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Abstract: One important decision in design of surface mine is the selection of mine equipment and plant.  Demand for
mechanical excavation is growing in mining industry because of its high productivity and excavation in large scale with
lower costs. Several models have been developed over the years to evaluate the ease of excavation and machine performance
against rock mass properties. Due to complexity of excavation process and large number of effective parameters, approaches
made for this purpose are essentially empirical. There are many uncertainties in results of these models. An attempt is
made in this paper to revise the exisiting models. Neural network models for estimation of rock mass excavatability and
production rate of VASM-2D excavating machine at Limestone quarry in Retznei, Austria, is presented. Input parameters
of this model are Uniaxial compressive strength, tensile strength and discontinuities spacing of rocks. Output is the
specific excavation rate per power consumption (bcm/Kwh) as the productivity indicator. Average of deviation between
actual data and results estimated by neural network model was only 15% which is in an acceptable range.

Keywords: Rock mass excavatability, Artificial neural network, Retznei, Austria.

prediction of mechanical excavators performance relying
only on a single parameter, may provide widely inaccurate
results. So, in the recent years, various multi parameter
indexes or empirical classification systems have been
derived for the general assessment of rock mass
excavatability.

A graphical method which allows assessment of
excavation method by using only two geotechnical
parameters, namely; discontinuity spacing and rock
strength, was published by Franklin et al. (1971). The graph,
subdivided into areas of digging, ripping and blasting, was
later revised by other authors based on data obtained from
further case studies. Goktan and Eskikaya (1991) developed
a “Rock Mass Rippability Index” applicable to sedimentary
rocks of surface lignite mines. The index, which is a
combination of rock uniaxial compressive strength and
coefficient of relative rock mass weakness, was found to
correlate well with the rates at which the rock can be ripped
and dozed for loading. A “Rippability Index” carrying the
concepts of the physics of self-ordered criticality was
developed, and compared to available ripping forces for
various bulldozers (Caterpillar Tractor Company, 1980).
MacGregor et al. (1994) have used a database of detailed
ripping and geological data from highways and mine sites
and have developed a method to estimate ripper productivity
for identifying difficult ripping conditions. The method is

INTRODUCTION

There are several methods for doing excavation.
Mechanical excavation has had many advantages over the
conventional drilling and blasting technique including high
productivity, improved safety, minimal ground disturbance,
elimination of blasting vibration and the uniform muck size
which allows for the conveyor belt to maximize the benefits
of the mechanical excavators (i.e. high production and lower
costs, automation etc) for all applications performance of
machine under specific conditions must be understood.
Several models have been developed over the years to
evaluate the ease of excavation, machine performance and
production rate of different mechanical excavators against
rock mass properties. Due to complexity of the excavation
process and large number of parameters involved,
approaches made for this purpose are essentially empirical
(Copur et al. 1997).

The influencing parameters of the performance of
mechanical excavation can be divided into six groups; intact
rock properties, rock mass properties, cutter type, cutting
geometry, machine specifications and operational
parameters. In this paper the effect of intact rock and rock
mass properties on excavatability has been considered. It is
evident that each of these properties must be measured in
accordance with the special procedures and standards
(Franklin et al. 1971). It is well known and established that
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based on the multiple variable regression analysis of the
database. The dominant factors affecting productivity are
including uniaxial compressive strength of the rock, seismic
wave velocity, joint roughness and strength, weathering,
discontinuities and bulldozer mass.

In the recent years, various empirical classification
systems have been developed for the general assessment of
rock excavatability or for specific applications such as rock
rippability. Classification systems are based on gathered
geotechnical data and observations made in the field for a
variety of excavation processes. The adopted procedure in
most of these classification systems is the quantification of
geotechnical parameters that are related to machine
performance, leading to a single rating or index. The ratings
obtained by this way are then related to the ease of rock
excavation classes and machine types to be used.

Weaver (1975) proposed a “rippability rating chart” that
is very similar to Bieniawski’s Geomechanics Classification
System. The rippability of the material is based on an
assessment of seismic velocity, rock strength, joint spacing,
joint gauge, joint continuity, joint strike and dip orientation,
and weathering. In his system, the weighted numerical values
determined for each input factors are summed to arrive to a
total rating which is then used to assess excavation class
and bulldozer size.

