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Abstract: Landslide susceptibility zonation mapping assists researchers greatly to understand the spatial distribution of
slope failure probability in a region. Being extremely useful in reducing landslide hazards, such maps could simply be
produced using both qualitative and quantitative methods. In the present study, a multivariate statistical method called
‘logistic regression’ was used to assess landslide susceptibility in Hashtchin region, situated in west of Alborz Mountains-
northwest of Iran. In this study, two independent variables, categorical (predictor) and continuous, were drawn on
together in the model. To identify the region’s landslides use was made of aerial photographs, field studies and topographic
maps. To prepare the database of factors affecting the region’s landslides and to determine landslide zones, geographic
information system (GIS) was used. Using such information, landslide susceptibility modeling was accomplished. The
data related to factors causing landslides were extracted as independent variables in each cell (in 50 mx50 m cells).
Then, the whole data were input into the SPSS, Version 18. The prepared database was later analyzed using logistic
regression, the forward stepwise method and based on maximum likelihood estimation. Regression equation was
determined using obtained constants and coefficients and the landslide susceptibility of the area in grid-cells (pixels)
was computed between 0 and 0.9954. The Receiver Operating Characteristic (ROC) curve was used to assess the accuracy
of the logistic regression model. The predicting ability of the model was 84.1% given the area under ROC curve. Finally,

the degree of success of landslide susceptibility zonation mapping was estimated to be 79%.
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INTRODUCTION

Landslides are considered as one of the most widespread
and demanding natural hazards causing billions of dollars
of damage to property and human life every year (Wang et
al. 2006; Ilinca and Gheuca, 2011; Aleotti and Chowdhury,
1999; Dai et al. 2002; Yesilnacar and Topal, 2005). In Iran,
most landslides occur in Alborz mountains, in the northeast
and northwest and Zagros mountains, in the northwest and
southeast parts (Shoaei et al, 2005). Due to its geological,
climatic and tectonic activities, Alborz mountains witnesses
many landslides each year, which cause damage to life and
property (Jadda et al. 2009). Currently, there is no reliable
report specifying the amount of damage caused by landslides
in Iran, but some informal reports have estimated that only
the amount of direct damage mounts to 50 million dollars
(Komakpanah and Hafezimoghadasi, 1994). Hashtchin is
located in northwest Iran and is situated along the western
slope of Alborz mountains and is home for two different
types of landslides: (1) New and active landslides,
(2) reactivation of old landslides. The exact amount of
damage to Hashtchin area by such landslides is not known,

yet there is no doubt that such landslides can bring about a
large number of direct and indirect damages to people and
land (Mahdavifar, 1996; Talaei et al. 2004). In fact, there is
an urgent need for a modern developmental and strategic
plan to mitigate landslide damage and hazard in hilly regions
like Hashtchin. To fulfil this objective, susceptible zones in
the area should be determined based on the geological,
topographic, geomorphologic features and human activity.
This could be accomplished with the help of landslide
susceptibility zonation mapping in which a region is divided
into several zones, each with a different degree of landslide
susceptibility (Anbalagan, 1992). To prepare susceptibility
maps developments have been made to estimate spatial
variations in slope failure probability of a region (Mathew
et al. 2009). Different methods have been proposed to
generate landslide susceptibility maps. The type, precision
and scale of such maps depend on factors selected and their
use (Varnes, 1984; Van Westen, 2000). Therefore, for
landslide susceptibility zonation mapping, it is necessary to
understand comprehensively factors contributing to
landslides in a region and to assess the relative and
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cumulative impact of such factors. From among the methods
used to assess landslide susceptibility, heuristics, statistical
and deterministic approach are quite well known (Soeters
and Van Westen, 1996). Further, during the past few years
multivariate statistical approach for the landslide
susceptibility assessment has been used (Meusburger and
Alewell, 2009). In heuristic or direct approach, expert views
are drawn for landslide susceptibility zonation mapping
(Niemann and Howes, 1991; Anbalagan, 1992; Turner and
Schuster, 1996; Atkinson and Massari, 1998; Van Westen et
al. 1999). One major problem with this approach is that it
requires abundant geological and environmental information
about landslides and factors contributing to its occurrence.
This volume of information is, of course, really difficult to
obtain, and at times even impossible to access. Other
shortcomings of this approach are: reproducibility of its
results; subjectivity of the weighting system used, and
ranking and grading of the variables (Dai et al. 2001). The
deterministic approach is used for large-scale landslide
susceptibility assessments. It may be used if two conditions
are met: First, the geological as well as geomorphological
characteristics of the whole region must be homogenous;
Second, the type and the nature of the landslide must be
simple, well-known and well identified (Dai et al. 2001;
Turner and Schuster, 1996). The main advantage of this
approach is that it allows factor of safety to be computed
for a slope. In small areas, slope stability cannot be computed
with desired accuracy using other methods but the
deterministic approach can handle this issue successfully
(Van Westen, 1993; Terlien et al. 1995, Wu and Sidle, 1995).
In statistical methods, all factors contributing to past
landslides are dealt with statistically in the whole region
and terrain units (Van Westen, 1993; Naranjo et al. 1994).
Using data related to landslide-free zones, the probability
of a landslide occurring in the future is predicted
quantitatively or semi-quantitatively in this area. To analyze
landslide susceptibility zonation, widespread use of bivariate
and multivariate statistical methods has been made (Brabb
et al. 1972; Yin and Yan, 1988; Carrara et al. 1990; Van
Westen, 1993; Van Westen et al. 1999; Naranjo et al. 1994;
Dai and Lee, 2002; Donati and Turrini, 2002; Ohlmacher
and Davis, 2003; Yesilnacar and Topal, 2005; Davis et al.
2006; Pradhan et al. 2008; Mathew et al. 2009; Dwi Wahono,
2010). Due to the suitability of the application of GIS in
statistical methods, statistical-based approaches have proved
most practical in landslide susceptibility zonation analyses
at medium and regional scales (Turnern and Schuster, 1996).
Within the multivariate statistical methods for landslide
susceptibility zonation analysis, multiple linear regression,
discriminant analyses and logistic regression are the most

JOUR.GEOL.SOC.INDIA, VOL.84, JULY 2014

frequently used (Mathew et al. 2009). The present article
primarily intends to assess landslide susceptibility zonation
in Hashtchin region, located west of Alborz mountains in
northwest Iran using multiple logistic regression method.

A number of researchers have carried out studies on
landslides and factors causing them in Hashtchin area
(Ansari and Blurchi, 1996; Nikandish and Mir Sanei, 1996;
Talaei et al. 2004). Hashemi Tabatabaei (1998) studied
factors contributing to the occurrence of landslides in the
region and produced a regional hazard map using qualitative
model. Mahdavifar (1996), as well as Uromeihy and
Mahdavifar (2000), studied factors causing landsides in
Khoreshrostam area (part of Hashtchin region). In their
studies, the Hazard Potential Index (HPI) was calculated
by a computer program using fuzzy sets. In fact, the prepared
hazard zonation map was a susceptibility map the accuracy
of which was not checked or assessed by the authors.

