis. Depending on the damage index of the ith damage state, the
median threshold value of earthquake intensity measure IMmi may be
estimated.

Table 7. Definition of Damage States and Ground Displacement

Damage Ground Description
Index Displacement

(mm)

Minor 20 No effect
Slight 50 Slight cracks in roadway element
Moderate 75 Major cracks leading to slowing

down of traffic
Major 100 Repair required
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Fig. 4 Evolution of damage with earthquake intensity measure showing
the standard deviation for variable input motion and the threshold
median value

Since an assumption of lognormal distribution function is made
for the seismic fragility curve, a lognormal standard deviation βtot,
describing the total variability needs to be estimated. Usually, there
are three sources of uncertainty which needs to be considered (NIBS
2004). These include the definition of the damage states(βds), the
response of the element or the system (βc) and the earthquake input
motion (βD). The total variability is expressed by combination of these
three contributors with the assumption that they are stochastically
independent having a lognormal distribution. Thus, the lognormal
standard deviation βtotmay be evaluated using Eq. (8). General steps
of generation of seismic fragility curves are provided in flow chart
shown in Fig. 5.

(8)

Dynamic Analyses of the Rock Slope
For the development of the seismic fragility curve of the considered

222
Dcdstot ββββ ++=
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slope, dynamic analyses have been carried out considering ten different
earthquake time histories. Table 8 summarizes the PGA and the
predominant time period of the earthquake motions considered. Each
time-history has been normalized using their respective peak ground
acceleration (PGA). Subsequently, all earthquake motion has been
scaled in steps of 0.1g to include PGA between the ranges of 0.1g to
1.0g for numerical dynamic analyses. The 10 earthquake time histories
selected for the present study encompasses the frequency range and
PGA values which the slope may be subjected to during the design
lifecycle. A typical acceleration time-history of Kobe earthquake (1995)
considered for the dynamic analyses is shown in Fig. 6.

In the dynamic analyses, transmitting and absorbing boundary
conditions have been invoked at the lateral and bottom boundaries

respectively to minimize the reflection of waves. For monitoring the
displacements of the slope, three points along the sloping surface has
been incorporated. The earthquake motion has been applied at the
bottom in the horizontal direction. Fig. 7 shows the configuration of
the slope model for the dynamic analyses along with the monitoring
points and direction of applied dynamic motion. From these analyses,
the average value of the peak displacements has been utilized for the
development of fragility curves.

Derivation of Seismic Fragility Curves
The derivation of seismic fragility curves requires the definition

of the median threshold value of PGA corresponding to each damage
state and the total standard deviation. Based on the results of the
dynamic numerical analyses, a plot showing the evolution of damage
(in terms of displacement) with increasing intensity of earthquake
(PGA) is obtained. The displacement shown in Fig. 8 is the average
displacement recorded at three points along the slope surface as
shown in Fig. 7. A regression analysis is performed on the results to

Table 8. Earthquake time histories considered in the study

Earthquake Year PGA (g) Pred. Time
Name Period (s)

Chi Chi 1999 0.18 0.80
Coyote 1979 0.12 2.40
Imperial Valley 1940 0.17 3.24
Kobe 1995 0.82 2.14
Kacaeli 1999 0.22 5.36
Loma Gilroy 1989 0.17 3.94
Loma Gilroy2 2002 0.36 3.30
Mammoth Lake 1980 0.43 2.42
Nahanni 1985 0.15 4.0
Northridge 1994 0.22 5.01

Fig.5. Flow chart showing procedure for generation of fragility curves.

Fig.6. Acceleration time history of Kobe earthquake (1995).

Fig.7. Boundary conditions and monitoring points for dynamic
analyses of slope (monitoring points shown as black dots)
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establish a relationship between the displacement and the intensity of
the earthquake. For estimating the standard deviation, a value of
0.4 as suggested in HAZUS-MH (2004) has been adopted for
βds. Moreover, the value of βc is assigned as 0.3. The last source
of uncertainty βD is obtained from the variability in response
evaluated using numerical analyses. Intensity measure is determined
from the equation fitted for the displacement vs. PGA of the earthquake
time histories. The intensity measures determined for each damage
state considered is presented in Table 9.

rock slope for various damage states.  The major conclusions of the
study are as following.

� For the present rock slope, slight damage state associated with
crack development in roadways is probable for PGA level
greater than 0.1g.

� The results suggest that the damage states which may necessitate
repair works for any roadway stretch along the slope is reached
at a comparatively higher level of ground shaking of 0.4g.

Hence the study suggests that the vulnerability may be estimated
for the given rock slope on the basis of generated fragility curves.
These may also be useful in formulating the efficient mitigation
strategies and policies for pre and post-earthquake actions.
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The seismic fragility curves for the four damage states considered
in the present study are shown in Fig. 9. It may be observed that the
minor damages may occur at lower PGA levels. For slight damage
state which is associated with crack development in roadways a PGA
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corresponding to a PGA level of 1g. In comparison, for higher damage
states i.e., moderate and severe, the probability of damage
corresponding to earthquake intensity of 1.0g is 0.29 and 0.13
respectively. Moreover, these damage states do not occur at levels of
shaking lower than 0.4g.

SUMMARY
Uncertainties are associated with the assessment of the seismic

performance of rock slopes in the form of material variability and
seismic demand. The present paper attempts to demonstrate a
methodology to effectively consider both categories of uncertainty in
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