Weaver’s system was then modified by Minty and Kearns
(1983). They included new parameters such as the
groundwater conditions and surface roughness of
discontinuities. Another modification of Weaver’s rating
system was proposed by Smith (1986). His primary change
was the omission of seismic wave velocity. The
“Excavatability Index” developed by Kirsten (1983) is based
on Norwegian Geotechnical Institute’s “Q” system that was
specially developed for tunneling. The input parameters of
the system are: uniaxial compressive strength, number of
joint sets, RQD, joint roughness, joint alteration, joint
orientation, and joint spacing.

Boundary values for various excavation classes’ intervals
is given by an index which is produced by product of the
input parameters values. The “Diggability Index” rating
method devised by Scoble and Muftuoglu (1984) defines
five rock classes based on four geotechnical parameters:
uniaxial compressive strength, bedding spacing, joint
spacing and weathering. The index is derived by summation
of the rated values of these input parameters. The index
considers both geotechnical factors and excavating
equipment capabilities. On the other hand Singh et al (1986)
suggested a “rippability rating chart” which classifies rock
mass according to the selected geotechnical parameters. In
this method, a numerical rating is given for each of the

parameters including rock tensile strength, abrasiveness,
seismic velocity, weathering and discontinuity spacing. The
last rating is used for the selection of ripper types. An
empirical ground classification system based on rock
strength, block size, weathering and relative ground structure
was developed by Hadjigeorgiou and Scoble (1988). The
selected geotechnical parameters are rated and combined
together to suggest an “Excavation Index” which is related
to excavation effort and excavation classes. Karpuz (1990)
proposed an excavation rating system that utilize five rock
mass and rock material properties related to excavation
method and excavator performance, including  uniaxial
compressive strength, rock hardness, discontinuity spacing,
degree of weathering and seismic wave velocity.

The proposed rating system helps in the selection of
excavation equipment as well as drilling and blasting
requirements. More recently, Basarir and Karpuz (2004)
have devised a rippability classification system for marls in
lignite mines. Rock parameters included in the system are:
uniaxial compressive strength, seismic wave velocity;
discontinuity spacing and Schmidt hammer hardness. Each
of these input parameters are rated separately. Rippability
classes of rocks are determined according to the final rating.
Accordingly, appropriate dozer types and their expected
production rates are specified.

These models have been used to either direct or indirect
selection of appropriate excavation systems or equipment
that will be used in mining and civil works. Some of these
criteria and their input parameters listed in Table 1. Number
of stars in table shows the relative importance of parameters
in each assessment method.

The existing conventional methods used for
excavatability estimation have some deficiencies that can
be as following; (1) use of linguistic terms as input value of
some parameters, (2) predetermined and sharp class
boundaries in classification systems whereas the rock mass
quality is gradational in nature and (3) prescribed rating
scales representing contribution of each criterion to the
overall quality. In conclusion some uncertainties are
encountered when these systems are employed for the
determination of excavatability.

As the artificial neural network (ANN) models can cope
with the complexity of complicated and ill-defined systems
in a flexible and consistent way. In the last few years use of
artificial neural network has increased in many areas of
engineering. In particular, ANN has been applied to many
geotechnical engineering problems and has demonstrated
some degree of success. A review of the literature reveals
that ANN has been used successfully in pile capacity
prediction, modeling soil behavior, site characterization,



JOUR.GEOL.SOC.INDIA, VOL.78, SEPT. 2011

ROCK  MASS  EXCAVATABILITY  ESTIMATION  USING ARTIFICIAL  NEURAL  NETWORK 273

earth retaining structures, settlement of structures, slope
stability, design of tunnels and underground openings,
liquefaction, soil permeability and hydraulic conductivity,
soil compaction, soil swelling and classification of soils.

ARTIFICIAL  NEURAL  NETWORK

Artificial neural network, ANN, as they are known today,
originate from the work of McCulloch and Pitts (1943), who
demonstrated the ability of interconnected “neurons” to
calculate some logical functions. Later, Rosenblatt (1958)
presented the first operational model of a neural network
named ‘Perceptron’. The perceptron, built as an analogy to
the visual system, was able to learn some logical functions
by modifying the synoptic connections.