The present study carried out on landslide susceptibility
zonation in Hashtchin area and Alborz mountains using
logistic regression model is first of its kind. Further, to assess
the results of logistic regression method using Receiver
Operating Characteristic curve analysis (ROC) and based
on the group of selected landslides is not included in the
model. The important significance of the present study is
that the modeled landslide susceptibility zonation map can
be used as a reliable input to determine landslide type along
with ways to mitigate its damages. The results can also be
used as the basis to design cautionary developmental
programs as well as environmental planning and to prevent
landslides. The model proposed could also apply to other
regions with similar geological, topographic and climatic
features as that of the Hashtchin region.

STUDY AREA

Hashtchin region is situated in southwest of Ardabil
province in northwest of Iran. The area under study lies
between longitudes 48°14' to 48°44'E and latitudes 37° 06'
to 37°32'N (Fig. 1). It covers parts of Talesh mountains,
Agh Dagh massif, Darram hills, Qezel Owzan valley and
gorges in northwest of Alborz mountains. The study area is
1645.84 km?, and 9.52% of the area is found to be affected
by landslides. Currently, more than 9.52% of Hashtchin’s
territory is struck by isolated and regional landslides
(Mahdavifar, 1996; Talaei et al. 2004). A total of 175
landslides (20.89 km? single landslides and 135.86 km?
landslide zones) were mapped in the region covering
156 km”.

Landslides are classified as translational, rotational slides
and combinations of the two. Landslide zones are also
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Fig.1. Location map of study area (a and b) and landslide inventory map (c)

classified as creep, unmappable and widespread. It was
found that 103 cases (58.9%) of the landslides of the region
are presently active. More than 60% of landslides which
have been studied show signs of activities in the past 50
years.

METHODOLOGY

For the present study, the following steps were taken:
First, the landslide records were entered to standard forms
as well as its inventory map was prepared by field work and
aerial photographs (scales=1:50000, 1:20000). Data
extracted regarding causes of previous landslides can be
used as source for predicting future landslides (Wang and
Sassa, 2005). For this reason, as the next step, information
regarding causes of landslides was collected using ArcGIS
9.2 package. Digital Elevation Model (DEM) was also
prepared using topographic maps (scale=1:25000) with a
resolution of 10x10 meters. Based on the Digital Elevation
Model (DEM) obtained, geomorphologic parameters
including slope gradient, slope aspect, profile curvatures
and altitude were prepared in GIS system. Due to the
importance of lithological and tectonic features of the region

in causing landslides, steps were taken to collect the required
data with great care. The main mapping tools used included
topographic maps at 1:50000 and 1:250000 scales, and aerial
photographs at 1:20000 scale and geological maps of
Hashtchin (Faridi and Anvari, 1996), Masuleh (Davies et
al. 1972), and Bandar Anzali (Davies et al. 1975) at 1:100000
scale. The information already present in the previous maps
was used to prepare the geological map. During the field
work, geological observations, important lithostratigraphic
and geological structures were identified and transferred
to the topographic maps. From the region’s geological maps,
lithological layers and distances to major faults were
produced. The data related to the type of plantation (land
cover) and land use were extracted from topographic maps
and satellite images of Landsat ETM*-2002. Atmosphere
and geometric corrections were made for images before
processing further. The land cover-land use thematic map
of the study area was prepared using unsupervised
classification of Landsat ETM+ (2002) satellite images
because of the available information on the study area was
not sufficient (Bakker et al. 2004). This map was revised
and completed based on the observations made during the
field works. The major land cover-land use classes in the
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area are rangeland (> 92%), agricultural land and orchard
(5.2%), forest (2%) and built-up area. Vegetation provides
both hydrological and mechanical effects that are generally
advantageous for the stability of the slopes. Comparing aerial
photographs of the years 1958, 1968 and 1993 with 2002
satellite images shows that in this period, many changes have
taken place in land cover of the area. For more than 60 years
the forest and rangelands have been extensively damaged
due to unscientific actions and applications that have been
changed into agricultural lands, orchards, and built-up areas
to construct roads. It is very difficult to find an area that is
unaffected by these changes. Therefore, the land cover-land
use map was produced in detail because it has been
recognized as one of the important independent variables
to be used in the landslide susceptibility analysis.

Earthquake is considered as one of the factors in
triggering of landslides. The extent of the impact of
earthquake on slope stability depends on geological,
lithological, hydrologic, topographic and other related
conditions of the region. To simplify the impact of
earthquake on landslide, increase shear stresses along a
failure surface is considered as the only force contributing
to slope instability. To carry out pseudo static method, this
force is deemed to be the result of Peak Ground Acceleration
(PGA) (Shariat Jafari, 1996). To study the impact of the
earthquake on occurrence of landslides, the role played by
active faults were studied and the PGA map was also
prepared. This map can be used as an important data layer
in analyses related to landslide hazard and susceptibility
(Turner and Schuster, 1996). Changes in slopes during road
construction can reduce soil and layer stability and hence
cause landslides (Knapen et al. 2006; Ayalew and Yamagishi,
2005). The layers related to distance to roads and settlements
were produced using topographic maps in order to
incorporate variables related to roads and buildings in the
landslide susceptibility zonation analysis model. The impact
of hydrology and climate on occurrence of landslides in the
region was assessed in terms of mean annual precipitations
and distance from rivers. Eq. 1 was used to determine the
mean annual precipitations. This multivariate regression
equation was obtained based on meteorological data from
58 meteorological stations, which determines the mean
annual precipitation at different points of the region using
their geographic coordinates and elevations. Further, the
isohyetal map was also prepared on 1:50000 scale (Hemmati
et al. 2007).

Mean annual

Drecipitations — @ P48 H(¥<0.002) + (2x0.063)

(M
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In equation 1, a (is a constant) = 471.162, X=longitude
in degrees; Y=latitude in degrees, and Z=altitude (elevation)
in meters.

The data related to the independent and dependent
variables were saved using nominal and scale group
measures as an ASCII file in the form of 50x50 m cells,
which were later imported to SPSS Version 18 for statistical
analysis.

Different multivariate statistical analyses, i.e.
discriminant analysis, multiple regression, and logistic
regression, are available to assess landslide susceptibility
in widespread and complex areas (Carrara et al. 1991;
Carrara, 1983; Lee, 2005; Guzzetti et al., 2006; Chang et
al. 2007). Type and measurement level of independent and
dependent variables determine which model fits a given
situation best (Pallant, 2007).