ANN has massively parallel, distributed and adaptive
systems, modeled on the general features of biological
network with the potential for ever improving performance
through a dynamical learning process. Neural network is
made up of a great number of individual processing elements,
the neurons, which perform simple tasks. A neuron,
schematically represented in Fig.1, is the basic building

block of neural network technology. It performs a nonlinear
transformation of the weighted sum of the entering inputs
to produce the output of the neuron. The input to a neuron
can come from other neurons or from outside the network.
The nonlinear transfer function can be a threshold, a sigmoid,
a sine or a hyperbolic tangent function (Hagan et al. 2002).

Neural network is comprised of a great number of
interconnected neurons. There exists a wide range of network
architectures. The choice of the architecture depends upon
the task to be performed. For modeling of physical systems,
a feed forward layered is usually used. It consists of a layer
of input neurons, a layer of output neurons and one or more
hidden layers. In present work, a three-layer feed forward
network is used.

In the neural network, the knowledge causes in the
interconnection weights between neuron and topology of
the network. Therefore, one important aspect of a neural
network is the learning process whereby representative
examples of the knowledge to be acquired are represented
to the network. Then, it can integrate this knowledge within
its structure. Learning implies that the processing element
somehow changes its input/output behavior in response to
the environment. The learning process thereby consists in
determining the weight matrices. It produces the best fit of
the predicted outputs over the entire test data set. The basic
procedure is, set the weights between adjacent layers to
random values. An input vector is then impressed on the
input layer. Then, it is propagated through the network to
the output layer. The difference between the computed
output vector of the network and the target output vector is

Table1. Geotechnical parameters considered in various excavatability assessment systems

Assessment method Relative importance of each parameter

SV �����c PLI Hd Ab Wea Jsw Jp Jsp Jor

Frankline et al (1970) **** **** * ***

Weaver (1975) **** ** **** * * *

Kirsten (1982) **** **** **

Minty and Kearns (1983) **** ** ** *** * *

Scoble and Muftuglu (1984) ** ** **** **

Smith (1986) ** ** **** * *

Karpuz (1990) **** *** ** ** ****

Hadjigeorgiou and Scoble (1990) *** ** **** *

Pettifer and Fookes (1994) **** * **** **

Where the individual characteristics are:

SV: Seismic Velocity Hd: Rock Hardness Jsw: Joint spacing Jor: Joint Orientation

�c:UCS Ab: Abrasivity Jp: Joint persistence Jsp: Joint separation

PLI: Point Load Index Wea: Weathering

Fig.1. A simple processing neuron.
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then adapted to the weight matrices using an iterative
optimization technique to progressively minimize the sum
of squares of the errors. The most versatile learning algorithm
for the feed forward layered network is back-propagation.
The back-propagation learning law is a supervised error-
correction rule. Here, the output error, that is, the difference
between the desired and the actual output, is propagated
back to the hidden layers. Now, if the error at the output of
each layer can be determined, it is possible to apply any
method which minimizes the performance index to each
layer sequentially.

Back-propagation Algorithm  with  Levenberg-Marquardt
Algorithm

Multi-Layer Perceptron (MLP) is perhaps the best-
known type of feed forward network. MLP has generally
three layers: an input layer, an output layer and an
intermediate or hidden layer. Neurons in the input layer
only act as buffers for distributing the input signal xi to
neurons in the hidden layer. Each neuron j in the hidden
layer sums up its input signals xi after weighting them with
the strengths of the respective connections wji from the input
layer and computes its outputs yj as a function f of the sum,
viz.

(1)

Where, f can be a simple threshold function or a sigmoid,
hyperbolic tangent or radial basis function.

The output of neurons in the output layer is computed
similarly. The back-propagation algorithm, a gradient
descent algorithm, is the most commonly adopted MLP test
algorithm. It gives the change �wji in the weight of a
connection between neurons j and i as follows.

(2)

Where � is a learning rate factor and �j is a parameter
depending on whether neuron j is an output neuron or a
hidden neuron. For output neurons,

(3)

And for hidden neurons,

(4)

In equation (3), netj is the total weighted sum of input
signals to neuron j and yj

(t) is the target output of neuron j.
As there are no target outputs for hidden neurons, in equation

(4), the difference between the target and actual output of a
hidden neuron j is replaced by the weighted sum of the �q
terms already obtained from neurons q connected to the
output of j. Thus, iteratively, beginning with the output
layer, the çä term is computed for neurons in all layers
and weight updates determined for all connections (Stefen
et al. 1997).