In multiple regression approaches, the dependent
variable is measured as a continuous variable. Such
approaches are not suitable when categorical dependent
variables are available. In the present work, logistic as well
as discriminant analyses seem suitable since, the dependent
variable is dichotomous — is binary in nature (landslide/no
landslide). In discriminant analysis, the independent
variables should have normal distribution and there should
not be a linear correlation between them. When the above
assumptions are not met, logistic regression model is more
appropriate (Pohar et al. 2004). Similarly, when the
independent variables are categorical, continuous or a
combination of the two, logistic analysis is preferable to
discriminant analysis (Atkinson and Massari; 1998 Menard,
2002). In logistic method, the main objective is to find a
function that can best show the relationship between
landslide/no landslide situations (dependent variable) and
a collection of independent variables (causes of landslides)
(Ayalew et al. 2005; Kleinbaum and Klein, 2010). Logistic
method has been used to predict landslide/no landslide
situations based on an array of contributing factors
(independent variables). Since multiple logistic regression
is a type of extended linear model, its dependent variable is
expressed by a digit between 0 and 1. Similarly, the
probability of landslide occurring is also expressed using
real numbers 0 to 1. Therefore, multiple logistic regression
can be a very appropriate mean to analyze landslide
occurrence (Yesilnacar and Topal, 2005). Recently several
studies have been carried out on the assessment of landslides
by logistic regression (Carrara et al. 1991; Atkinson and
Massari, 1998; Guzzetti et al. 1999; Dai et al. 2001; Lee
and Min, 2001; Dai and Lee, 2002; Ohlmacher and Davis,
2003; Lee, 2004; Ayalew and Yamagishi, 2005; Ayalew et
al. 2005; Can et al. 2005; Wang and Sassa, 2005; Yesilnacar
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and Topal, 2005; Duman et al. 2006; Chang et al. 2007,
Greco et al. 2007; Mathew et al. 2009; Dong et al. 2011;
Grozavu et al. 2012). Since in the present study, the
dependent variable is binary (landslide/ no landslide) and
the independent variables are continuous and qualitative,
the probability of landslide occurrence in each grid cell was
computed using logistic regression method. For categorical
variables, dummy variables were used.

The Logistic Regression Model

Logistic regression is a mathematical modeling approach
which can be used for the evaluation of the relationship
between various independent variables and a categorical
outcome (Kleinbaum and Klein, 2010). Conceptually,
logistic regression is similar to linear regression model since
in both the methods the relationship between a set of
independent or predictor variables and a dependent variable
is evaluated. However in linear regression, the dependent
variable usually has continuous values while in logistic
regression it is a dichotomy and the independent variables
could be of any type. In the present analysis, the dependent
variable is a binary (dichotomous) representing the presence
or absence of the landslides and the independent variables
(predictors) can be either continuous or discrete. Also it is
not necessary for the variables to have a normal distribution.
Using the logistic regression model the relationship between
the logistic function f(z) and the probability of a landslide
occurrence can be defined as (Rupert et al. 2008;
Meusburger and Alewell, 2009; Mathew et al. 2009; Dwi
Wahono, 2010; Grozavu et al. 2012):

e _ 1
f(Z)_1+eZ l+e* @
or
/(2)
z=log~ f(z)) 3)

Where z varies from -8 to +8 while the range of the
logistic function f(z) is between 0 and 1.

To obtain the logistic model from the logistic function,

z is written as a linear combination of independent variables

and their respective coefficients. Mathematically, the

regression model is represented by the following equation

(Eq. 4)

Z=b0+b1X1+b2X2+....+prp 4

Where, b, is the intercept (often labeled the constant),
b, b, .. bp are the coefficients that measure the contribution

1,92
of independent factors (X, X, ... Xp ) to the variation in z. If

z was observable, we would simply fit a linear regression to
z. However, since z is unobserved, the independent variables
must be related to the probability of interest by substituting
for z. Thus, z is an index that combines independent variables
(e.g. lithology). By substituting Eq. 4 into Eq. 2, we get:

1
(by+b, X, +b, X, +...+b,X )

f(z)= ()
1

+e

The logistic model for landslide occurrence can then be
represented as:

! (6)

e—(bo+b1X1+b2X2+....+prp)

P(D=1/X,Xp,.. X ;) =
1+

Where, P(D=1/X,,X,, ... X;) is the probability of a cell
undergoing slope failure, given the presence of independent
variables X to X, The terms b,and bp in this model represent
unknown parameters that are estimated based on the data of
independent variables and landslide condition of the cells
using the maximum likelihood method. The maximum
likelihood is derived from the probability distribution of
the dependent variable.

Because of the non-linear relationship between
independent variables and the probability in the logistic
model, an iterative algorithm is required to estimate the
parameters (Dai and Lee, 2002). Logistic regression tries to
estimate b, and bp by best fitting the observation variables
X s for the sample locations for which the status of dependent
variable is either present or absent (Mathew et al. 2009).
Logistic regression modeling is an appropriate approach to
estimate the probability of landslide occurrence and slope
instability assessment on a regional scale because by using
this model we can represent the presence of a landslide at
any given cell with a value of 1 and the absence of a landslide
with a value of 0. The logit of f(z) are calculated at each cell
using values of dependent and independent variables and
the estimated coefficients (b,and bp). The obtained values
for f(z) describe the probability of occurrence of a landslide
which ranges between 0 and 1. Using these formulas, a
landslide susceptibility map was generated.

Tests of Model Fit and Accuracy

In the landslide susceptibility map prepared using the
logistic regression method, the probability of a landslide
occurrence is shown in each cell within the range 0 to 1.
The practical application of the landslide susceptibility map
produced requires map classification systems. Four common
classification methods are available including grading based
on quantiles, natural breaks, equal intervals and finally
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standard deviations. In the quantile method, for a given class
or range of susceptibility, a wide range of probability
quantities is considered. When severe fluctuation is observed
in the data, the natural breaks method is considered as the
best to determine the groups. Of course, this latter method
is not appropriate for the probability maps designed.
Classification of landslide susceptibility based on probability
ranges at equal intervals has been frequently used in most
studies. In this method, the relative susceptibility of each
class compared to other classes is emphasized. Of course,
this method is not recommended since it does not show the
real susceptibility level involved. The fourth method is based
on standard deviation scores. In this method, half a standard
deviation is added or deducted from the average probability
quantities to determine the fit class. To determine the other
classes, a standard deviation is added or deducted from the
quantities obtained in the first class (Ayalew and Yamagishi
2005). The standard deviation method is a good method to
determine four susceptibility classes including very low, low,
medium and high (Ayalew and Yamagishi, 2005; Dwi
Wahono, 2010). In this article, in addition to the application
of the standard deviation method, landslide susceptibility
quantities were divided into four equal groups based on four
degrees. The results of both methods were evaluated. To
achieve an accurate assessment of the conformity of the
classified map based on the aforementioned method the
following equation has been used (Fernandez, 2003).
z,/s,

2 zi/ s;

Where D.F. is degree of fit; z, is the area occupied by the
rupture zones in the i class of susceptibility and s, is the area
of the i class of susceptibility.

The smaller the degree of fit in the very low and low
landslide susceptibility classes (relative error), and high
conformity in medium and high landslide susceptibility
classes (the amount of relative success) represent the high
quality of the susceptibility map. Zonation maps can further
be assessed by determining the percentage of failure zones
in each susceptibility class. This method also enables
estimation of absolute errors and relative success (in order
of failure percentages in classes with very low, low, medium
and high susceptibility ranges).

The goodness of fit statistical procedure assesses the
conformity of the logistic model to the real result. The
Hosmer-Lemeshow statistics is one of the goodness of fit
statistics that shows the conformity of observed cases to the
expected ones for two member classes (in this article
landslide/ no landslide). The Hosmer-Lemeshow statistics
is a Chi-square Pearson statistics computed via the

D.F.

(7
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2xg table of observed and expected frequencies. In such a
table, ‘g’ shows the number of groups obtained from the
estimated probability. In this test, the high p-value justifies
the conformity of the model to the data on hand (Peng et al.
2002). The descriptive criteria to assess goodness of fit
include R?indices introduced by Cox and Snell (1989) and
Nagelkerke (1991). In linear regression, these indices have
been well defined and their values indicate the ratio of the
dependent variable changes that can be predicted and
explained by the model. Since justification of changes
observed in indices in logistic model is vague, and since
they cannot be tested using an inferential method, it is
recommended that these two indices be used as
supplementary to fit test statistics (Peng et al. 2002). Further,
recent studies have shown that RL? (The likelihood ratio
R?) is very useful in the logistic method (Menard, 2002).
The Omnibus test is a likelihood-ratio Chi-square test that
compares the current model with the zero model. In the zero
model, the results of the analysis are reported without using
any of the model’s independent variables. This test shows
the degree of success of the main model compared to the
zero model (Pallant, 2007). The -2 Log likelihood statistics,
behaving like Chi-square test, was also used to assess the
model. The amount of this statistics for the logistic model,
incorporating only an intercept, can be obtained by SPSS
and by adding the Chi-square for the modeling of Omnibus
Tests of Model Coefficients table plus the -2 log likelihood
in the Model Summary table. If the amount obtained is big,
the model shows low conformity, and if the amount is small,
it shows that the model has good conformity with the data
under study (Menard, 2002).

Besides, to validate the predicted probabilities,
classification table in SPSS output was made use of in which
the degree of the ability of the model in predicting the correct
category (landslide/no landslide) has been shown for each
cell.

There is another interesting model, namely Receiver
Operating Characteristic (ROC), to assess fitness of the
logistic model. In this method, a percentage of the
observations (cells) with landslides — that have correctly
been predicted by the model — are called Sensitivity
(Probability for correctly identifying a positive or the true
positives) based on Eq. 8.

n,
_— (®)
n, + ng

n: Number of true positive decisions,n,. : Number of
false negative decisions

Further, the specificity of the model has been shown

based on the percentage of the correct classified observations

Sensitivity =
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(cells) with no landslides (Probability of correctly identifying
a negative or true negatives) (Eq. 9).
nTN

Specificity = ©)
1IITN + nFP

n: Number of true negative decisions, ng,: Number of
false positive decisions.

The ROC is a very useful method to assess models that
classify regions to landslide/no landslide zones (Swets, 1988;
Zweig and Campbell, 1993; Yesilnacar and Topal, 2005;
Mathew et al. 2009). Commonly, sensitivity takes the y-
axis and (1—specificity) the x-axis. The Area under the ROC
curve shows the increase in the probability of making a
positive choice compared to a negative one. The ideal curve
model has the maximum amount of the under curve layer.
The total under curve area varies between 0 and 1. If the
model used predicts the probability of landslide better than
arandom method, the under curve layer can be equal to 0.5.
If the under curve layer in a model is 1, it would imply that
the model has made the best and the most comprehensive
predictions.

CAUSATIVE FACTORS
Geology

The type of lithology and geological structures are
considered to be one of the most important factors in
landslide occurrence (Lan et al. 2004; Ayalew and
Yamagishi, 2005; Saldivar-Sali and Einstein, 2007). Due to
variations in the geological formations of the region and
various degrees of sensitivity of the rocks to landslide, they
play an important role in spread of landslides in the region
(Mahdifar, 1996; Talaei et al., 2004; Uromeihy and
Mahdavifar, 2000). The rocks are late Precambrian to Recent
(Davise et al. 1975) and could be divided into a number of
distinct group namely calcareous, plutonic, volcanic and
pyroclastic, metamorphic rocks as well as sedimentary
rocks of Neogene and Quaternary age (Fig. 2). About
13.29% of the whole area is of Miocene clay to marly
sedimentary rocks (Ng™) and 42.97% of altered zones of
the area (a) had experienced landslides. This rate of landslide
is remarkable compared to areas with other lithologies.
Density of joint system, fractures, faults and crush zones
can play an important role in slope instability (Haeri and
Samee, 1997; Fatemi Aghda et al. 2003; Rutela and Lakhera
2000; Lan et al. 2004). The distance between the cells and
the main faults varies from 0 to 23233 meters. The study
has shown that 75.4% of the landslide zones occur within
0 to 8 kilometers from major faults (Fig. 3). Landslide
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Fig.2. Lithological map of study area and landslide probability
histogram and chi-square test result

occurrence is mostly due to the indirect impact of major
and minor faults — resulting in the crushing of the surrounding
rocks, increase in the permeability of the rocks, hydro-
thermal activity and expansion of alteration zones. Further,
faults can produce landslides through generation of
earthquakes. In fact, 98.8% of the past landslides have
occurred in areas with a Peak Ground Acceleration (PGA)
0of 0.57 to 0.58 (g).

Land Cover - Land Use Factor

The impact of plantation on slope stability occurs in a
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variety of ways including changes in cohesion, internal
friction angle, weight of the soil and pore-water pressure
(Gomez and Kavzoglu, 2005; Donati and Turrini, 2002).
The type of plantation and any changes therein can cause
landslide (Mehrotra et al. 1996; Thomas, 2003; John et al.
2006). Land use in Hashtchin region is mainly water and
rainfed agriculture, gardens, pasture and forest (Fig. 4). In
the area under study, during the past 50 years, destruction
of greenery, deforestation and shifting of land use to
agriculture fields and gardens have increased the number
of landslides in the region at 2 to 6 times. Comparison of
the rate of landslides occurred (observed) and estimated
(expected) shows that in agricultural farms and fields,
landslide probability has increased 3 to 5 times. This has
been up to 1.62 times in gardens, and 2.9 to 5.45 times in
weak or changed pastures. Up to 300 meters of the roads
and residential areas, no meaningful change is observed in
the number of cells with landslides. Statistically speaking, a
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reduction in the distance of cells to residential places and
roads (both with mostly low quality) does not show a
meaningful impact of distance on past landslides.
Nevertheless, due to the occurrence of a number of landslides
in villages, roads, and parts of cities, it seems necessary to
include the information on roads and residential places in
analysis of slope of landslide susceptibility.