Back-propagation searches on the error surface by means
of the gradient descent technique in order to minimize the
error. It is very likely to get stuck in local minima. Various
other modifications to back-propagation to overcome this
aspect have been proposed and the Levenberg-Marquardt
modification has been found to be a very efficient algorithm
in comparison with the others like Conjugate gradient
algorithm or variable learning rate algorithm (Hagan et al.
2002).

Levenberg-Marquardt works by making the assumption
that the underlying function being modeled by the neural
network is linear. Based on this calculation, the minimum
can be determined exactly in a single step. The calculated
minimum is tested, and if the error and there is still other
lower point, the algorithm moves the weights to the new
point. This process is repeated iteratively on each generation.
Since the linear assumption is ill-founded, it can easily
lead Levenberg-Marquardt to test a point that is inferior
(perhaps even wildly inferior) to the current one. The clever
viewpoint of Levenberg-Marquardt is that the determination
of the new point is actually a compromise between a step in
the direction of steepest descent and the above-mentioned
leap. Successful steps are accepted and lead to a
strengthening of the linearity assumption (which is
approximately true near to a minimum). Unsuccessful steps
are rejected and lead to a more cautious downhill step. Thus,
Levenberg-Marquardt continuously switches its approach
and can make very rapid progress.

The equations for changing the weights during test in
Levenberg-Marquardt method are given as follows:

(5)

Where J is the Jacobian matrix of the derivative of each
error to each weight, µ is a scalar and e is an error vector.
The Levenberg-Marquardt algorithm performs very well and
its efficiency is found to be of several orders above the
conventional back propagation with learning rate and
momentum factor.

Design  of  the  Optimum Artificial  Neural  Network

Generally, there is no direction and precise method for
determining the most appropriate number of neurons to
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include in each hidden layer in the neural network. This
problem becomes more complicated as the number of
hidden layers in the network increases. To establish an
optimal network, one needs to begin with train and test the
artificial neural network using a subset of all data sets. This
process is referred to a pilot experiment. This experiment is
based on a certain number of samples; a sample being a set
of input data and observed/measured information. In the
pilot experiment data set, the samples are divided into a test
set and a validation set. Network with different numbers of
hidden nodes will be trained for convergence of the test
samples, measuring their performance with the validation
set, and choosing the network that yields the best
performance of the validation set. Finally, this selected
network model will be used for the whole data set (Stefen et
al. 1997).

Then the model is tested with the validation set. Input
parameters of this validation set are fed to the model via
input nodes and weighted layer-by-layer from the hidden
layer(s) to the output layer. In this research all data were
grouped in two parts, named train and test data. We ignored
validation data because we did not have enough data, that
did not interfere our modeling. Outputs, “predicted Specific
Excavation values (bcm/Kw.h)” from the network, are then
used to compare with the desired outputs (measured Specific
Excavation values). If the network outputs of the pilot
experiment are in agreement with the measured data as
indicated by small differences between output and desired/
target data, the network is useable for the application.
Performance of the developed network was tested with the
help of:

1 drawing a scatter diagram of estimated versus target
values

2 Computing mean absolute error (MAE) using:

(6)

Where x is target; y is network output; Q is number of
test patterns.

3 Computing mean square error (MSE) using:

(7)

Where x is target; y is network output; Q is number of
test patterns [18].

SPECIFIC  EXCAVATION  INDEX
PREDICTION  BY ANN

The main aim of this research is to investigate the

influence of rock mass and intact rock properties on the
excavatability of rock and examine the effectiveness new
developed technique to predicate the excavatability of rock
and machine performance at the design stage. The research
work was carried out within the following constraints:
� In this study the excavatability index is defined as a

volumetric extracted rock (in cubic meter) per unit of
power (in Kilo Watt Hour)

� The work was based on assessing the machine
performance of one type continuous mechanical
excavators, the VASM-2D.

� The monitoring of machine performance consists of
recording the power required for different levels of
production.