Geomorphology

Slope gradient and slope aspects, the amount and
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direction of runoff, plantation density, soil moisture and
temperature are among the most important factors instigating
landslides (Lan et al. 2004; Ayalew and Yamagishi, 2005;
Gomez and Kavzoglu, 2005). Landslide probability in
northeast-facing slopes is about 2.25 times higher than the
expected rates for these slopes. Slopes with northeast and
east orientations possess high landslide densities since
they meet the Caspian sea cycles and accordingly has more
humidity and rain. Landslide susceptibility is, thus, expected
to increase with an increase in the degree of slope (Gomez
and Kavzoglu, 2005). In the area under study, 85.68% of
the grid-cells involved in landslides could be categorized
into three slope levels namely level I, I, and III (Fig. 5).
Lithology and the degree of slope are not independent of
each other (Saldivar-Sali and Einstein, 2007). In many
regions, an increase in the degree of slope cannot, on its
own, control landslide occurrence (Duman et al. 2006). The
slopes having claystone, mudstone and marly formations
and altered zones of the region — with a slope degree of
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Fig.5. Slope gradient map of study area and landslide probability
histogram and chi-square test result (I<10%; I1=10-20%;
I1=20-30%; IV=30-40%; V=40-60%; VI>60%)

10% to 40% — reveal the important role of lithology in
landslides of the region. In slopes with sensitive lithology
and gentle slope, water permeability plays an important role
in widespread landslides (Dai et al. 1999; Wong et al. 1998).
The elevation of Hashtchin region varies between 850 meters
in southeast, by the side of Qezel Owzan and 3324 meters
in Agh Dagh. The probability ratio of the number of observed
landslides to those predicted showed an increase, equal to
1.14 to 1.68 times, in areas with a height of 1000 to 2000
meters. This ratio was less than 1 in other areas. Such factors
provide good conditions for permeability of rain into the
underground. This condition can also initiate landslides
(Kamp et al. 2008). To determine the impact of slope
morphology on landslides, the slopes were divided into three
groups namely flat, convex and concave. An analysis of the
probability ratio of cells with landslide with predicted cells
revealed that slope curvature in Hashtchin region does not
have a meaningful impact on landslide occurrence.

Climatic and Hydrologic Factors

In some landslide prone areas, the mean annual
precipitation is considered to be an important factor in
landslide occurrence (Dai et al. 2002; Okamoto et al. 2004;
Lan et al. 2004). The degree of the impact of rain on slope
instability depends on the climatic conditions, geological
structures, topography and permeability along slope
formations (Haeri and Samiee, 1997). A comparison of the
number of cells in regions with different rates of annual rain
reveals that in the area under study about 65.5% of the cells
with landslide have occurred in areas with mean annual
precipitations of 300 to 360 mm. Since landslide probability
does not increase with an increase in the amount of rainfall,
landslide occurrence cannot be justified and explained
directly through the amount of rainfall. In fact, factors like
the amount of runoff and changes in the condition of
groundwater level and flow can cause landslides since they
change the mechanical characteristics of rocks and soil
(Uromehyie and Mahdavifar, 2000). Therefore, the impact
of rainfall on enhancing landslides susceptibility can be
dependent on the geological conditions of slopes.

Groundwater aquifers are mainly found in calcareous
sedimentary rocks in the eastern parts as well as in non-
carbonate sedimentary strata comprising marl, mudstone,
siltstone, sandstone, conglomerate, and volcanic rocks which
comprise lavas and tuffs in the western part of the region.
Being a mountainous area the groundwater table is highly
variable in the study area. In general, the direction of
groundwater flow is from the mountains to Qezel Owzan
river in the western and southwestern boundary of the area.
Because of high permeability, calcareous sedimentary rocks
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in the area have great potential to reserve water. Igneous
and metamorphic rocks with joints and fractures developed
due to folding and faulting, have been considered as
semi-permeable units with underground water reserves.
Other formations, such as the Neogene deposits of marl,
mudstone, siltstone, sandstone and conglomerate are
impermeable units and groundwater reserves in them are
low. Therefore, with respect to the relative permeability, the
lithological units in the study area can be divided into
three groups: permeable, semi-permeable and impermeable
(Pars Karst Water (P.K.W.), 2011) (Fig. 6). Statistical
evaluation of the relationship between landslide occurrences
and lithology shows that most landslides have occurred in
impermeable areas (Table 1).

Table 1. Landslide densities of the relative permeability classes in the study area

Landslide All grid (pixels) Grid cells (pixels) Relative
density (%) cells with landslide permeability
% Frequency % Frequency
(no. of pixels) (no. of pixels)
13.64 59.2 419072 73.8 57164 Low or
impermeable

6.8 20.7 146907 12.9 10008 Moderate
(semi-permeable)

7.2 20.1 142477 13.3 10275 High (permeable)

The reason for this can be attributed to the springs
because the majority of springs in the area discharge along
the contact points of lithology with different permeability.
During the field studies carried out for the preparation of
landslide inventory maps, it was found that most springs
that led to slope instabilities in the region are located at the
boundary between the impermeable sedimentary units of
Neogene age (mostly marls, mudstone, siltstone, sandstone
and conglomerate) and semi-permeable igneous rocks with
joints and fractures of Eocene age. Field check indicates
that the failures generally occurred along the contact surfaces
of sedimentary-volcanic rocks. Rapid changes in water levels
during late winter or early spring rainfall caused new
landslides or reactivation of the old landslides.

The main river in the area is Qezel Owzan which is in
the western border of the area. Qezel Owzan river is the
main branch of Sefid Rud basin, which has an area equal to
60,496 km? and ultimately discharges into the Caspian sea.
Qezel Owzan is so long that it straddles through several
natural regions or zones extending from Zagros to Alborz.
Flow discharge of this river at Gylvan station (40 km after
the area) is 111 m’/s (Mahdavifar, 1996). Other major
streams in the region include, Shah Rud, Zal, Saqezchi,
Goolgoolab and Kandiraq which flow in west and southwest
of the area and all of them pass into the Qezel Owzan
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channel. Although due to lack of stream-gauging stations
discharges of these streams cannot be directly determined,
but measuring Qezel Owzan river discharge before entering
the area (Astor station, 20 km before entering the area) and
after exiting it (Gylvan station, 40 km after the area) shows
a 19.33 m?/s increase in flow rate of which is partly because
of aforementioned streams.

An increase in the amount of rainfall together with the
increase in river discharge and acceleration in erosion along
river banks that causes undercutting are all considered as
important factors enhancing slope failure (Wu et al. 2004;
Fourniadis et al. 2007). In Hashtchin area, stream bank
erosion has been responsible for 81% of single landslides
and 42% of landslide zones. In all, 53.3% of cells with
landslide have been 0 to 900 meters off the stream bed.

The Input Data in Analysis of Logistic Regression

In order to estimate coefficients for logistic regression,
it is necessary to have suitable input data. In fact, for each
cell, quantities of independent and dependent (landslide/no
landslide) variables must be available. In the present study,
using a random selection, and for analytical purposes, 75%
of cells (pixels) with landslide were used to estimate
landslide susceptibility and the remaining 25% cells have
been retained for accuracy assessment. From the produced
database, 58054 cells with landslide and 58054 non-
landslide were randomly selected for logistic regression
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analysis. In all, 19393 cells with landslide were kept for
model validation. This combined spatial database consists
of 116108 cells. In the first column of this tabular database,
landslide occurrence (dependent variable) in the past was
shown, in each cell, with 1 and no landslide occurrence was
shown with 0. In other columns, independent variables data
have been shown as string-nominal (categorical predictors)
and numerical-scale (continuous predictors) data.