� The assessment of rock mass properties was mainly
based on recording the presence and frequency of
occurrence of discontinuities.

� Intact rock properties have been assessed by laboratory
tests and involved Unconfined Compressive Strength
(UCS) and Brazilian Tensile Strength (BTS). Other
indexes such as Toughness and Brittleness also can be
used, but they are defined as relations of UCS with BTS.
From where ANN can cover these relations, then in
this research it is preferred to not consider them.

� The data are used, collected from ten zones of two
separated part in Limestone quarry in Retznei, Austria
(Suseno, 1996).

When studying effects of UCS, BTS, discontinuities
spacing are related to specific excavation index as the
machine productivity indicator (as shown in Figs. 2, 3 and
4) and one can draw the surprisingly consistent conclusion
if all data series are considered together, there are no strong
trends in the relationship between any one of the parameters
and the specific excavation index. This indicates that more
than one parameter influences the magnitude of specific
excavation index. While if a series of single harvest for a
particular zone to be considered, it will be seen that by
increasing in compressive strength, specific excavation index
is reduced. In other words it means that for power
consumption per a unit, smaller volume of stones may be
extracted .This situation is also true for tensile strength of
stone. In Figs.2 and 3, data series for every special zone are
detectable.

Moreover, an approach based on artificial neural network
(ANN) was used to develop predictive relations. Since ANN
enable one to map all influencing parameters for specific
excavation.

An artificial neural network was employed to analyze
51 sets of available data to develop the model. 36 data sets
were used for train stage and 15 sets were left for test stage.
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The Neural Network toolbox of MATLB software was
utilized for network development.

The most influencing parameters are: Unconfined
Compressive Strength (UCS), Brazilian Tensile Strength
(BTS) and discontinuous spacing. Artificial neural network
model structure is schematically represented in Fig.5.

The data are fed into the ANN, where the input layer
consists of 3 input nodes that represent all influencing
factors. The process attempts to establish the optimal neural

network model and an appropriate number of train epochs
for the problem. The variables used in this trial and error
process are: (1) the architecture of the neural network, which
is composed of a number of hidden layers and a number of

Table2. Details of optimized neural network model

Characteristics of ANN model Value/Description

No. Train Data 36

No. Test Data 15

No. Optimum Neuron in Hidden Layer 15

Global Error Function MSE

Activation Function Hidden layer Tan-Sig

Activation Function Output layer Liner

Optimization Algorithm Levenberg_ Marquardt

No. Optimum Epochs 20

MAE Train 0.13

MAE Test 0.15

MSE Train 0.033

MSE Test 0.047

Fig.4. Relation of discontinuity spacing with specific excavation

Fig.3. Relation of BTS with specific Excavation

Fig.2. Relation of UCS with specific excavation

Summing junction 

●Conjunction weights Threshold 

Activation function 

Fig.5. Artificial neural network structure.

Fig.6. Cross - correlation between predicted and measured values
of specific excavation by ANN for train data.

Fig.7. Cross - correlation between predicted and measured values
of specific excavation by ANN for test data.
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hidden nodes in each hidden layer; and (2) the number of
epochs. Therefore, based on all performances of the network
models in the test set, the optimal network gives the lowest
MSE that is shown in Table 2.

Figure 6 shows the predicted specific excavation versus
the actual values for train data. Results of model for test
data are showed in Fig.7. The results depicts that the model
has a very good ability to predict specific excavation of
machine in excavating per unit of energy (Kw.h) as the
productivity. The MAE of the model is 0.13 and 0.15 for
train data and test data respectively.

The lines on two sides of central line in Figs. 6 and 7
shows error, that is around 10 percent. In addition, for some
train and test data, quantities for estimating the network,
the error is less than 10 percent.

CONCLUSION

Neural network is well developed to use in applications
with availability of enough and suitable data and high
complexity where the estimation is concerned. Comparison
between real and resulted estimation from neural network
shows very low discrepancy. Operation of neural network
in this paper states the higher ability of neural network in
identifying system (knowing the effecting parameters in
utility power and omitting same factors with low influences)
and making connection between efficient parameters, with
balance of utility power. Having enough databases (data with
good tolerance, and enough quantity), one can model neural
network more developed and complete following the
mentioned procedure.
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