RESULTS

The first logistic model was designed based on Table 2
variables and 75% of the landslides of the region. This model
was implemented with forward stepwise analysis using
maximum likelihood method in SPSS Version 18. The
regression started with 62 predictor variables units including
continuous predictors and categorical predictors (Table 2).
Since in this analysis, the independent variables, lithology,
land cover and land use, slope aspect, altitude and curvature
are all categorical, to differentiate categories dummy
variables made by SPSS was used. For the categorical
variables, the last category was selected as the reference
with which all the other groups were compared. Hence, the
number of dummy variables in each categorical variable is
equal to the number of groups minus one (k, k-1 dummy
variables categories). The simulated variables were used to
compare the differences observed between the groups and
the dependent variable (landslide/non-landslide).

There are several methods to select the variables to be
included into the model. In this study, the forward stepwise
method was adopted. In this method, score statistics were
used to select variables as input into the model. This method
started without independent variables, and finished having
added the variables in ten steps. In each step, the predictor
variable, the significance level of which is less than the
specified value, default 0.05, was incorporated into the
model. In the last step, the variables with significance values
larger than 0.05 were excluded from the analysis. Those
variables that could cause significant changes in the -2 log-
likelihood were selected for analysis (Davis and Ohlmacher,
2002). The forward stepwise method of variable selection
was stopped after completion of the 10" step. Having deleted
37 predicted variable classes from the variables that had
not caused any significant changes in -2 log-likelihood,
32 of variable classes were retained in the model. Since
changes in -2 log-likelihood are more reliable than those in
Wald statistics, the variables were selected using the -2 log-
likelihood method (Table 3). The effect of each predictor
variable has been summarized in parameters estimation table
(Table 3). For each selected variable, the estimated amount

for ¢, coefficients has been shown. The null-hypothesis here
is that the amount of the coefficient is equal to zero. To test
the null-hypothesis, Wald statistics with the relevant degree
of freedom was used. The selected variables with their
relevant estimated coefficients had a significance level of
less than 0.05 and were significantly different from zero,
that is, the selected variables were effective in the model.
Having estimated the constants and coefficients of the
independent variables in the logistic regression analysis, in
the next step, the probability ratios for all Hashtchin cells
(50 mx50 m) were computed based on quantities of
independent variables. This estimation was made based on
the function defined as f(z) (Eq. 4). In Eq. 4, for each cell
(pixel) in the study area, the continuous independent variable
quantities are multiplied with the relevant coefficient. A cell
with a categorical variable has been shown with the digit 1
and has been multiplied into its equivalent coefficient.
Variables and independent classes not included in the model,
have been shown as 0 and have been excluded from the
analysis. For each cell, the result of the multiplication of the
coefficients and quantities of the independent variable has
been added together. The ultimate number was added to the
constant b0. Then, landslide susceptibility was computed.
The result has been shown in the form of a raster layer in
which estimated probability quantities have been specified
for each cell. This probability rate varies between 0 and
0.9954 (Fig. 7).The rate of cell or Hashtchin area
susceptibility to landslide is determined based on the
minimum and maximum probability levels obtained.

Landslide Susceptibility Map Grading

Landslide susceptibility map grading was undertaken by
two methods: (1) standard deviations of landslide occurrence
probability, and (2) dividing landslide susceptibility rates
to four equal groups (Fig. 8 and 9). Later, the results obtained
in each method were assessed. In the first method, 38.6% of
the area under study was placed in the group with very low
susceptibility. Low and moderate susceptibility classes
comprised of 28.9% and 13.2% of the area, respectively.
In all, 9.4% of the region was placed in the class with
very high landslide susceptibility (Table 4).

Accuracy Assessment

Landslide susceptibility zonation map of Hashtchin
region was prepared using logistic regression model in SPSS,
Version 18. The first output of this method is a zero block,
also headed beginning block, in which statistical analysis is
carried out without using any independent variables. The
results obtained were used for the purpose of comparison
with the model where independent variables are included.

JOUR.GEOL.SOC.INDIA, VOL.84, JULY 2014



LANDSLIDE SUSCEPTIBILITY ZONATION MAPPING USING LOGISTIC REGRESSION, NW IRAN 79

Table 2. List of independent variables used in logistic regression analysis

SL. Variable Nature Class code Description
no.
1 Lithology Categorical Class I Q: Alluvial and colluvial deposits
Class I1 SC: Sandstone and conglomerates
Class IIT SP: Phyllite and metamorphic rocks
Class IV A: Altered zones
Class V VT: Lavas and tuffs
Class VI V: Volcanic rocks
Class VII P: Intrusive and sub-volcanic rocks
Class VIII SCM: Sandstone, conglomerate and marl
Class IX WYV: weathered and brecciated extrusive rocks
Class X M: Marl and claystone
Class XI Sh: Schist and shale
Class XII C: Limestone
Class XIII SL: Sandy to silty limestone
2 Slope aspect Categorical Class I N facing (45° about N)
Class II NE facing (45° about N 45° E)
Class IIT E facing (45° about E)
Class IV SE facing (45° about S 45° E)
Class V S facing (45° about S)
Class VI SW facing (45° about S 45° W)
Class VII W facing (45° about W)
Class VIII NW facing (45° about N 45° W)
Class IX Flat
3 Altitude (Elevation) (m) Categorical Class I 400=TEL=600
Class I 600=TEL=800
Class 11 800=TEL=1000
Class IV 1000<TEL~=1200
Class V 1200<TEL~=1400
Class VI 1400<TEL=1600
Class VII 1600<TEL=1800
Class VIII 1800<TEL=2000
Class IX 2000<TEL=2200
Class X 2200<TEL=2400
Class XI 2400<TEL=2600
Class X1II 2600<TEL=2800
Class XIII 2800<TEL=3000
Class XIV 3000<TEL=3200
4 Topographic curvature Categorical Class I Concave (-)
Class 11 Flat (0)
Class I1I Convex (+)
5 Land cover Categorical Class I Agricultural land
Class II Orchard
Class IIT Forest and others
Class IV Moderate rangeland and others
Class V Moderate rangeland
Class VI Agricultural land and orchard
Class VII Good rangeland
Class VIII Sparsely grassland
Class IX Open forest and others
Class X Dry farm
Class X1 Good rangeland and others
Class XII Loose forest
Class XIII Poor rangeland and rocky land
Class XIV Moderately dense forest
Class XV Agricultural land, rangeland and garden
Class XVI Build-up area
6 Distance to main faults (m) Continuous
7 Distance to drainage (m) Continuous
8 Slope gradient (°) Continuous
9 Distance to road (m) Continuous
10 Distance to settlement (m) Continuous
11 Peak ground acceleration (g) Continuous
12 Mean annual precipitations (mm/year) Continuous
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Table 3. The predictors retained in the final logistic regression model and their estimated coefficients

Variables b, S.E. Wald df Sig. Exp(b,)
Distance to main faults (m) .000 0.000 2834.863 1 0.000 1.000
Peak ground acceleration (PGA) (g) 262.778 3.939 4450.923 1 0.000 92.23x10'
Mean annual precipitations (mm/year) .008 0.000 1026.902 1 0.000 1.008
Distance to road (m) .000 0.000 748.772 1 0.000 1.000
Distance to settlement (m) .000 0.000 606.942 1 0.000 1.000
Slope gradient (°) -0.011 0.000 632.383 1 0.000 .989
Lithology 7941.667 12 0.000

Class I 2.962 .082 1289.915 1 0.000 19.336
Class II 1.304 0.071 333.170 1 0.000 3.683
Class III 10.942 0.200 2978.516 1 0.000 56510.290
Class IV 1.563 0.077 415.802 1 0.000 4.773
Class V 2.451 0.076 1050.120 1 0.000 11.602
Class VI 2.309 0.072 1020.544 1 0.000 10.064
Class VII 2.322 0.075 949.713 1 0.000 10.192
Class VIII 2.104 0.076 762.408 1 0.000 8.196
Class IX 1.957 0.080 599.621 1 0.000 7.078
Class X 1.554 0.091 294.764 1 0.000 4.730
Class XI 1.380 0.100 191.309 1 0.000 3.975
Class XII 3.347 0.083 1623.310 1 0.000 28.424
Slope aspect 712.432 8 0.000

Class IIT 133 0.031 18.002 1 0.000 1.142
Class V -481 0.032 227.339 1 0.000 0.618
Class VI -.380 0.030 159.064 1 0.000 0.684
Class VII -243 0.029 70.308 1 0.000 0.784
Class VIII -.307 0.029 109.681 1 0.000 0.736
Land cover-land use 4307.086 13 0.000

Class I 0.954 0.080 143.129 1 0.000 2.597
Class 1T 0.956 0.068 195.291 1 0.000 2.602
Class 111 0.281 0.093 9.031 1 0.003 1.324
Class IV -1.810 0.073 621.196 1 0.000 0.164
Class V -0.242 0.071 11.657 1 0.001 0.785
Class VI 0.849 0.133 40.623 1 0.000 2.338
Class VIII -0.225 0.087 6.724 1 0.010 0.798
Class X -1.084 0.050 471.197 1 0.000 0.338
Class XI -0.409 0.049 68.655 1 0.000 0.664
Constant -199.95 10329.0 0.000 1 0.985 0.000

SE: Standard error of estimate, Wald: Wald chi-square values, df: degree of freedom, Sig: significance, Exp(b,): exponentiated coefficient

The degree of preliminary success in this analysis (block 0)
has been presented in the classification table (Table 5). This
table shows that 100% of the cells with landslide have been
predicted accurately, further, none of the cells with no
landslide were predicted accurately. At this stage, the
accuracy of the model in landslide prediction was 50%.
Table 6 shows the degree of the success of the model
with all of the predictors entered into the model, in predicting
landslide/no landslide situations in each cell. The rate of
improvement in the main model’s prediction ability could
be determined through comparison of the results obtained

Table 4. Descriptive statistics of landslide susceptibility maps grading using the two
methods of equal distances and standard deviations

Standard deviation Equal interval
Class Frequency Percent Cumulative Frequency Percent Cumulative
name Percent Percent
Verylow 273329 38.6 38.6 290911 41.1 41.1
Low 204511 28.9 67.4 185829 26.2 67.3
Medium 164055 232 90.6 153177 21.6 88.9
High 66561 9.4 100.0 78539 11.1 100.0
Total 708456 100.0 708456 100.0

in this table with those earlier presented in Table 6 (the results
obtained for block 0, with none of the predictors entered
into model). In the 10" step the inclusion of collective
independent variables into the model, 76.5% of the cells
were accurately predicted. This rate is very satisfactory given

Table 5. The classification table (Step 0)

Observed Predicted
Nolandslide Landslide  Percentage
correct
No landslide 0 58054 0.0
Landslide 0 58054 100.0
Overall percentage 50.0

Constant is included in the model and the cut-off value is 0.500

Table 6. The classification table (Step 10, block 1)

Observed Predicted
Nolandslide Landslide  Percentage
correct
No landslide 42435 15619 73.1
Landslide 11679 46375 79.9
Overall percentage 76.5

Constant is included in the model and the cut-off value is 0.500
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the 50% rate obtained in the zero model. In this model, 46357
cells out of the whole 58054 cells with landslides, and 42435
cells out of the whole 58054 cells with no landslides have
been accurately classified. Based on the findings it could
be concluded that the forward stepwise logistic model
produces an appropriate model, at its 10" step, for prediction
of landslide/no landslide in each cell.

The Omnibus test with a significance value of less than
0.05% (which really means p<0.0005), shows the good
performance of the model compared to the zero model
(Table 7). Therefore, the model with our set of independent
variables used as predictors (the effective factors in the
landslide susceptibility of Hashtchin region) performs much
better than the presupposed model performed in the
beginning block (block 0).

The statistical values computed for -2 log likelihood,
Cox and Snell (1989) and Nagelkerke (1991), in the 10"
step, show that 33.1% and 44.2% of the amount of variation
in the dependent variables can well be justified and explained
by this model. The categorical variables reduce such
statistics value (Table 8). As the model moves on from one
step to the next, the statistics computed for -2 log-likelihood

Table 7. Results of the model’s Omnibus test in variables input steps

Chi-square df Sig.

Step 10 Step 612.803 1 .000
Block 46705.032 53 .000
Model 46705.032 53 .000
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decreases. This is a good indicator of its suitability and
fitness of the model.

The percentage of the cells with landslide that have been
accurately predicted is labeled as the indicators of sensitivity
of model (true positives). The model proposed is able to
classify 79.9% of the cells with landslide accurately. The
specificity of the model is shown based on the percentage
of the whole cells with no landslide that have been classified
accurately. The proposed specificity of model was 73.1%.
In other words, the present model could classify accurately
73.1% of the cells with no landslide. In Fig. 10, the ROC
curve of the implemented model is shown. The area under
the ROC curve (AUC) is 0.841, equivalent to an accuracy
of 84.1%, which is a very good for landslide prediction.

Table 8. Results of testing the model

Step -2Log Cox and Snell Nagelkerke
likelihood R Square R Square
1 143107.348" .143 .190
2 137019.249 .186 248
3 129556.275 237 316
4 120373.767 295 393
5 117664.844 311 Al5
6 116550.954 318 424
7 115897.579 322 429
8 115294.386 325 434
9 114867.637 328 437
10 114254.833 331 442

a. Estimation terminated at iteration number 5 because parameter estimates changed
by less than .001.
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Fig.9. Map of relative landslide susceptibility using the equal
distances method.

The asymptotic significance is less than 0.05, which means
that using the assay is better than guessing (Table 9).

Assessment of Different Sensitivity Degrees of
Susceptibility Maps

To assess the degree of fit of the classified susceptibility
map based on the methods mentioned above, the Eq. 7 was
used (FernUndez et al. 2003). The smaller the degree of fit
in classes with very low and low landslide susceptibility
(relative error) and the higher in classes with moderate to
high landslide susceptibility (relative success rate) shows
the high quality of the susceptibility map. Further, zonation
maps also could be assessed through determining the failure
percentage of zonations in each susceptibility class. In this
latter method, estimating the absolute error and the degree
of success (in order of the failure percentages in very low,
low, moderate and very high susceptibility classes) is also
possible. Based on the findings and the data obtained in
Tables 10 and 11, the following conclusions could be
drawn:

* In both susceptibility grading methods — equal intervals

Table 9. The area under the curve test results

Area  Std.Error®  Asymptotic Sig.® Asymptotic 95%
Confidence Interval
Lower Bound Upper Bound
841 .001 .000 .840 842

a. Under the nonparametric assumption; b. Null hypothesis: true area = 0.5

0.8
AUC is 0.84

e
o
|

Sensitivity

e
~
1

0.24

0.0 l T T T T T
0.0 02 04 0.6 08 1.0

1 - Specificity
Fig.10. Receiver Operating Characteristic curve (ROC) for logistic
regression model based on the estimation model with 75%
of all cells with landslide

and standard deviation — the rate of error always
falls below 10%. Of course, the rate of error in the
standard deviation method has been relatively lower
than that obtained in the method based on the equal
intervals.

* Broadly speaking, zonation maps produced by either
method have proved highly qualitative and could be used
as the basis for further studies.

DISCUSSION

The natural features of a region, e.g. geology, tectonic,
lithology, climate and morphology condition, play a role
for landslide occurrence. The reasons for occurrence of
landslides are many which are complicated, and at times

Table 10. The degree of fit (%) of the susceptibility classes

Methods Susceptibility class

Very low Low Medium High
susceptibility susceptibility susceptibility susceptibility

Std. Deviation

classification ~ D.F.% 1.5 8.8 28 61.6
Equal interval
classification 1.72 9.56 27.65 61.06

Table 11. The percentage of the rupture zones that lay within each susceptibility class

Methods Percentages of the rupture zones that lay

within each susceptibility class

Very low Low Medium High
susceptibility  susceptibility ~ susceptibility  susceptibility
Std. deviation
classification 3.69 16.59 42.09 37.60
Equal interval
classification 4.42 15.71 37.45 42.40

JOUR.GEOL.SOC.INDIA, VOL.84, JULY 2014
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unknown. Although the main factors in causing landslides
can be identified through field studies or aerial and satellite
images, some remain covert and unknown. To determine
unknown factors, a number of geomorphometric parameters
have been considered. Some of these geomorphometric
factors are subjective and their conversion into quantitative
variables is complicated. The logistic regression method is
able to ease or solve this problem. This method can delete
all the irrelevant factors and determine the degree of
importance of factors contributing to landslides. A landslide
inventory map of the study area, as the first step, derived
from topographic map (at the scale of 1:25000), aerial
photograph interpretation and field checks shows 137
landslide locations and 38 zones with multiple landslides
(Fig. 1c). This data together with the data related to effective
factors were stored in the GIS database. The results obtained
from the contingency tables revealed that the highest number
and area of landslides occurred on Miocene clay to marl
sedimentary rocks (upper red formations), and on altered
volcanic formations (related to Eocene and Oligocene) due
to the presence of clay minerals. Besides the lithological
factor, the largest number of landslides occurred in areas
which are used for garden (9715.53 hectares), 6 to 18
kilometers off the main faults (8047.5 hectares), in the slope
segments oriented to the northeast (2000 hectares) and areas
with mean annual precipitations of 260 to 460 mm
(13514.25). Gentle slopes also exhibit landslides with a slope
degree of 5% to 20% (9157.5%), where lithology is more
important causative factor than of the slope steepness. Using
this database, the landslide susceptibility analysis was carried
out using the logistic regression method. In modeling the
landslide susceptibility of region, a number of variables were
entered into the model. These variables were selected based
on the features and results of analysis of factors contributing
to landslides in Hashtchin area. Lithology, land use, slope
morphology (profile curvature), altitude (elevation), and
slope aspect were selected as categorical variables, whereas
variables of distance to main faults, slope gradient, the mean
annual precipitations, distance to rivers and roads, Peak
Ground Acceleration (PGA) due to earthquake and distance
from the buildings were entered as continuous variables.
Then, the forward step-wise method of the logistic regression
model was run and within 10 steps, the variables, altitude,
land use, and three slope aspects were excluded from the
model. Logistic regression analysis has provided estimates
of the constant and the coefficients of the independent
variables. Based on the estimated coefficients (5,) and (b,),
the relevant equation was defined with the help of Eq. 4.
Based on the coefficients and equations obtained, for each

JOUR.GEOL.SOC.INDIA, VOL.84, JULY 2014

cell in the study area, landslide probability was computed
in each cell between 0 and 1.

Although logistic regression has been widely used in
many landslide zones (Lee and Min, 2001; Lee 2004; Ayalew
and Yamagishi, 2005; Can et al. 2005; Wang and Sassa,
2005; Yesilnacar and Topal, 2005; Duman et al. 2006;
Mathew et al. 2009), Hashtchin landslide susceptibility
zonation mapping using logistic regression has been used
first in the present study. The main point of logistic regression
model lies in the nature and type of the data input into the
model. The input variables in logistic regression model are
selected based on the data available and features of the region
under study (Mathew et al. 2009; Wang and Sassa, 2005;
Yeslinacar and Topal, 2005; Lee, 2004). Of course, the
results obtained from a model cannot be trusted unless after
its comprehensive assessment and evaluation. To assess the
logistic regression model, most researchers have made use
of statistical methods (Ayalew and Yamagishi, 2005;
Yesilnacar and Topal, 2005; Mathew et al. 2009).

The results obtained from the statistical analysis, in this
research, showed that the model had a good performance
and its predictions were accurate in 76.5% of the cases. To
show the quality of probability and prediction methods, the
ROC curve has proved helpful (Swets, 1988). Based on the
area under the ROC curve (AUC), the prediction ability of
the model is 84.1%, which is good for prediction of the
landslide/no landslide susceptibility in Hashtchin region.
Finally, the degree of success of the model in landslide
susceptibility maps was found to be 79%.

CONCLUSIONS

The results indicate that the logistic regression model is
convenient and applicable for scale adopted in this research
and can be applied successfully to landslide susceptibility
zonation mapping in the study area. Such susceptibility
zonation maps can play an important role in mitigating
landslide hazards and helping decision makers to take
appropriate measures and plan intended developmental
activities in slopes with high susceptibility in the region.
The map may also be used as a basis for the landslide risk
assessment studies to be applied in the study area in the
future. The model introduced can also be applied to
mountainous areas with similar features including Alborz,
Zagros and Caucuses Mountains.

Acknowledgment: My sincere thanks to the head and
members of Arya Research Center (aryarc.com) for their
support for publication of this article.
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